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Massimo Bilancia1, Paola Perchinunno2, Domenico Vitale3 

 

 

A MONTE CARLO STUDY ON LEARNING ALGORITHMS FOR PREDICTING 

STUDENT DROPOUTS IN HIGHER EDUCATION* 

 

 
ABSTRACT 

Il problema dell’abbandono degli studi 
universitari è una rilevante difficoltà con la quale 

il sistema universitario italiano deve confrontarsi. 

In questo lavoro, utilizzando opportune tecniche 

di simulazione, abbiamo esplorato i limiti e le 

possibilità di alcuni algoritmi di Machine 

Learning per prevedere gli abbandoni sulla base di 

una serie di variabili che sono immediatamente 

disponibili per ciascuno studente. 

The phenomenon of dropping out is one the most 

significant problems faced by the Italian 

university system. In this paper, using suitable 

simulation techniques, we have explored the limits 

and the possibilities of some Machine Learning 

Algorithms to predict the probability of 

abandonment in a timely and efficient way, using 

an information set that is available at the time of 

matriculation. 
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1.  The phenomenon of dropping out is one of the most significant problems facing 

the Italian university system, also in terms of comparison with the European university 

system. Although the data on the most recent student cohorts show a slight improvement 

the phenomenon remains significant, with a dropout rate within 5 years reaching almost 

30% [9]. 

The analysis of this issue can be conducted using two fundamentally distinct 

approaches. The first is centered on the theoretical identification of the socio-economic 

and organizational determinants that may be at the basis of the risk of failure in the 

university course. The most recent research has focused on the weight that must be 

attributed, in order to determine the probability of dropout, both to individual-endogenous 

factors, such as personal attitudes, motivation and educational background coming from 

high schools, as well as organizational-exogenous factors, such as the bad functioning of 

the universities or the educational orientation deficit. An important study that falls in line 

with this approach is [39], where a bivariate Probit model was used to show that the 

probability of early leaving (in the first semester) is directly correlated to the number of 

students in the classroom who follow the compulsory courses, while in the subsequent 

semesters the probability of dropout decreases as the academic performance increases, and 

therefore the perceived self-regulatory efficacy increases [17, 5]. 

The studies carried out in relation to the Italian experience, characterized by a high 

rate of early dropouts, which stood at 12.2% in the transition from the first and second year 

of the first-level degree courses [9], confirm the presence of a mix of 

endogenous/exogenous factors that, directly or inversely, are strongly correlated to the risk 

of dropout. Among those of particular relevance are: the chosen Study Program has a 

limited number of students, the quality of the freshman orientation programs, the number 

of students attending the courses and the perceived self-efficacy in the organization of 

individual study [13, 4, 7, 35]. 

These methods have the undoubted advantage of making possible the identification of 

the most appropriate policy guidelines to reduce dropout rates in future cohorts. However, 

in recent years an alternative approach has become widespread, aiming at predicting the 

probability of dropout for each student. These methodologies are largely inspired by the 

churn analysis used in many marketing studies. The churn rate, or attrition rate, is any 

estimate of the number of individuals who leave a certain group at a defined time interval. 

The churn analysis techniques aim to identify these individuals early, in order to implement 

actions at an individual level that increase the retention rate, thus countering dropouts [23, 

27]. 

This specific way of approaching the problem of dropout is an integral part of a broader 

research field that has emerged over recent years, called Educational Data Mining (EDM) 

[47]. The Data Mining process, also known as Knowledge Discovery in Databases (KDD), 
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consists of the automatic discovery through appropriate algorithms of new and potentially 

useful information hidden within large amounts of data. The EDM is precisely focused on 

the development of ad hoc methods that can be used to discover regularities and new 

information within databases from contexts related to education, aimed at better 

understanding the individual students and the environments within which this instruction 

is provided, as well as their relation to the expected performance and objectives [3, 36]. 

The analysis and use of algorithms that extract new knowledge from databases is part of 

that discipline generally known as Machine Learning (ML) [38, 18]. 

Supervised classification techniques already used in literature and the prediction of 

dropout are manifold [29]. For example: logistic regression [52], CART algorithms 

(Classification and Regression Trees) [11, 28], Naïve Bayes [46], Support Vector 

Machines (SVM) [49], Artificial Neural Networks (ANN) [44, 50]. As it is well known, 

supervised classification algorithms are ML techniques based on the availability of a 

training set with complete information, in which for each instance of the problem under 

study both the classification label (usually a 0/1 binary label) and a set of values relating 

to 𝑠 qualitative/quantitative input variables (predictors) are available. Based on this set, 

the algorithm learns an empirical relationship between the space of the input variables and 

the label, thus making it possible to predict the label also for new future instances, for 

which only the input variables are available, while the label must still be observed [20]. In 

this sense, the term ‘supervised’ indicates precisely the learning based on the information 
that has already been observed. In our case, the binary label will obviously represent the 

occurrence or non-occurrence of the dropout. With appropriate coding, we can insert the 

occurrence/non-occurrence of this event at an individual level within a classification 

algorithm. 

A related problem, immediately after gathering information, lies in choosing the most 

appropriate algorithm. Comparison between classification techniques, in terms of 

accuracy, has a solid theoretical basis. We must indeed remember that there is no learning 

algorithm that systematically obtains the highest performances in any application context. 

For certain problems, we tend to find that certain algorithms perform better than others, 

which is a consequence of the algorithm’s fitness to the particular problem, and that the 

use of domain knowledge can improve performance at the cost of generality [53, 54]. This 

means that the evaluation of accuracy must be essentially empirical in nature, and that the 

algorithms compared can hardly ever be selected on the basis of a well-defined criterion, 

but are the result of a ‘reasonable’ choice that must be in each case validated a posteriori, 
based on the data. 

A fundamental point on which, however, it is necessary to better focus derives from 

the very nature of the problem we want to address. If the goal is to accurately predict as 

early as possible the likelihood of leaving the undertaken study course, there are obvious 
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constraints on the variables that can be used as input variables by any classification 

algorithm. This kind of difficulty is well exemplified in [33]; in this study a multi-stage 

experiment is described in which the set of input variables has been enlarged sequentially 

starting from an initial step I. In this first level only six independent variables were used, 

related to the social status of the students and to the characteristics of the class in which 

the attendance of the courses of the first semester took place, up to the step V in which 

among the input variables were also included the marks in the most important exams (plus 

many other variables, concerning the performance and the individual characteristics of 

each student). The authors point out that the most accurate predictions in terms of 

sensitivity and specificity are obtained, as was to be expected, with the input variables of 

step V, with any classification algorithm among those used. 

However, most of the variables of step V can be observed only in a more advanced 

moment of the university career of each student, and therefore end up being irrelevant for 

the purposes of an early prediction of the probability of dropout. In other words, the 

prediction error drops to zero as we approach the adverse event (dropout). All this is of 

little use for the possibility of implementing an automatic classification system for students 

at risk that is really effective, and that allows corrective action to be taken at an individual 

level in a timely manner. 

