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Donato Scolozzi – Lucianna Cananà 

PRICING PERPETUAL AMERICAN CONTINGENT CLAIM: AN 

EXTENSION 

Abstract

In this paper we generalise a classical 

result for perpetual American contingent 

claims. At this end we examine a more 

general class of payoff functions which 

belong to class 𝒢. This class includes 

payoff function which has strictly 

decreasing elasticity too. Some properties 

of this class of payoff functions are 

discussed. 

In questo lavoro generalizziamo un 

risultato noto per la valutazione di derivati 

perpetui che appartengono ad una classe 𝒢. 

A questa classe appartengono anche 

funzioni payoff con elasticità strettamente 

decrescente. 

Derivati perpetui - Elasticità decrescente 

Sommario: 1. Introduction - 2. Market model and price of a perpetual American  contingent claim - 

1. Many studies have examined nonlinear payoff functions which are not piecewise

linear. This is the case, for example, of power options. See, for instance Esser 1, Heynen 

and Kat 2 Zhang3 , and Tompkins4. See also Liu and Yao5  for an example of S-shaped 

 Saggio sottoposto a referaggio secondo il sistema del doppio cieco 
1 Esser, 2003. 
2 Heynen, Kat, 1996. 
3 Zhang, 1998. 
4 Tompkins, 2000. 

Perpetual contingent claims - decreasing 
elasticity

3. Optimal stopping and main result - 4. Examples



payoff function relating to real options. Furthermore, Blenman and Clark 6 present the 

class of options with constant underlying elasticity in strikes. 

Perpetual american contingent claims with standard payoff function have been 

studied, for example, by Samuelson 7, McKean8 , Merton 9, Karatzas10 and Karatzas and 

Shreve11,  Karatzas and Shreve12 . In this paper we examine a more general class of 

payoff functions, denoted by 𝒢 which have strictly decreasing elasticity as we will see in 

Definition 4 . 

Furthermore the following payoff  functions 

g(x) = (max {𝐾 − 𝑥, 0}) 𝑝 ,     0 ≤ 𝑥 < +∞,

g(x) = max {𝐾𝑝 − 𝑥𝑝 , 0} ,      0 ≤ 𝑥 +∞,

with 𝑝 ∈ 𝑅,  𝑝 > 0,  𝐾 ∈ 𝑅 ,  𝐾 > 0 belong to class 𝒢. 

We then consider the problem of pricing a perpetual American contingent claim 

when the underlying asset pays no dividends; we assume the standard Black-Scholes 

model with constant volatility of the underlying asset return > 0 and constant risk-free 

interest rate r > 0. 

Our main result shows that the problem to find the value of a perpetual American 

contingent claim which belongs to class 𝒢 is equivalent to the related optimal stopping 

time problem. Moreover it is equivalent to getting the generalized solution of the free 

boundary problem (see Problem 1).  

In this article we also provide some examples of payoff functions, such as power 

options, which belong to the classe 𝒢. 

The organization of the paper is as follows. In Section 2 we examine the market 

model and the price for a perpetual American contingent claim. In Section 3 we introduce 

the payoff functions defined by class 𝒢, we study the free boundary problem associated 

with the pricing of a perpetual American contingent claim and state our main result. In 

Section 4 we provide some examples. 

5 Liu and Yao, 1999. 
6 Blenman , Clark, 2005. 
7 Samuelson, 1965. 
8 McKean, 1965. 
9 Merton, 1973. 
10 Karatzas, 1988. 
11 Karatzas, Shreve, 1988. 
12Karatzas, Shreve, 1991. 
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2. In this section, in order to deal with financial instruments as perpetual American

contingent claims, we introduce the notion of financial market on [0; +∞[according to 

Karatzas and Shreve13 . Moreover we recall the definition of the price of the perpetual 

American contingent claim. 

We consider the classic Black and Scholes14  model, with a risk-free asset, called the 

bond, whose price 𝐵𝑡evolves according to the equation 

𝑑𝐵𝑡 = 𝑟𝐵𝑡𝑑𝑡;  𝐵0 = 1 

where the rate of interest r > 0 is constant, and with a single risky asset, called the stock, 

whose price-per-share Xt follows the geometric Brownian motion 

𝒹𝑋𝑡 = 𝜇𝑋𝑡 𝒹𝑡 +  𝜎𝑋𝑡𝒹𝑊𝑡,,    𝑋0 = 𝑥 > 0 (1) 

where the volatility 𝜎  > 0 and the expected rate of return 𝜇 ∈ ℝ are constants. 

