General Information

<table>
<thead>
<tr>
<th>Academic subject</th>
<th>Structure and Equipment for Protected Cultivations (Module of I.C. Applied engineering)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree course</td>
<td>Master degree Plant Medicine (LM69)</td>
</tr>
<tr>
<td>ECTS credits</td>
<td>3</td>
</tr>
<tr>
<td>Compulsory attendance</td>
<td>No</td>
</tr>
<tr>
<td>Language</td>
<td>Italian</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject teacher</th>
<th>Name Surname</th>
<th>Mail address</th>
<th>SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evelia SCHETTINI</td>
<td>evelia.schettini@uniba.it</td>
<td>AGR/10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS credits details</th>
<th>Basic teaching activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disciplines of applied Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class schedule</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>First semester</td>
</tr>
<tr>
<td>Year</td>
<td>Second year</td>
</tr>
<tr>
<td>Type of class</td>
<td>Lecture, 2 ECTS (16 hours) Laboratory and field classroom and workshops, 1 ECTS (14 hours)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time management</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>75</td>
</tr>
<tr>
<td>In-class study hours</td>
<td>30 (16 Lectures + 14 Lab & field cl.)</td>
</tr>
<tr>
<td>Out-of-class study hours</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic calendar</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Class begins</td>
<td>October 2, 2017</td>
</tr>
<tr>
<td>Class ends</td>
<td>January 26, 2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syllabus</th>
<th>Knowledge of principles of Mathematics and Physics requests for admission to the Master course.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites/requirements</td>
<td>Knowledge and understanding</td>
</tr>
<tr>
<td></td>
<td>• Knowledge and understanding of structures and materials used for protected cultivation</td>
</tr>
<tr>
<td></td>
<td>• Knowledge and understanding of technological equipment in support of protected cultivation</td>
</tr>
<tr>
<td></td>
<td>• Understanding of the energy balance equation of a greenhouse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expected learning outcomes</th>
<th>Applying knowledge and understanding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Capacity to identify the most suitable structure and material in a protected environment depending on the cultivation period, the geographical area and the cultivated species</td>
</tr>
<tr>
<td></td>
<td>• Capacity to identify the technical characteristics of the technological equipment according to the energy balance, the cultivation period, the geographical area and the cultivated species</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Making informed judgements and choices</th>
<th>Knowledge of principles of Mathematics and Physics requests for admission to the Master course.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Ability to plan an integrated sustainable design of a greenhouse in relation to the choice of structures, materials and equipment considering energy and production efficiency</td>
</tr>
<tr>
<td></td>
<td>• Ability to analyze all possible environmental hazards that can be produced from all the productive activities within a protected cultivation</td>
</tr>
<tr>
<td></td>
<td>• Ability to propose sustainable solutions to solve energy, environmental, and</td>
</tr>
</tbody>
</table>
production problems

Communicating knowledge and understanding
- Ability to use informatics (drawing, simulation, graphic representation, and so on)

Capacities to continue learning
- Ability to continue learning by consulting books, papers and computerized catalogs.

Expected learning outcomes in terms of knowledge and skills are listed in Annex A of the Study Guide Course Guidelines (expressed through the European Degree Program Title

<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Principles and objectives of the course.</td>
</tr>
<tr>
<td>• Solar radiation: UV, visible, near and far infrared. Climatic parameters. The greenhouse effect.</td>
</tr>
<tr>
<td>• Greenhouse structures and construction.</td>
</tr>
<tr>
<td>• Greenhouse classification and design characteristics.</td>
</tr>
<tr>
<td>• Greenhouse energetic balance.</td>
</tr>
<tr>
<td>• Greenhouse climate control systems: temperature, relative humidity, light, CO2</td>
</tr>
<tr>
<td>• Greenhouse cladding materials: glass, flexible and rigid plastics, screens, nets.</td>
</tr>
<tr>
<td>• Soilless cultivation systems.</td>
</tr>
<tr>
<td>• Computerized control and management systems.</td>
</tr>
<tr>
<td>• Environmental and standardization aspects.</td>
</tr>
<tr>
<td>• Environmental effects of greenhouses and mitigation methods.</td>
</tr>
</tbody>
</table>

Course program

<table>
<thead>
<tr>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Notes of the lectures and tables distributed during the course</td>
</tr>
</tbody>
</table>

Notes

Teaching methods

Assessment methods

For students attending the course there will be a partial exam after the first part of the course. This partial exam consists of an oral test on the subjects developed during the hours of lecture and exercise. The outcome of this test contributes to the evaluation of the examination of profit and is valid for one academic year. The test is passed with a vote of at least 18/30.

The exam consists of an oral exam on the topics developed during the course. The test is passed with a vote of at least 18/30.

For students who have stood the first part of the exam, the final vote is expressed by the average of the votes obtained in the two oral tests.

The oral examinations are public.

Evaluation criteria

Knowledge and understanding skills
- Knowledge and understanding skills of the principles of heat transmission
- Knowledge and understanding skills of the structures and construction materials used for protected crops
- Knowledge and understanding skills of the energy balance equation
• Knowledge and understanding skills of technological systems for air conditioning of greenhouses

Knowledge and understanding skills applied
• ability to apply the knowledge gained in solving problems related to a protected cultivation by identifying the structures, covering materials and technical characteristics of the technological equipment to ensure the microclimate required for the species cultivated according to the climate of the geographical area, the cultivation season, the plant species
• ability to reduce environmental impacts mainly related to the risks of water / air pollution / soil related to the disposal of waste (plastic waste, etc.)

Autonomy of judgment
• Ability to propose sustainable solutions to solve energy, environmental and productive problems that may be encountered in protected habitats by ensuring appropriate welfare conditions for humans and plants
• Ability to integrate knowledge gained in different areas

Communicative Skills
• Ability to communicate clearly and without ambiguity the knowledge and the ratio to specialists and non specialists

Ability to learn
• Ability to learn and deepen in a self-directed and autonomous way

Further information

<table>
<thead>
<tr>
<th>Visiting hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Official visiting hours: Every day from 11.30 to 13.00 a.m.; afternoons by previous agreement.</td>
</tr>
</tbody>
</table>