Most of the literature on dropout prediction is affected by problems of this nature. 

Therefore, results obtained are difficult to reproduce and are often overly optimistic. In 

light of these difficulties, the research question we want to start exploring in the following 

study is: how accurately can we predict dropout by using a minimal set of input variables? 

By minimal we mean a small set of individual variables that are immediately available at 

the time of matriculation and that remain constant throughout the university career 

(therefore not requiring prospective collection of new data). As in other literature, in our 

paper we have considered a variable which is available only at dropout or graduation, that 

is, the age of leaving the university system (age at exit). However, the insertion of this 

variable should not be considered as a limitation but rather as a tool that makes it possible 

to evaluate the risk of dropout at any point in time in the course of university career. 

The learning of the classifier takes place using the age at exit as an input variable 

while, at the time of prediction on future students (for whom the degree has not yet been 

achieved or the dropout has not yet occurred), we use the age actually reached at that time. 

This covariate shift can be justified on the basis of the characteristics of the distribution of 

age at exit from the university system (see the exploratory analysis shown in Figure 1), 

and has a surprising result. While the predictions made using the age at exit have a low to 

moderate sensitivity (and cannot be used in reality for obvious reasons), those made on the 

basis of a simulated age prior to the moment in which exit from the system occurs have a 

significantly greater sensitivity, obtained at the expense of a modest reduction in 
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specificity. In this way, the risk of dropout can be assessed at any time without collecting 

any new data after matriculation. In order to remove any ambiguity, we agree that students 

who drop out constitute the positive class (i.e. they are labelled ‘1’), and thus sensitivity is 
the ability to correctly classify a student who drops out, while specificity is the ability to 

correctly classify a student who completes the course undertaken. 

Finally, as noted earlier, we do not have general theoretical results allowing us to 

identify the best algorithm for a given problem in advance. The only solution is to 

empirically evaluate the existing trade-off between generality and predictive accuracy. For 

this reason, we have considered a set of three supervised classification algorithms 

characterized by a growing computational complexity, coupled with a cross-validation 

resampling procedure in order to mitigate the tendency to be overly optimistic about the 

sensitivity and the specificity. 

The paper is organized as follows. In Section 2 we briefly describe the study 

population and the input variables of the classification algorithms used. The supervised 

classification algorithms used for predicting dropout are described in Section 3. In Section 

4 we have reported some details on data preparation, the experimental design used to 

evaluate the accuracy in an unbiased way, as well an extensive simulation to demonstrate 

the effect discussed above. Section 5 contains a brief discussion of the results and suggests 

the way forward for future research. 

 

2. The data used in this paper have been extracted from the Miur Cineca Student-

Didactic Observatory database [37]. This Observatory is specifically reserved for 

universities, for communication of cases to the National Registry of Students, which is, in 

turn, made up of a vast administrative archive in which the members of the Italian 

university system are registered. 

The outcome variable is the exit from the system for students enrolled at the University 

of Bari Aldo Moro, from 2013 to 2016. The possible conditions at the exit covered by the 

system are:  L ≡ Graduated (→ 0),  R ≡ Abandonment of Studies (→ 1),  M ≡ Death. 

The instances containing the exit code M, in very small numbers, have been preliminary 

removed from the database. In this way, the classification label becomes a binary variable. 

The system actually contemplates other possibilities of exiting the system that never 

occurred among the instances falling within the observation window taken into 

consideration. Furthermore, transfers to another location are not taken into account in this 

work, as they are not considered to be real abandonments of the National University 

System. 

In total we have available 𝑁 = 41,614 observations and for each available instance 

we have selected the following five independent variables:   

1. BIRTH REGION: categorical variable with obvious meaning. One of the levels of 
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this variable is  Abroad, to indicate that the student was born abroad (but is not 

necessarily of foreign nationality).  

2. RESIDENCE REGION: also in this case we have a categorical variable with obvious 

meaning, as well as also in this case we have an  Abroad level to indicate the 

foreign students who attend the University of Bari.  

3. TYPE OF STUDY COURSE: categorical variable that describes the course of study 

undertaken. The levels of this categorical variable are: LV ≡ old degree, LT ≡ 

undergraduate degree m.d. 509/99, LS ≡ post-graduate m.d. 509/99, TU ≡ single-

cycle degree m.d. 509/99, MT ≡ first level degree m.d. 270/04, MS ≡ master’s 
degree m.d. 270/04, LM ≡  single-cycle master degree m.d. 270/04 (m.d. ≡ 

Ministerial Decree).  

4. SEX: categorical variable indicating the sex of the student.  

5. AGE AT EXIT: age at the time of graduation, or dropout. Although this variable is 

measured at the time when one of the two possible events occurs (degree or 

dropout), it does not contain any information that allows to determine exactly 

which of the two events occurred, and therefore can be used to learn, through the 

classification model, the probability of dropout. As we said before, when we assess 

the probability of dropout in future students (for which we must make a prediction 

of the label, L or R) this variable must be populated with the actual age at the time 

of the prediction, or with age at matriculation if we wish to determine the risk of 

dropout starting from the moment of matriculation. However, from the point of 

view of assessing the accuracy of the classification models, this introduces a 

temporal misalignment between the labels of the training set, which are related to 

the age of exit from the university system, and the labels guessed by the algorithm, 

which instead refer to the age for which the class label prediction is made. The 

consequences of this temporal misalignment are surprising, and will be better 

examined later in this Section as well as in the Section 4.  

 

As highlighted in the introduction, the choice of these variables is not the result of a 

data-based selection process assisted by an appropriate algorithm, but rather represents a 

reasoned choice that allowed us to identify a minimal series of demographic and academic 

career variables that are immediately available from the administrative databases as of 

matriculation, and do not change during the student’s career. For example, the combined 
use of the BIRTH REGION and RESIDENCE REGION seeks to capture the impact on the 

outcome variable of aspects such as: being born abroad, family mobility during 

adolescence and studying away from home. These aspects could be better described by 

variables having a finer spatial resolution, such as, the province and residence of birth. 

However, in this case, the computational explosion would make the problem intractable 
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(except when using simple structure classification models, having lower accuracy). 

It is worth nothing that age at matriculation was not available at the time of writing 

this paper. Moreover, other variables could help improve the quality of predictions. For 

example an individual performance measure such as the high school final grade could 

prove to be of great importance. These aspects are further discussed in Section 5, in light 

of the results obtained. However, the use of such a limited set of independent variables has 

also the function of stressing under a well designed simulation the use of classification 

models study when a large information set is lacking. If we can achieve acceptable results 

in this situation, we will certainly be able to provide much more accurate (and usable) 

predictions when more data are available. 