The process 𝑊 = {𝑊𝑡 ; 0 ≤ 𝑡 <  + ∞} is a standard Brownian motion on a

probability space (Ω; ℱ;  Ρ); let us denote by 𝐹 = {ℱ𝑡}0≤𝑡<+∞  the filtration generated by

this process, namely  ℱ𝑡 = 𝜎 (𝑊𝑠 ; 0 ≤ 𝑠 ≤ 𝑡) augmented by all the 𝑃-null sets. We also 

denote by 𝔼[.] the expectation under the probability measure Ρ on (Ω; ℱ).  

Given the function 𝑔: [0 + ∞[⟶ ℝ, in this work we study perpetual American 

contingent claim which have payoff at time  𝑡  given by 

Ψ𝑡 = 𝑔( 𝑋𝑡  ) .

Definition 1. The value of the perpetual American put option at time zero is defined 

as 

ℋ(𝑥):= 𝑖𝑛𝑓{𝛾 ≥ 0; ∃ (𝜋, 𝐶)   𝑠. 𝑡.  𝑔( 𝑋𝑡 ) ≤ 𝑌𝑡
𝛾,𝜋,𝐶

     0 ≤ 𝑡 < +∞  }  (2) 

Where 

(i) 𝜋 = {𝜋𝑡}𝑡≥0 is a portfolio process, i.e. an F-progressively measurable process,

with  ∫ 𝜋𝑡
2𝑑𝑡 < +∞

𝑇

0
  a.s. for all 𝑇 ∈ [0,+∞[ ,

(ii) 𝐶 = {𝐶𝑡}𝑡≥0  is a cumulative consumption process, i.e. a nonnegative 𝐹-adapted

process with increasing, right-continuous paths and with 𝐶0 = 0 a.s., 

(iii) the wealth process 𝑌 = {𝑌𝑡
𝛾,𝜋,𝐶

}
𝑡≥0
 (corresponding to initial capital γ, portfolio π

and cumulative consumption 𝐶) satisfies the following stochastic diff erential 

equation: 

13Karatzas, Shreve, 1988. 
14 Black, Scholes, 1973. 
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𝑑𝑌𝑡
𝛾,𝜋,𝐶

= 𝜋𝑡
𝑑𝑋𝑡
𝑋𝑡

+ (𝑌𝑡
𝛾,𝜋,𝐶

− 𝜋𝑡)
𝑑𝐵𝑡
𝐵𝑡

− 𝑑𝐶𝑡 ,      𝑌0
𝛾,𝜋,𝐶

= 𝛾  (3) 

or equivalently 

𝑑𝑌𝑡
𝛾,𝜋,𝐶

= 𝜋𝑡[𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡] + (𝑌𝑡
𝛾,𝜋,𝐶

− 𝜋𝑡)𝑟 𝑑𝑡 − 𝑑𝐶𝑡 ,      𝑌0
𝛾,𝜋,𝐶

= 𝛾

We observe that 𝜋𝑡  is the amount of the wealth 𝑌𝑡
𝛾,𝜋,𝐶

  that is invested in the stock at

time t.  

Following Karatzas and Shreve15 the process defined by 

𝑍𝑡 = 𝑒𝑥𝑝 {−
𝜇 − 𝑟

𝜎
𝑊𝑡 −

1

2
(
𝜇 − 𝑟

𝜎
)
2

𝑡}  ,  0 ≤ 𝑡 < +∞ 

is a P-martingale, moreover (see for example Karatzas and Shreve16) there exists a unique 

probability measure 𝒬 on ℱ∞ = 𝜎(𝑊𝑠; 0 ≤ 𝑠 < +∞) such that: 

𝑄(𝐴):= 𝔼[𝑍𝑡1𝐴]  ∀ 𝐴 ∈ ℱ𝑡 ,     0 ≤ 𝑡 < +∞ 

Under this measure 𝒬 the process 𝑊𝑡̂ defined by

𝑊̂𝑡: = 𝑊𝑡 +
𝜇 − 𝑟

𝜎
𝑡  ,  0 ≤ 𝑡 < +∞ 

is a standard Brownian motion by the Girsanov theorem. In terms of this process we 

may rewrite the relation (2) as 

𝑑𝑋𝑡 = 𝑟𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊̂𝑡  ,  𝑋0 = 𝑥 > 0 . 