To examine the main characteristics of the study population, in this Section we will 

indicate the outcome variable as CLASS (with the two labels L and R). First of all, from 

Figure 1, which contains a brief exploratory analysis, it is clear that there is not too extreme 

imbalance in favor of the female sex in terms of numerical consistency (top left panel). In 

fact, among graduate students, women are 67% compared to 33% of men, while among 

those who give up, women are 54.7% against 45.3% of men (in total, female students 

represent roughly 64% of the total). 

 

 

 
Figure 1. Graphical exploratory data analysis of outcome variable and some of the chosen predictors. The levels of  

TYPE OF STUDY COURSE categorical variable are:  LV ≡ old degree,  LT ≡ undergraduate degree m.d. 509/99,  LS ≡ post-graduate m.d. 509/99,  TU ≡ single-cycle degree m.d. 509/99,  MT ≡ first level degree m.d. 270/04,  MS ≡ 

master’s degree m.d. 270/04,  LM ≡ single-cycle master degree m.d. 270/04 (m.d. ≡ Ministerial Decree). 
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At the top right in Figure 1 we show the distribution of the relative frequencies of the 

condition at the exit, stratified by the type of Degree Program. It is interesting to observe 

the good perfromance occurred with the study courses belonging to the old four-year 

systems (LV, graduation 93.9% against 6.1% of dropouts). It is worth noting that students 

still enrolled in the old four-year course (which hs been inexistent for several years) are 

almost certainly strongly motivated to complete their course of study. On the other hand, 

the best figures can be seen in the single-cycle post graduate study courses of the old 

system pursuant to Ministerial Decree 509/99 (TU, 97.3% of graduates, against 2.9% of 

dropouts during the period considered). In this case too, motivation plays a fundamental 

role: the majority of students enrolled in study courses in this system are students of the 

one-cycle degree in Medicine. It is therefore evident that also in this case the will to 

complete the studies plays a role: the observed dropouts are not of the same nature as the 

youthful ones, which occur between the first and second year of the course, but are due to 

the occurrence of circumstances that make the continuation of studies impracticable, 

despite the motivation. Although these considerations have an independent importance for 

the analysis of the phenomenon, it is however not clear what impact they can have on the 

accuracy of dropout prediction. 

The analysis of age at the exit from the university system is much more interesting. In 

general, the distribution of graduate students presents an apparent positive asymmetry 

(Figure 1, bottom-left panel; data are expressed in years and fractions of a year: min = 

20.6, Q1 = 23.5, median = 25.1, average = 26.3, Q3= 27.4, max = 77.1). The average age 

at graduation is 26.3 years, and 25% of students achieve a degree above 27.4 years old, up 

to a maximum of 77.1 years. The distribution of students who give up their studies has 

substantially the same form even if, obviously, the measures of synthesis are quite different 

in the left part of the distribution (min = 18.1, Q1 = 20.2, median = 21.4, average = 23.3, 

Q3= 24.4 , max = 72.6). The average age of waivers is therefore 23.3 years, but 25% of 

students give up at an age equal to or less than 20.2 years, thus confirming the dramatic 

importance the dropout phenomenon plays in the transition from the first to the second 

year of the course of studies. It is equally important to note that the global average age is 

25.9 years. As demonstrated in Section 4, AGE AT EXIT is the variable of greatest 

importance in terms of impact on predictive accuracy, while all the other input variables 

entering the training set have a decidedly more modest importance. Therefore, the 

classifier will tend to replicate the distribution of CLASS around the global average age. 

Since around the global average age we have a clear prevalence of graduate students we 

expect, as we actually find, that the predictions have a high specificity (i.e. that they 

correctly identify the majority of graduates) and a moderate to low sensitivity (i.e. a 

substantial percentage of those who leave is not correctly identified by the algorithm). 

However, we know that the predictions must necessarily be made using an age before 
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the age of exit (the latter can only be used in the learning phase). This is equivalent to 

moving to the left along the distribution of ages at exit, in a range in which the weight of 

the students who dropout becomes increasingly important. With this simple device we 

expect (as indeed happens: see Section 4 for further details) that the predictions on the test 

set gain significantly in sensitivity, to the detriment of a moderate reduction in specificity. 

Finally, in the bottom-right panel, we report the same data disaggregated by gender: it 

is clear that, for both sexes, the age distribution at exit shows the same qualitative behavior 

that we have just discussed. A substantial difference between the genders is not apparent, 

regarding age at graduation (average = 26.7 years for men, average = 26.1 years for 

women). On the other hand, even taking into account the split between the genders, the 

average age of waivers is drastically lowered for both (average = 23.5 years for men, 

average = 23.1 years for women, with 25% of men who give up at an age of less than or 

equal to 20.3 years, and 25% of women at an age of less than or equal to 20.1 years). This 

is a further signal that AGE AT EXIT has an important weight in determining the dynamics 

of the abandonments. 

We will not insist further on the exploratory analysis of the ‘gepgraphical’ variables  

BIRTH REGION and RESIDENCE REGION, as they assume too many distinct values (the 

geographical dimension is not considered relevant in itself). Rather, we want to emphasize 

again that although the dropout of university studies is a complex phenomenon that is often 

based on an individual decision, it is clear that there are regularities that can, at least in 

principle, be used for early identification of student at risk, before the decision to end 

university studies is actually implemented. What we want to quantify is how accurately 

this process can be carried out, using the minimal information set we have described above. 

 

3. In what follows, let 𝑐  denote the binary label of the outcome variable CLASS 

associated with each student, with 𝑐 ∈ {0,1}, the positive class 𝑐 = 1 indicating a dropout 

(or, as before, L → 0, R → 1). For each student, a feature vector 𝐱⊤ = (𝑥1, … , 𝑥𝑠) ∈ 𝑋 ⊆ℝ𝑠 of 𝑠 input variables is also available. The effective dimension 𝑠 of the feature vector 𝐱 depends on the way categorical predictors are encoded with numerical values. We will 

come back to this issue later in next Section. The optimal theoretical classifier under a 0/1 

loss function has the following form [20]:  

 𝛾(𝐱) = argmax𝑐∈{0,1}   𝑝(𝑐|𝐱). (1) 

 

Each classification algorithm differs from the others in the specific process by which the 

training data are used to estimate the posterior probabilities in the classes. Once this 

process has been completed, we have the empirical classifier 𝛾(𝐱), which represents the 

empirical counterpart estimated on the theoretical optimal classifier (1). We will now 



48                                   Massimo Bilancia, Paola Perchinunno, Domenico Vitale 

briefly describe the algorithms used to extract the results from the available data. 