Lastly, we may rewrite the stochastic diff erential equation (3) in the form 

15 Karatzas, Shreve, 1998. 
16 Karatzas, Shreve, 1998 
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𝑒−𝑟𝑡𝑌𝑡
𝛾,𝜋,𝐶

= 𝛾 +  𝜎∫ 𝑒−𝑟𝑠𝜋𝑠𝑑𝑊̂𝑠 −∫ 𝑒−𝑟𝑠𝑑𝐶𝑠 ,  𝑡 ≥ 0  (4)
]0,𝑡]

𝑡

0

 

From now we denote by 𝔼̂𝑥[∙] the expected value in 𝑡 = 0 with respect to the

probability measure Q. For details of financial markets with an infinite planning horizon 

(see Karatzas and Shreve17or Karatzas and Shreve18) . 

3. In this section we introduce the setting and notation of the optimal stopping

problem which is related to pricing perpetual American contingent claim and we state our 

main result (Theorem 1). It shows that the problem to find the value of a perpetual 

American contingent claim with strictly decreasing elasticity in payoff functions, is 

equivalent to the related optimal stopping time problem and moreover it is equivalent to 

getting the “generalized solution" (Definition 5) of a free boundary problem. This result 

extends a classical theorem for perpetual American contingent claims with standard 

payoff function (see Karatzas and Shreve19). 

We first introduce the notion of elasticity for a payoff function. After that we define 

class 𝒢 and discuss some properties of this class. 

At this end we before introduce the definition of elasticity of 𝑔 and we present the 

class 𝒢, of payoff functions. 

Definition 2. Let 𝑔: [0 + ∞[⟶ ℝ be a payoff function such that 𝑔 is a decreasing 

continuous function on [0 + ∞[ with 𝑔(0) > 0 and 𝑔(+∞) = 0. 

Let 𝐾:= 𝑠𝑢𝑝{𝑥 ≥ 0;   𝑔 (𝑥) > 0} and let us suppose that 𝑔 is differentiable on the 

interval  [0𝐾 [. 
The elasticity of 𝑔 is defined as: 

ℰ𝑔(𝑥):=
𝑥𝑔′(𝑥)

𝑔(𝑥)
= 𝑥

𝑑

𝑑𝑥
log(𝑔(𝑥))  ,  𝑥 ∈ ]0, 𝐾[ . 

Definition 3. Let 𝑙: = 𝑖𝑛𝑓0<𝑥<𝐾ℰ𝑔(𝑥) and 𝑚:= 𝑖𝑛𝑓 {𝑥 > 0 ;   ℰ𝑔(𝑥) +
2𝑟

𝜎2
≤ 0} with

the usual convention that: 𝑖𝑛𝑓∅ = +∞. 

In the following proposition we give some properties of the elasticity of payoff 

function g. 

Proposition 1: Let 𝑔: [0 + ∞[⟶ ℝ  be a payoff function such that 𝑔 is a decreasing 

continuous function on [0 + ∞[ with 𝑔(0) > 0 and 𝑔(+∞) = 0. 

17 Karatzas, Shreve, 1998. 
18 Karatzas, Shreve, 1991. 
19 Kartatzas, Shreve, 1998. 
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Let 𝐾 ∶=  𝑠𝑢𝑝{𝑥 ≥  0;  𝑔(𝑥)  >  0} and let us suppose that g is continuously 

differentiable on the interval ]0, 𝐾[.  
Then  

(i) 𝑠𝑢𝑝0<𝑥<𝐾  ℰ𝑔(𝑥)  =  0; 

(ii) lim
𝑥→+∞

𝑥𝛼 𝑔(𝑥)  =  0 for all 𝛼 >  0 ⇒  𝑙 = 𝑖𝑛𝑓0<𝑥<𝐾ℰ𝑔(𝑥) =  −∞ ;

(iii) 𝑚 =  𝑖𝑛𝑓 {𝑥 > 0 ;   ℰ𝑔(𝑥) +
2𝑟

𝜎2
≤ 0} > 0 (with the usual convention that 

𝑖𝑛𝑓∅ = +∞);  

(iv) Let 𝑔 ∈  𝐶2(]0, 𝐾[) we have:

1

2
𝜎2𝑥2𝑔′′(𝑥) + 𝑟 𝑥𝑔′(𝑥) − 𝑟 𝑔(𝑥) =

𝜎2𝑔(𝑥)

2
{𝑥ℰ𝑔

′ (𝑥) − (1 − ℰ𝑔(𝑥)) (ℰ𝑔(𝑥) +
2𝑟

𝜎2
)} 

𝑥 ∈]0, 𝐾[; 

(v) If 𝑔 has decreasing elasticity on ]0,m[ we have 

1

2
𝜎2𝑥2𝑔′′(𝑥) + 𝑟 𝑥𝑔′(𝑥) − 𝑟 𝑔(𝑥) ≤ 0;

(vi) lim
𝑥→0+

𝑥 ℰ𝑔
′ (𝑥) =  0  ⇒ ∃𝑥̅  >  0 ∶  ∀𝑥 ∈]0, 𝑥̅[ 

1

2
𝜎2𝑥2𝑔′′(𝑥) + 𝑟 𝑥𝑔′(𝑥) − 𝑟 𝑔(𝑥) < 0. 

Proof: 

We suppose that condition (i) is false, then we have ℰ𝑔 (𝑥) < 𝑎 (𝑎 > 0) 𝑥 ∈ ]0, 𝐾[;
we easily obtain  𝑥𝑎𝑔(𝑥) ≤ 𝑢𝑎𝑔(𝑢) when 𝑢 → 0, so we have a contradiction. Thus

condition ( i ) is true. 

In the same way we prove condition (ii).  

We use condition ( i ) to prove (iii). 

Lastly, condition (iv), (v) and (vi) are clear. 

Remark 1: The payoff  of power option (see section 4) satisfies lim
𝑥→0+

𝑥 ℰ𝑔
′ (𝑥)  =  0 . 

We now introduce class 𝒢 of payoff  functions. 

Definition 4 We say that the payoff  function 𝑔 ∶  [0, +∞[→  ℝ belongs to class 𝒢 if the 

following conditions are satisfied: 

(g1) 𝑔 is a decreasing continuous function on [0, +∞[ with 𝑔(0)  >  0 and 𝑔(+∞)  =  0; 

(g2) 𝑔 ∈  𝐶2(]0, 𝐾[) where 𝐾 =  𝑠𝑢𝑝{𝑥 ≥  0;  𝑔(𝑥)  >  0};
(g3) the elasticity ℰ𝑔(𝑥) of 𝑔 satisfies the following property:

𝑥ℰ𝑔
′ (𝑥) ≤ (1 − ℰ𝑔(𝑥)) (ℰ𝑔(𝑥) +

2𝑟

𝜎2
) , 𝑥 ∈]0,𝑚[. 
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A function 𝑔 which satisfies properties 𝑔1and  𝑔2 and which has decreasing elasticity 

function on ]0, 𝐾[  belongs to class 𝒢. 

We now formulate the free boundary problem associated with the pricing of a 

perpetual American option as follows. 

Problem. Let 𝑔 ∈  𝒢 and let 𝐾 =  𝑠𝑢𝑝{𝑥 ≥  0;  𝑔(𝑥)  >  0}. Find 𝑏 ∈]0, 𝐾[ and a 

function v in the space 𝐶0([0, +∞[) ∩ 𝐶1(]0, +∞[) ∩ 𝐶2(]0, +∞[\{𝑏}) such that

{
 
 

 
 
1

2
 𝜎2𝑥2𝑣′′(𝑥) + 𝑟𝑥𝑣′(𝑥) − 𝑟𝑣(𝑥) = 0,  𝑏 < 𝑥 < +∞

𝑣(+∞) = 0 

𝑣(𝑥) = 𝑔(𝑥),  0 ≤ 𝑥 ≤ 𝑏

The following proposition gives the solution (b; v) of Problem 1. In the following one 

we call value function the solution 𝑣. Note that 𝑏 ∈  ℝ is called the critical stock price. 