 

3.1. Logistic regression is a discriminative classifier, which learns conditional 

probabilities 𝑝(𝑐|𝐱) directly, instead of providing a model of how the data are actually 

generated. In another way, we can say that discriminative classifiers learn a direct map 

from inputs 𝐱  to class labels [40]. In logistic classification, theoretical posterior 

probabilities have the following form (for 𝑖 = 1, … , 𝑁𝑡𝑟 , where 𝑁𝑡𝑟  denotes the 

dimension of the training set):  

 𝑝(1|𝐱(𝑖), 𝐰) = exp(𝑤0+∑𝑠𝑗=1 𝑤𝑗𝑥𝑗(𝑖))1+exp(𝑤0+∑𝑠𝑗=1 𝑤𝑗𝑥𝑗(𝑖)), (2) 

 𝑝(0|𝐱(𝑖), 𝐰) = 11+exp(𝑤0+∑𝑠𝑗=1 𝑤𝑗𝑥𝑗(𝑖)) = 1 − 𝑝(1|𝐱(𝑖), 𝐰). (3) 

 

With a few algebraic manipulations, the optimal theoretical classifier for a new 

instance, whose input vector is 𝐱𝑛𝑒𝑤, assumes the following form:  

 𝛾(𝐱𝑛𝑒𝑤, 𝐰) = 1   iff   𝑤0 + ∑𝑠𝑗=1 𝑤𝑗𝑥𝑗𝑛𝑒𝑤 > 0. (4) 

 

Parameter estimation usually relies on the maximization of the following Bernoulli 

conditional log-likelihood over the training set:  

 �̂�𝑜𝑝𝑡 ⟵ argmax𝐰  ∑𝑁𝑡𝑟𝑖=1 log 𝑝(𝑐(𝑖)|𝐱(𝑖), 𝐰), (5) 

 

where 𝐰⊤ = (𝑤0, 𝑤1, … , 𝑤𝑠) is the parameter vector. A suitable numerical method for 

solving optimization problem (5) is known as Iteratively Reweighted Least Squares (ILRS, 

for further details see [45]). Obviously, once the training data have been used to obtain 

parameter estimates �̂�𝑜𝑝𝑡, we plug-in them into the form of the optimal classifier (1) to 

obtain its empirical version:  

 𝛾(𝐱) ≡ 𝛾(𝐱, �̂�𝑜𝑝𝑡). (6) 

 

3.2. Support vector machines (SVM) is the second learning algorithm considered. 

Formally, the SVM problem consists in finding a decision hyperplane:  

 〈𝐰, 𝐱〉 + 𝑏 = 𝐰⊤𝐱 + 𝑏 = 0, (7) 
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where 𝐰⊤ = (𝑤1, … , 𝑤𝑠) in this case. The optimal decision boundary is described by the 

following constrained quadratic optimization problem (the classification label is coded as 𝑦(𝑖) = +1 → R, 𝑦(𝑖) = −1 → L), leading to an optimal classifier with a large geometric 

margin around the decision boundary:  

 �̂�𝑜𝑝𝑡 ⟵ argmin𝐰   12 ||𝐰||2 + 𝐶(∑𝑁𝑡𝑟𝑖=1 𝜉𝑖),   subject  to:  (8) 𝑦(𝑖)[〈𝐰, 𝜙(𝐱)(𝑖)〉 + 𝑏] ≥ 1 − 𝜉(𝑖),   for  𝑖 = 1,2 … , 𝑁𝑡𝑟 . (9) 

 

In the above expressions, 𝜉(𝑖) ≥ 0 are slack variables allowing for non-empty feasible 

solution even in cases where the two classes are not separable by a hyperplane [25, 32]. 

The sum of the 𝜉𝑖  gives an upper bound on the number of training errors. The cost 

parameter 𝐶  is a regularization term, which provides a way to control overfitting by 

trading off training errors against the width of the geometric margin. 

Finally, 𝜙: 𝑋 ⟶ 𝐹 is a map from the input space to a feature space, introduced to 

improve the linear separability of the training input vectors in the transformed feature 

space. Omitting the details, both the quadratic programming problem solution and the final 

classification function depend only on dot products between input vectors in the 

transformed feature space. Thus, if we have a way to compute the inner product 〈𝜙(𝐱), 𝜙(𝐱′)〉 in the feature space 𝐹 using the input vectors directly, then we would not 

need to know the transformed feature vector 𝜙(𝑥) or even the mapping function 𝜙 itself 

[22]. In SVM, this is done through the use of kernel functions, denoted by 𝐾:  

 𝐾(𝐱, 𝐱′) = 〈𝜙(𝐱), 𝜙(𝐱′)〉,    ∀  𝐱, 𝐱′ ∈ 𝑋. (10) 

 

Not every function 𝐾(𝐱, 𝐱′) is a valid kernel function satisfying expression (10) for at 

least one map 𝜙. Mercer’s conditions that a function 𝐾 has to fulfill to be a valid kernel 

function are discussed, among the others, in [32], pag. 332. In this paper we experiment 

with the two following kernels:   

 the linear kernel, that is the simplest of all kernel functions (input vectors are 

not transformed): 𝐾(𝐱, 𝐱′) = 〈𝐱, 𝐱′〉. 
 the Gaussian radial basis kernel: 𝐾(𝐱, 𝐱′) = exp(−𝜎||𝐱 − 𝐱′||2), which is 

equivalent to mapping the input vectors into an infinite dimensional Hilbert 

space, and depends on a scaling parameter 𝜎.  

 

 SVMs often lead to good generalization performance because of the large-margin 

separation principle, which was been introduced by V. Vapnik in its seminal work on 
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statistical learning theory [51]. The final form of the empirical classifier is:  

 𝛾(𝐱𝑛𝑒𝑤) ≡ 𝛾(𝐱𝑛𝑒𝑤, �̂�𝑜𝑝𝑡, �̂�) = sign(〈�̂�𝑜𝑝𝑡, 𝐱𝑛𝑒𝑤〉 + �̂�), (13) 

 

with sign(𝑧) = +1 if 𝑧 > 0, and sign(𝑧) = −1 if 𝑧 ≤ 0. 

 

3.3. A multilayer perceptron (MLP) is a feedforward artificial neural network 

consisting of at least three layers of nodes: an input layer, a hidden layer and an output 

layer. Formally, a MLP is a nonlinear input-output mapping 𝑦 = 𝐹(𝐱), where 𝐱 ∈ 𝑋 and 

the output 𝑦 can be either discrete or continuous (that is 𝑦 ≡ 𝑐 ∈ {0,1} in our case). 

To construct a MLP we start with composing blocks of hidden layers [42, 15]. Let 𝑓1, … , 𝑓𝐿 be univariate activation functions. An activation rule is given by:  

 𝑓ℓ𝑊ℓ,𝑏ℓ = (𝑓ℓ(∑𝑁ℓ−1𝑗=1 𝑤1,𝑗(ℓ)𝑧𝑗(ℓ−1) + 𝑏1(ℓ)), … , 𝑓ℓ (∑𝑁ℓ−1𝑗=1 𝑤𝑁ℓ,𝑗(ℓ) 𝑧𝑗(ℓ−1) + 𝑏𝑁ℓ(ℓ)))⊤,  (14) 

 

where 𝑊ℓ ∈ ℝ𝑁ℓ,𝑁ℓ−1 and 𝐳ℓ−1⊤ = (𝑧1(ℓ−1), … , 𝑧𝑁ℓ−1(ℓ−1)) ∈ ℝ𝑁ℓ−1  are the weight matrix and 

inputs of the ℓth hidden layer. In the same way, the bias/intercept vector is expressed as 𝐛ℓ⊤ = (𝑏1(ℓ), … , 𝑏𝑁ℓ(ℓ)). Of course, for ℓ = 1 we have 𝐳0 ≡ 𝐱 and 𝑁0 ≡ 𝑑𝑖𝑚(𝐱) = 𝑠 . A 

popular choice for the activation function is the sigmoid function 𝑓ℓ(𝑧) = (1 +exp(−𝑧))−1. Thus, MLPs use composition of a series of simple nonlinear functions to 

model nonlinearity:  

 (𝑓𝐿𝑊𝐿,𝑏𝐿 ∘ ⋯ ∘ 𝑓1𝑊1,𝑏1)(𝐱).  (15) 

 

In a two class problem, given an output from the final hidden layer 𝐿 we have two 

output neurons, one for each binary label 𝑦 ≡ 𝑐 ∈ {0,1}. In order to ensure that the outputs 

can be interpreted as posterior probabilities, they must be comprised between zero and one 

and sum to one. In practice this is achieved by using a softmax activation function having 

the same functional form of (2) and (3):  

 𝑝1(𝑖) ≡ 𝑝(1|𝑊𝐿+1, 𝐳𝐿 , 𝐛𝐿+1, 𝐳0(𝑖)) = exp(∑𝑁𝐿𝑗=1 𝑤1,𝑗(𝐿+1)𝑧𝑗(𝐿)+𝑏1(𝐿+1))1+exp(∑𝑁𝐿𝑗=1 𝑤1,𝑗(𝐿+1)𝑧𝑗(𝐿)+𝑏1(𝐿+1)), (16) 𝑝0(𝑖) ≡ 𝑝(0|𝑊𝐿+1, 𝐳𝐿 , 𝐛𝐿+1, 𝐳0(𝑖)) = 11+exp(∑𝑁𝐿𝑗=1 𝑤1,𝑗(𝐿+1)𝑧𝑗(𝐿)+𝑏1(𝐿+1)), (17) 

 

for 𝑖 = 1, … , 𝑁𝑡𝑟. The loss function to minimize over the training set is the negative cross-

entropy between the labels 𝑦𝑖𝑘 in the form of two-dimensional one-hot indicator vector 
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(𝑦𝑖𝑘 = 1 if example 𝑖 is associated with class 𝑘 ∈ {0,1}, or 𝑦𝑖𝑘 = 0 otherwise) and the 

score vector 𝐩⊤ = (𝐩𝟏, … , 𝐩𝑁𝑡𝑟), with 𝐩𝑖⊤ = (𝑝0(𝑖), 𝑝1(𝑖)):  

 𝐶(𝐩) = − ∑𝑖 ∑𝑘∈{0,1} 𝑦𝑖𝑘log𝑝𝑘(𝑖). (18) 

 

If the neuron’s actual output is close to the desired output for all training inputs then 

the cross-entropy will be close to zero. The Multinomial negative log-likelihood (18) 

always strongly penalizes the most incorrect predictions, and the cost-based training 

becomes a form of winner-take-all (one of the two outputs is nearly 1, and the other is 

nearly 0; [19]). Finally we can use the trained network for prediction using new inputs, 

much in the same way as logistic regression. 

Training can be carried out via batch or stochastic gradient descent with 

backpropagation for efficient gradient computation [48, 1]. Although ANNs are very 

powerful to solve a wide variety of complex problems, such systems require manual 

configuration and tuning. The learning algorithm itself has two free parameters: the 

learning rate 𝜂, which specifies the gradient descent step width, and the maximum output 

difference 𝑑𝑚𝑎𝑥 , that defines how much difference between output and target value is 

treated as zero error and not back-propagated. They both control the degree of 

regularization and can be suitably varied to prevent overfitting [6]. Furthermore, the 

network architecture must be specified by choosing the number of hidden layers, as well 

as the number of neurons for each of these hidden strata. We will come back to these issues 

later in the next paragraph. 

 

4. Since the data available includes categorical variables, these must be appropriately 

processed to enter into the classification models. For the logistic model the training matrix 𝑋 ∈ ℝ𝑁𝑡𝑟,(𝑠+1) has to be of full column rank, where 𝑁𝑡𝑟 > (𝑠 + 1) and the first column is 

a vector of ones allowing intercept estimation. Otherwise, if a model matrix has linearly 

dependent columns the crossproduct matrix 𝑋⊤𝑋 is singular and the parameter estimates 

are not unique. For this reason, we used a standard dummy coding with logistic 

classification, that is for all but one (the reference level) of the levels of the categorical 

variable a new variable will be created that has a value of one for each observation at that 

level and zero for all others, whereas the reference level will be coded with a vector of 

zeros [34]. 

On the other hand, it also makes perfect sense that each column of the resulting model 

matrix 𝑋 corresponds to one unique value of each original categorical value. The simplest 

way to do this consist of encoding each level of a categorical variable by using a binary 

indicator column (one-hot encoding; [10]). It is a singular parameterization because if 
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𝑋1, 𝑋2, … , 𝑋𝑘 are the binary columns that encode the 𝑘 levels of a categorical variable 

then ∑𝑘 𝑋𝑖 = 1 for each instance. Therefore, if in the matrix 𝑋 there is a vector of ones 

in the first column (such as a bias neuron), then 𝑋⊤𝑋 will inevitably be singular. However, 

the algorithms determining an optimal solution for an SVM or an MLP are perfectly usable 

even in the presence of a singular 𝑋⊤𝑋. Therefore, for these two algorithms we will always 

use a one-hot encoding, so that the size of the support vectors (in the case of SVM) or the 

number of input neurons (in the case of MLP) is exactly equal to the total number of 

distinct levels of categorical input variables plus the number of continuous input variables. 

In our case, the only continuous variable is AGE AT EXIT, and using a one-hot encoding 

the dimension of the input space becomes 𝑠 = 53. Subsequently, we have eliminated some 

instances for which the data were missing or affected by unrecoverable errors on at least 

one variable. After this step, the size of the dataset was reduced to 𝑁 = 41,950 instances. 