Proposition 2 Let 𝑔 ∈  𝒢 and let 𝐾 =  𝑠𝑢𝑝{𝑥 ≥  0;  𝑔(𝑥)  >  0}. 
Let 𝑙 = 𝑖𝑛𝑓0<𝑥<𝐾ℰ𝑔(𝑥) and assume that 𝑙 <  −

2𝑟

𝜎2
 .

Let 𝑏 =  𝑚 and define 

𝑣 (𝑥) =

{
 
 

 
 𝑔 (𝑥)  0 ≤ 𝑥 ≤ 𝑏

𝑔 (𝑏) (
𝑏

𝑥
)

2𝑟
𝜎2

 𝑏 < 𝑥 <  + ∞

Then (𝑏, 𝑣) is the unique solution of Problem 1. 

Proposition 3 (Asymptotic version)  

Let us consider a payoff  function 𝑔 ∈  𝒢. Assume that K = +∞ and 𝑙 ≥  −
2𝑟

𝜎2
 . 

We can find a sequence of payoff  functions (𝑔𝑛)𝑛∈ℕ such that:

(i) 𝑠𝑢𝑝{𝑥 >  0 ;  𝑔𝑛(𝑥)  >  0 }  <  +∞ 

(ii) lim
𝑛→+∞

𝑔𝑛 (𝑥)  =  𝑔(𝑥)   for all 𝑥 ≥  0, 

(iii) let (𝑏𝑛, 𝑣𝑛) be the unique solution of Problem 1 for the payoff function gn (given 

in Proposition 2), it results that 

lim
𝑛→+∞

𝑏𝑛 (𝑥) =  +∞   and lim
𝑛→+∞

𝑔𝑛 (𝑥)  =  𝑔(𝑥)   for all 𝑥 ≥  0. 
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Definition 5 Let 𝑔 ∈  𝒢. Let 𝐾 =  𝑠𝑢𝑝{𝑥 ≥  0;  𝑔(𝑥)  >  0} and let 𝑙 =
𝑖𝑛𝑓0<𝑥<𝐾ℰ𝑔(𝑥).

We say that (b,v) is the generalized solution if the following condition is satisfied: if 

𝑙 <  −
2𝑟

𝜎2
 then (𝑏, 𝑣) is the solution of Problem 1 given in Proposition 2, otherwise 𝑏 =

 +∞ and 𝑣 =  𝑔. 

Before stating our main result, we recall the optimal stopping time problem. 

Definition 6 We define 

𝑉 (𝑥) ≔  𝑠𝑢𝑝
𝜏∈ 𝑆 

𝔼̂𝑥 [𝑒−𝑟𝜏 𝑔(𝑋𝜏)]

where 𝑆 is the class of all ℱ-stopping times.

The optimal stopping time problem is to find the stopping time  𝜏∗ ∈   𝑆   such 

that 

𝑉 (𝑥)  ∶= 𝔼̂𝑥[𝑒−𝑟𝜏∗  𝑔 ( 𝑋𝜏∗)].

We now state the main result of this paper. It is a generalization of a well-

known result for the vanilla option (see Karatzas and Shreve 20). 

Theorem 1 Let 𝑔 ∈  𝒢 and let (𝑏, 𝑣) be the generalized solution introduced in 

Definition 5. Let H(𝑥) be the price as defined in (2) and let 𝑉 (𝑥) be the function 

defined in (5).  

Then we have 

∀𝑥 >  0 𝑣(𝑥)  =  𝐻(𝑥)  =  𝑉 (𝑥)  =  𝑠𝑢𝑝
𝜏∈ 𝑆 

𝔼̂𝑥 [𝑒−𝑟𝜏 𝑔(𝑋𝜏)].                      (6)
The optimal stopping time 𝜏𝑏 is given by 𝜏𝑏 ≔ 𝑖𝑛𝑓 {𝑡 ≥ 0; 𝑋𝑡 ≤ 𝑏}  with the

usual convention that inf ∅:=  +∞; so we obtain 

∀ 𝑥 > 0 𝑣(𝑥) = 𝐻(𝑥) = 𝑉(𝑥) = 𝔼̂𝑥 [𝑒−𝑟𝜏𝑏  𝑔 ( 𝑋𝜏𝑏)].