At this point, we have randomly divided the entire dataset into a training and a test subset, 

using a 90%-10% splitting, obtaining the following numbers for the two subsets: 𝑁𝑡𝑟 =37,755, 𝑁𝑡𝑒 = 𝑁 − 𝑁𝑡𝑟 = 4,195. The  AGE AT EXIT variable was standardized on the 

training set, and subsequently standardized also on the test set using the mean and deviation 

standards calculated on the training set. 

On the training set we estimated the accuracy by resampling, using a 10-fold cross-

validation (CV). In particular, on the training set we calculated (taking the average of the 

values obtained in each of the 10 folds of the training set used as a test set during the CV 

procedure) the Area Under the Curve (Auc) associated with the ROC curve [16], as well 

as sensitivity and specificity [41]: 

 𝑆𝑒𝑛𝑠 = 𝑇𝑃𝑇𝑃+𝐹𝑁, (19) 𝑆𝑝𝑒𝑐 = 𝑇𝑁𝑇𝑁+𝐹𝑃, (20) 

   

where 𝑇𝑃 = True Positives (i.e. the number of actual students abandoning the course of 

study undertaken that are correctly identified as such) and, obviously, 𝐹𝑁 = False 

Negatives, 𝑇𝑁 = True Negatives and 𝐹𝑃 = False Postivies. 

Sensitivity measures the fraction of students, among dropouts, correctly identified by 

the algorithm. On the other hand, the specificity measures the fraction of students, among 

all those who have achieved the qualification, which are correctly classified by the 

algorithm. Optimizing for sensitivity or specificity obviously means pursuing different 

objectives, and there is a trade-off between the two measures, in the sense that optimizing 

for one of the two generally means reducing the value of the other. However, greater 

sensitivity is obviously the most important goal to achieve, since greater sensitivity 

corresponds to a greater ability to correctly identify the students who leave. 
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The test set was used as a validation set to measure the predictive capabilities of the 

model in realistic situations. As already widely observed, the AGE AT EXIT variable can 

only be used in the learning phase and certainly cannot be used to make predictions about 

future students. Therefore, we calculated the sensitivity, specificity and accuracy, 𝐴𝑐𝑐 =(𝑇𝑃 + 𝑇𝑁)/𝑁𝑡𝑒, both on the original test set (indicated with 𝑇, where 𝑇 refers precisely 

to age on leaving the university system), and on a collection of artificial test sets obtained 

in the following way:   

 𝑇 − 0.5: the test age was brought back one semester with respect to the age at exit, 

with the only condition that 𝑇 − 0.5 could not be lower than the youngest age at 

exit actually observed. In this way, we evaluate the accuracy of the predictions 

made six months before the event (degree or dropout).  

 𝑇 − 1.0. We evaluate the accuracy of predictions made two semesters before the 

event 

 𝑇 − 2.0. As above, we evaluate the accuracy of predictions made four semesters 

before the event.  

 𝑇 + 𝑈(−2,0). The three artificial test sets we have created so far correspond to 

situations that are still not sufficiently realistic, because they presuppose testing 

the accuracy at a certain time point prior to the event, which however is exactly 

the same for all students. Obviously, this is once again equivalent to assuming the 

age at exit is known for all future students. For this reason, we have created a new 

test set in which the test age was brought back up to four semesters with respect to 

the age at exit, adding a uniform random impulse over the interval [−2,0]. In this 

way, we calculate the accuracy of the forecasts made up to four semesters before 

the event. Furthermore, the age at which the prediction is carried out is random, 

and is no longer the same for all students.  

 𝑇 + 𝑈(−3,0). As above, we calculate the accuracy of the forecasts made up to six 

semesters before the event. The age at which the prediction is carried out is 

random, and is no longer the same for all students.  

 𝑇 + 𝑈(−2, +2) In this case, we calculate the accuracy of forecasts made up to 

four semesters before and after the event (i.e. we are moving, randomly, both to 

the left and to the right along the AGE AT EXIT distribution). In this way, the 

relationship between the age at the exit and the label, learned during the training 

phase, is partially broken in the test phase by this random bidirectional shift.  

 𝑇𝑏𝑜𝑜𝑡. The test ages are obtained by a complete reshuffling of the ages at the exit, 

taking a bootstrap sample. In this way, the relationship between the age at the exit 

and the label, learned during the training, is completely broken in the test phase.  
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Finally, in the presence of control parameters of classification models, using the 

supervised learning infrastructure provided by the R caret library (v.6.0-82; [30, 43]), we 

made these parameters vary in an appropriate range, and we chose the final model as the 

one which had the highest sensitivity (calculated on the training set by CV in the way 

described above). In particular:   

 The logistic classifier has no control parameters.  

 For SVMs with linear kernels we have the cost parameter 𝐶, which governs the 

width of the geometric classification margin. It has been set equal to 𝐶 = 2𝑘, with 𝑘 = −2, −1, … ,7, from a minimum of 𝐶 = 0.25 to a maximum of 𝐶 = 128.  

 For SVMs with radial kernels we have the cost parameter 𝐶  and the scaling 

parameter 𝜎. The latter was preliminarily estimated on the training set using the 

empirical rule described in [8], while 𝐶  was made to vary exactly as in the 

previous case. In both cases (linear and radial kernel) we used the standard 

kernlab library (ver 0.9-27; [24]).  

 For the MLP we have chosen to consider at most three hidden layers of neurons, 

based on the trade-off between the generalization capabilities and the relative 

computational cost. By indicating with (size 1, size 2, size 3) the number of 

neurons present in each of the three hidden levels, we have chosen: size1  ∈{5,10,15,20}, size2 ∈ {5,10,15,20} and size3 ∈ {0,5,10,15,20}, for a total of 80 

distinct models. The fact that the outermost layer can have a number of neurons 

equal to zero obviously means that the architecture of the network can be 

simplified to include only two hidden layers. Regarding the algorithmic 

parameters, the final results that we present in the next section do not include any 

form of weight decay (since, in our experience, its use did not improve accuracy 

in any way). Furthermore, by manual tuning we set 𝜂 = 0.2  for the learning 

parameter and 𝑑𝑚𝑎𝑥 = 0 for the maximum output difference. The weights of the 

connections between the units have been randomly initialized. We used the RSNNS 

library (ver 0.4-11; [6]).  

 

The results obtained are reported in Table 1. Since for the MLP we had 80 possible 

models, a graphical summary of the sensitivity assessed on the training set by CV for each 

of the possible models is reported in Figure 2. As seen in Table 1, the logistic classifier has 

a sensitivity not exceeding 32% (on the test set 𝑇): in other words, although the Auc is 

roughly equal to 0.79 the algorithm does not manage to identify more than 32% of the 

students who actually leave the study program. We observe a better behavior using an 

SVM with linear kernel: when the value of the cost parameter is high, the sensitivity 

fluctuates around 35%; when, instead, the value of the cost parameter becomes lower than 𝐶 = 1, the sensitivity increases up to 55%.  
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Logistic       

classifier  

    Param    Acc    Auc    Sens    Spec  

 (training set)      (none)     0.7861   0.3050   0.9659  

 (test set 𝑇)      (none)   0.7795     0.3244   0.9683  

SVM with 

linear kernel  

             

 (training set)       𝐶 =0.25  

 best  0.7864   0.5528   0.9466  

      𝐶 = 0.5    0.7870   0.5042   0.9664  

    𝐶 = 1     0.7878   0.4213   0.9880  

       𝐶 = 2    0.7881   0.3752   0.9943  

       𝐶 = 4    0.7882   0.3600   0.9954  

       𝐶 = 8    0.7883   0.3555   0.9959  

       𝐶 =16  

   0.7884   0.3515   0.9962  

       𝐶 =32  

   0.7884   0.3502   0.9962  

       𝐶 =64  

   0.7884   0.3491   0.9964  

       𝐶 =128  

   0.7885   0.3531   0.9962  

 (test set 𝑇)        𝐶 =0.25  

 0.8329     0.5463   0.9518  

SVM with 

radial kernel  

          

 (training set)        𝐶 =0.25  

   0.7807   0.5351   0.9413  

       𝐶 =0.5  

   0.7852   0.5338   0.9659  

       𝐶 = 1    0.7866   0.5284   0.9727  

       𝐶 = 2    0.7887   0.5320   0.9744  

       𝐶 = 4    0.7908   0.5392   0.9739  

       𝐶 = 8    0.7922   0.5530   0.9747  

       𝐶 =16  

   0.7932   0.5584   0.9749  

       𝐶 =32  

   0.7942   0.5615   0.9752  
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       𝐶 =64  

   0.7953   0.5665   0.9749  

       𝐶 =128  

 best  0.7967   0.5682   0.9747  

 (test set 𝑇)        𝐶 =128  

 0.8532     0.5577   0.9757  

Multilayer 

perceptron  

               

 (training set)        (15,20,0)  best  0.8636   0.5975   0.9683  

 (test set)        (15,20,0)  0.8625     0.5504   0.9919  

Table 1. Detail of the results. The final value of tuning parameters (Param) has been determined by grid search, 

optimizing with respect to sensitivity 

We know that when the value of 𝐶 is high the training error assumes a significant 

weight within the cost term 𝐶(∑𝑖 𝜉𝑖) included in the objective function (8). Therefore, the 

number of training errors is reduced at the expense of the width of the geometric margin, 

which decreases. However, sensitivity and specificity are evaluated by CV: this means that 

the reduction in the number of training errors causes overfitting, which is immediately 

noticeable. 

 

 
Figure 2. Determination of the optimal sensitivity for the Multilayer Perceptron (MLP). The architecture of the network 

includes three hidden layers having a number of neurons respectively equal to (size1, size2, size3), with size1 ∈{5,10,15,20} , size2 ∈ {5,10,15,20}  and size3  ∈ {0,5,10,15,20} . For each of the possible models sensitivity was 

evaluated on the training set using a 10-fold Cross-Validation (CV).  
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If we use a SVM with a radial kernel we can observe a slightly higher accuracy. For 

high 𝐶  values we do not run into overfitting problems and the sensitivity reaches a 

maximum of 57% at 𝐶 = 128. In other words, in about six cases out of ten we are able to 

correctly identify the students who leave the course of study. The optimal Auc is roughly 

equal to 0.80, and therefore is much higher than that of the random classifier (for which 

Auc = 0.5). It is to be noted that the sensitivity of the final model is substantially preserved 

on the test set 𝑇 (we have a sensitivity of 55% with an overall accuracy of 85%). Looking 

at the results related to the MLP (Table 1 and Figure 2) sensitivity is even slightly better. 

There are no obvious signs of overfitting as network complexity changes. It is important 

that the third level is automatically simplified at the model determination phase. Also in 

this case we have a sensitivity drop to 55% on the test set 𝑇. 

 

Classifier  Test set    Sens    Spec  

Logistic  𝑇   0.3244   0.9683  

 𝑇 − 0.5   0.3821   0.9454  

 𝑇 − 1.0   0.4293   0.9201  

 𝑇 − 2.0   0.4374   0.8793  

 𝑇 + 𝑈(−2,0)   0.4285   0.9207  

 𝑇 + 𝑈(−3,0)   0.4472   0.9008  

 𝑇 + 𝑈(−2, +2)   0.3659   0.9528  

 𝑇𝑏𝑜𝑜𝑡   0.1301   0.9285  

Linear SVM  𝑇   0.5463   0.9518 

 𝑇 − 0.5   0.5984   0.9221  

 𝑇 − 1.0   0.6463   0.8880  

 𝑇 − 2.0   0.7138   0.7444  

 𝑇 + 𝑈(−2,0)   0.6390   0.8668  

 𝑇 + 𝑈(−3,0)   0.6715   0.7997  

 𝑇 + 𝑈(−2, +2)   0.5317   0.9315  

 𝑇𝑏𝑜𝑜𝑡   0.2244   0.8108  

Radial SVM  𝑇   0.5577   0.9757  

 𝑇 − 0.5   0.6057   0.9417  

 𝑇 − 1.0   0.6520   0.8712  

 𝑇 − 2.0   0.7081   0.7137  

 𝑇 + 𝑈(−2,0)   0.6455   0.8624  

 𝑇 + 𝑈(−3,0)   0.6675   0.7976  

 𝑇 + 𝑈(−2, +2)   0.5439   0.9207  

 𝑇𝑏𝑜𝑜𝑡   0.1870   0.8779  
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MLP 𝑇   0.5504   0.9919 

 𝑇 − 0.5   0.6041   0.9572  

 𝑇 − 1.0  0.6553   0.8759  

 𝑇 + 𝑈(−2,0)   0.6512   0.8624  

 𝑇 + 𝑈(−3,0)   0.6821   0.7703  

 𝑇 + 𝑈(−2, +2)   0.5431   0.9261  

 𝑇𝑏𝑜𝑜𝑡   0.2024   0.8030  

Table3. Sensitivity and specificity calculated on the original test set, and on each of the artificial test sets we created (see 

text for more details). 

In Table 2 and Figure 3 we compared the sensitivities and specificities calculated on 

the test set 𝑇. The age used for the prediction in each of these test sets is misaligned with 

the age at exit. The effect, however, is exactly what we already anticipated in Section 2. 

While the sensitivity and specificity on the set T test remain below 60%, as we move to 

the left along the AGE AT EXIT distribution, sensitivity increases consistently to the 

detriment of a modest reduction in specificity.  

For example, using the MLP and making predictions up to six semesters before 

graduation (𝑇 + 𝑈(−3,0)), we find that sensitivity rises to 68%, while specificity drops to 

77%. This means that almost seven students among those who dropout are identified 

correctly, while two out of ten graduating students are incorrectly classified as being at 

risk of dropout.  