Theorem 1 is a direct consequence of Theorem 2 and Theorem 3, which will be 

stated and proved later. 

Remark 2 Note that in the case 𝑙 ≥ −
2 𝑟

𝜎2
  we have 𝑏 =  +∞ and 𝑣 = 𝑔.  Then 

𝜏𝑏 = 0 and, taking into account that 𝑋0 = 𝑥, we get 

𝔼̂𝑥[𝑒−𝑟𝜏𝑏  𝑔 ( 𝑋𝜏𝑏)] = 𝑔(𝑥)  = 𝑣(𝑥).

20 Karatzas, Shreve, 1998. 
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We examine, now, the relationship between the value function and the optimal 

stopping time problem. 

Proposition 4 Let 𝑔 ∈  𝒢. Let (𝑏, 𝑣) be the generalized solution introduced in 

Definition 5 and let  

𝜏𝑏   : = 𝑖𝑛𝑓 {𝑡 ≥ 0; 𝑋𝑡 ≤ 𝑏}

Then 

∀ 𝑥 > 0 𝑣(𝑥) = 𝔼̂𝑥[𝑒−𝑟𝜏𝑏     𝑔 ( 𝑋𝜏𝑏   )].

Therefore 

∀𝑥 >  0  𝑣(𝑥)  ≤  𝑉 (𝑥) 

where 𝑉 is the function introduced in Definition 6. 

Theorem 2 Let 𝑔 ∈  𝒢 and let (𝑏, 𝑣) be the generalized solution introduced in 

Definition 5.  

Then 

∀𝑥 >  0  𝑣(𝑥)  =  𝑉 (𝑥)  =  𝑠𝑢𝑝
𝜏∈ 𝑆 

𝔼̂𝑥 [𝑒−𝑟𝜏 𝑔(𝑋𝜏)].

Moreover, denoting by 

𝜏𝑏   : = 𝑖𝑛𝑓 {𝑡 ≥ 0; 𝑋𝑡 ≤ 𝑏}

we have 

∀𝑥 >  0 𝑣(𝑥) =  𝑉 (𝑥) =  𝔼̂𝑥[𝑒−𝑟𝜏𝑏     𝑔 ( 𝑋𝜏𝑏   )] .

Proof:  

By Proposition 4 we have only to prove that 𝑣(𝑥)  ≥  𝑉 (𝑥) for all 𝑥 ≥  0. 

We know that, for all 𝜏 ∈  𝑆 and for all 𝑛 ∈ ℕ:  

𝔼̂𝑥[𝑒−𝑟(𝜏∧𝑛)  𝑣 ( 𝑋𝜏∧𝑛  )] − 𝑣(𝑥)

= 𝔼̂𝑥 [∫ 𝑒−𝑟𝑡
𝜏∧𝑛

0

(
𝜎2

2
𝑋𝑡
2𝑣′′(𝑋𝑡) + 𝑟 𝑋𝑡𝑣

′(𝑋𝑡) − 𝑟 𝑣(𝑋𝑡))𝑑𝑡].  (7)

From (7) and knowing that the value function 𝑣 of class 

𝐶0([0, +∞[) ∩ 𝐶1(]0, +∞[) ∩ 𝐶2(]0, +∞[\{𝑏}) satisfies the following 

property 

𝜎2

2
𝑥2𝑣′′(𝑥) + 𝑟 𝑥𝑣′(𝑥) − 𝑟𝑣 (𝑥) {

  < 0  0 < 𝑥 < 𝑏

= 0  𝑏 < 𝑥 <  + ∞
 (8) 
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and taking into account that 𝑣 ≥  𝑔, we obtain 

𝑣(𝑥) ≥ 𝔼̂𝑥[𝑒−𝑟(𝜏∧𝑛)  𝑣 ( 𝑋𝜏∧𝑛  )]   ≥  𝔼̂
𝑥[𝑒−𝑟(𝜏∧𝑛)  𝑔 ( 𝑋𝜏∧𝑛  )] .

By considering the limit of this expression when 𝑛 →  +∞ and applying the 

dominated convergence theorem (taking into account that  

𝑒−𝑟 (𝜏∧𝑛)𝑔(𝑋𝜏∧𝑛)  ≤  𝑔(0)) we obtain

𝑣(𝑥) ≥  𝔼̂𝑥[𝑒−𝑟𝜏   𝑔 ( 𝑋𝜏  )]  𝑓𝑜𝑟 𝑎𝑙𝑙  𝜏 ∈  𝑆. 

Then we have 𝑣(𝑥)  ≥  𝑉 (𝑥) and the proof is complete. 

The following proposition deals with the relationship that exists between the 

generalized solution introduced in Definition 5 and the price at time zero of the 

perpetual contingent claim introduced in Definition 1. 

Lemma 1. Let 𝑔 ∈  𝒢 and let (𝑏, 𝑣) be the generalized solution introduced in 

Definition 5. 

Then  

∀𝑥 >  0      𝑣(𝑥)  ≤  𝐻(𝑥). 

Proof: The cases 𝑏 =  +∞ and 𝑣 =  𝑔 are easy to prove.  

We now assume that 𝑏 ∈ ℝ. Let 𝛾 >  0 and let us assume that there exist a portfolio 

process 𝜋 =  {𝜋𝑡}𝑡≥0 and a cumulative consumption process 𝐶 =  {𝐶𝑡}𝑡≥0  such that 

𝑔(𝑋𝑡) ≤ 𝑌𝑡
𝛾,𝜋,𝐶

 ,  𝑡 ≥  0 

or, equivalently, by choosing: 𝑡 =  𝜏𝑏 ∧ 𝑛 we have 

𝑒−𝑟(𝜏𝑏∧𝑛)  𝑔 ( 𝑋𝜏𝑏∧𝑛) ≤ 𝛾 + 𝜎 ∫ 𝑒−𝑟𝑠
𝜏𝑏∧𝑛

0
𝜋𝑠𝑑𝑊̂𝑠 . 

By a standard argument we have: 

𝔼̂𝑥[𝑒−𝑟(𝜏𝑏∧𝑛)  𝑔 ( 𝑋𝜏𝑏∧𝑛)]  ≤ 𝛾 . .

By considering the limit of this expression when 𝑛 →  +∞ and applying the 

dominated convergence theorem we obtain  

𝑣(𝑥) =  𝔼̂𝑥[𝑒−𝑟𝜏𝑏  𝑔 ( 𝑋𝜏𝑏)]  ≤  𝛾.

Lemma 2 Let 𝑔 ∈  𝒢 and let (𝑏, 𝑣) be the generalized solution introduced in 

Definition 5.  

Then 
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∀𝑥 >  0  𝑣(𝑥)  ≥  𝐻(𝑥). 
Proof: 

By applying Itoˆ’s lemma we have 

𝑒−𝑟𝑡𝑣(𝑋𝑡) −  𝑣(𝑥)

=  ∫ 𝑒−𝑟𝑠
𝑡

0

(
𝜎2

2
𝑋𝑠
2𝑣′′(𝑋𝑠) + 𝑟 𝑋𝑠𝑣

′(𝑋𝑠) − 𝑟 𝑣(𝑋𝑠))𝑑𝑠

+  𝜎∫ 𝑒−𝑟𝑠
𝑡

0

𝑋𝑠𝑣
′(𝑋𝑠)𝑑𝑊̂𝑠

𝑒

−𝑟𝑡

and thus, from (8), we obtain 

𝑒−𝑟𝑡𝑣(𝑋𝑡) −  𝑣(𝑥)  ≤   𝜎∫ 𝑒−𝑟𝑠
𝑡

0

𝑋𝑠𝑣
′(𝑋𝑠)𝑑𝑊̂𝑠 .

Taking into account that 𝑣 ≥  𝑔 we have for 0 ≤  𝑡 <  +∞ 

𝑒−𝑟𝑡𝑔(𝑋𝑡)  ≤     𝑒
−𝑟𝑡𝑣(𝑋𝑡)  ≤  𝑣(𝑥) +  𝜎 ∫ 𝑒−𝑟𝑠

𝑡

0

𝑋𝑠𝑣
′(𝑋𝑠)𝑑𝑊̂𝑠 .