However, the latter (error of second type) is less serious, since it wpuld only lead to to 

an inefficient allocation of resources to students who would have reached the goal of 

graduating in any case. Error of first type, on the other hand, leads to not intervening in aid 

of those students who will abandon the course of study undertaken. 

Note that using the test sets 𝑇 + 𝑈(−2, +2) and 𝑇𝑏𝑜𝑜𝑡 sensitivity drops markedly. 

This effect is particularly relevant when we test on 𝑇𝑏𝑜𝑜𝑡, for which sensitivity falls below 

20%. It is evident that the random reshuffling induced by the bootstrap sampling on the 

ages at exit, renders unusable the relation learned in the training phase between the labels 

and the ages at exit. The same problem is found with 𝑇 + 𝑈(−2, +2) , even if the 

amplitude of the reduction in sensitivity is less, since the mixing of the ages at the exit 

caused by the forward shift is less extreme than the random bootstrap reshuffling.  

Instead, when we move to the left along the AGE AT EXIT distribution, we always 

observe an increase in sensitivity in the test phase. Therefore, using the actual ages at the 

time of the forecast makes the classifier learned usable even in real situations, and we have 

an improvement in accuracy that is certainly not due to a data dragging phenomenon. 
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Figure 3. Sensitivity and specificity calculated on the original test set and on each of the artificial test sets we created 

(see the text for more details), represented graphically based on the type of classification algorithm used.   

The fact that AGE AT EXIT has such a significant impact on classification can easily 

be confirmed by conducting an analysis of the importance of each input variable. To this 

end, we first applied the logistic regression model used for the logistic classifier in two 

distinct ways. First, we estimated the model on the entire training set and subsequently 

removed one input variable at a time (in-sample method). Then we tested the reduced 

model against the full model using an asymptotic likelihood ratio test (Analysis of 

Deviance; [2]). Once the relative 𝑝-value was obtained, the importance index of the tested 

variable was calculated as 100(1 − 𝑝)%: the results obtained are shown in Figure 4. The 

second method (out-of-sample) consists in evaluating the accuracy on the test set using a 

set of models estimated on the training set in which, in turn, one of the input variables was 

excluded. The results shown in Figure 5 are an exemplification of the principle that 

goodness of fit and predictive accuracy are not correlated. In fact, all the input variables 

resulted to be important in terms of their contribution to goodness of fit, and all of them 

achieved in sample importance indices close to 100%. On the other hand, looking at 

predictive accuracy, the only variable that has the largest effect on accuracy is AGE AT 

EXIT. By eliminating this input variability the accuracy obtainable on the test set using the 

full model (approximately 78%) decreases to 70% (and the relative confidence intervals 

are not overlapping). A similar effect is not observed with all the other input variables. 
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Figure 4. Importance of input variables. The importance was calculated using the logistic regression model used for the 

logistic classifier. See the text for details.   

This parametric analysis was confirmed by the in-sample non-parametric analysis 

shown in Figure 5. It was obtained by calculating the ROC curve for the CLASS outcome 

variable, separately for each input variable (using the training set and varying the cut-off 

value to predict the two levels of the outcome variable). The reported measure of 

importance is the Auc. As it can be seen, once again AGE AT EXIT has the greatest 

importance, confirming that there are some critical moments during the university career 

linked to a typical chronological age (such as, for example, the passage between the first 

and the second years for students who matriculate at the University immediately after high 

school, which takes place on average around the age of 20), where the risk of dropout is 

maximum. The role of the other input variables is decidedly secondary, while the impact 

of BIRTH REGION and RESIDENCE REGION is absolutely irrelevant. 
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Figure 5. Importance of input variables. In this case, importance was obtained in a non-parametric way by calculating 

the ROC curve for the CLASS outcome variable, separately for each input variable. The reported measure of importance 

is the Auc.   

5. The use of artificial intelligence and ML has caused a real paradigm shift in 

statistical science over the last 10 years [14]. The fusion of data science with the analysis 

of the empirical evidence coming from the education sector has generated a new research 

field known as Educational Data Mining (EDM). One of the areas in which EDM can play 

an important role is the early identification of students who are at risk of leaving university 

studies [12, 21]. In many countries, including Italy, this issue is particularly relevant and 

there is a vital need to develop information systems allowing for early decisions to be made 

to support students at risk. 

In this work we applied some ML techniques to the early prediction of dropouts in a 

group of students of the University of Bari Aldo Moro. The results we have reported are 

preliminary, being based on a simulation study using a minimal set of input variables that 

included only a few variables immediately available at the time of matriculation, plus a 

time-dependent variable, i.e. the age reached during the academic career. We have shown 

that while the age at exit is used to learn the classification model, the actual age at the time 

of the prediction can be used for future instances. This covariate shift has no negative 

consequences, rather it systematically increases sensitivity to the detriment of a modest 

reduction in specificity. In this way we are able to correctly identify about seven out of ten 

students who drop out and eight out of ten students who graduate. We intend to test our 

proposal on cohorts of newly matriculated students including, among the testing variables, 

the ‘real’ age at matriculation and/or the time elapsed since matriculation, as soon as these 
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new data become available. 

Since sensitivity and specificity usually move in opposite directions, if we want to 

increase them both we will need more information. We must therefore recognize that the 

input variables used are insufficient for more accurate classifications. The inclusion of new 

input variables is, therefore, the first step to be taken. Among the variables immediately 

available at the time of matriculation that could prove useful, we can mention the grade 

obtained in the high school diploma, the deprivation index of the municipality of residence 

to take into account the socio-economic conditions of the environment in which the student 

lives, as well as the ISEE (Equivalent Economic Situation Indicator) to introduce 

individual economic conditions in classification models. The only individual academic 

performance measures already available at the time of matriculation concern the result of 

the entrance exam, which is mandatory for all students matriculation in free access Study 

Courses. Furthermore, one could think of including in the model the academic performance 

relative to the first semester only (so as to make it possible, in any case, to predict early 

dropout and to activate individual measures for the prevention of this eventuality). 

Experiments on these input variables will be the subject of future research. 

From a merely algorithmic point of view, there would seem to be no room for further 

improvements. However, in the past much evidence has been accumulated that the 

feedforward networks with a large number of hidden levels, or networks with more 

complex topologies, but equally characterized by the presence of a very large number of 

compositions of non-linear functions to model the relationship between input and output, 

have a higher (and substantially not yet explained) generalization capability than 

traditional algorithms [31, 26]. The use of deep learning algorithms, in conjunction with 

the availability of an adequate amount of information, could therefore lead to a significant 

performance boost in terms of predictive accuracy and could represent a decisive step 

forward in building systems of early dropout prediction that can also be used from a 

practical point of view. These aspects will also be subject to future experimentation and 

research. 
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