By considering the portfolio process 𝜋 defined by 𝜋𝑡 ∶=  𝑋𝑡 𝑣′(𝑋𝑡) and the 

consumption process 𝐶 defined by  𝐶𝑡 ≡  0, from Definition 1 and by using (4) we 

obtain 𝑣(𝑥)  ≥  𝐻(𝑥).  
From Lemma 1 and Lemma 2 we obtain the following theorem. 

Theorem 3 Let 𝑔 ∈  𝒢 and let (𝑏, 𝑣) be the generalized solution introduced in 

Definition 5. Then  

∀𝑥 >  0  𝑣(𝑥)  =  𝐻(𝑥). 

In the next remark we give a portfolio/consumption process pair  (𝜋̅, 𝐶̅ ) such 

that the corresponding wealth process matches the claim’s price process. 

Remark 3. Let (𝑏, 𝑣) be the solution of Problem 1. In analogy with Karatzas 

and Shreve21 and Karatzas22 let us consider:  

the wealth process 𝑌̅ = {𝑌𝑡
𝛾̅,𝜋̅,𝐶̅

}
𝑡≥0

 corresponding to initial capital 𝛾̅ ∶=  𝑣(𝑥), 
hedging portfolio 

𝜋̅𝑡 ∶=  𝑋𝑡 𝑣′(𝑋𝑡) 

21 Karatzas, Shreve, 1998. 
22 Karatzas, 1996 
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and cumulative consumption 

𝐶𝑡̅ ≔ − ∫ (
𝜎2

2
𝑋𝑠
2𝑣′′(𝑋𝑠) + 𝑟 𝑋𝑠𝑣

′(𝑋𝑠) − 𝑟 𝑣(𝑋𝑠))𝑑𝑠
𝑡

0

= −  ∫ (
𝜎2

2
𝑋𝑠
2𝑔′′(𝑋𝑠) + 𝑟 𝑋𝑠𝑔

′(𝑋𝑠) − 𝑟 𝑔(𝑋𝑠)) 1]0,𝑏[(𝑋𝑠)𝑑𝑠
𝑡

0

From (4) we get 

𝑌𝑡
𝛾̅,𝜋̅,𝐶̅

= 𝑣(𝑋𝑡),  𝑡 ≥  0. 

4.We give some examples of functions which belong to class 𝒢.

Example 1 Let 𝐾 ∈  ℝ, 𝐾 >  0. The following payoff  functions 𝑔 ∶  [0, +∞[→ 
ℝ belong to class 𝒢 and they have 𝑖𝑛𝑓ℰ𝑔(𝑥)  =  −∞: 

(a) powered option: 

𝑔(𝑥) =  (max{𝐾 −  𝑥, 0})𝑝       (𝑝 ∈  ℝ , 𝑝 >  0);
(b) power option: 

𝑔(𝑥) =  𝑚𝑎𝑥{𝐾𝑝  −  𝑥𝑝, 0}         (𝑝 ∈  ℝ , 𝑝 >  0);

(c) general power option (or polynomial option): 

𝑔(𝑥) =  𝑚𝑎𝑥 {∑𝑎𝑖((2𝐾 − 𝑥)
𝑖 − 𝐾𝑖)

𝑛

𝑖=1

, 0}  (𝑎𝑖 >  0, 𝑛 ∈  ℕ); 

(d) parabola option: 

𝑔(𝑥) = 𝑚𝑎𝑥 {𝑎 ((2𝐾 − 𝑥)2 + 𝑏((2𝐾 − 𝑥) − 𝐾)) , 0}  (𝑎 > 0, 𝑏 ≥  0). 

(e) S-shaped payoff  function 

𝑔 (𝑥) = {
𝐾 − 𝐾 sin2(

𝜋

2𝐾
𝑥)  0 ≤ 𝑥 ≤ 𝐾

0  𝐾 ≤ 𝑥 <  + ∞

Lastly, we give some example of payoff  function which belongs to class 𝒢, 

𝐾 =  +∞ and with decreasing elasticity function. 

Example 2 The function 
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𝑔(𝑥) =  𝑒−𝑥 ,  𝑥 ≥  0 

where infℰ𝑔(𝑥)  =  −∞. 

Example 3 The function 

𝑔(𝑥) =  
1

1 + 𝑥
 ,  𝑥 ≥  0 

where infℰ𝑔(𝑥)  =  −1. 
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