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Massimo Bilancia†, Giusi Graziano†† 

MEASURING GEOGRAPHICAL DISPARITY IN LUNG CANCER  
MORTALITY IN APULIA, ITALY. RESULTS FOR THE 2002-2009 PERIOD* 

ABSTRACT 
This paper reports on the presence of an excess 
mortality for lung cancer among resident males 
in the southeast part of the Salento peninsula. 
This increasead level of risk was first 
documented in a report of the Registro Tumori 
Puglia (formerly known as Registro Tumori 
Jonico Salentino), and further analyzed by one of 
the authors of this paper, using mortality data for 
the 1992-2001 period. Here, we present an 
updated analysis conducted using data over two 
distinct time intervals (2002-2005 and 2006-
2009). The obtained results show that the excess 
mortality is still present, and that the causes of 
such geographical disparity remain somewhat 
obscure. 

Il presente lavoro mira a documentare la presenza 
di un eccesso di mortalità per tumore al polmone 
tra i maschi residenti nella parte sud-orientale 
della penisola salentina. L’aumento del livello di 
rischio per tale patologia era già stato individuato 
in un report del Registro Tumori Puglia (già noto 
come registro Tumori Jonico Salentino), ed 
ulteriormente analizzato da uno degli autori di 
questa pubblicazione, utilizzando dati di 
mortalità per il periodo 1992-2001. In questa 
sede presenteremo una analisi aggiornata basata 
su due distinti intervalli temporali (2002-2005 e 
2006-2009). I risultati ottenuti dimostrano che 
l’eccesso di mortalità è tuttora presente, e che le 
cause di una siffatta disparità geografica 
rimangono ancora oscure. 

Spatial epidemiology – Bayesian hierarchical 
modeling – Lung cancer mortality  

Epidemiologia spaziale – Modellistica 
bayesiana gerarchica – Mortalità per tumore 
al polmone 
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1. - Despite many nations have seen a general improvement in cancer survival,
and a decline in incidence and mortality rates for some cancers, notable inequalities 
in these outcomes still persist between people of differing race, ethnicity, 
socioeconomic status, and area of residence, as witnessed by many researchers and 
numerous international studies1.  

Of course, inequalities need to be quantified before they can be addressed, and 
since the mid-1800s maps have been used to provide a visual representation of cancer 
outcomes. Cancer mortality and incidence maps often offer clues of the many 
different forms a cancer inequality can take2. For example, cancer patients living in 
disadvantaged areas are more likely to be diagnosed with advanced cancer and to 
have poorer survival. Similarly, patients living in rural areas with a reduced access to 
health care services, and lower socioeconomic groups living in deprived areas have a 
higher prevalence of cancer risk factors such as smoking, obesity and low level of 
physical activity. 

When the Apulia region is taken into consideration, it must be stressed that public 
health investigations are dominated by the analyses of relationships existing between 
environment and cancer mortality/incidence in two contaminated sites. The first site 
of interest is the city of Taranto, because of several polluting sources, such as a large 
steel plant, a refinery, a harbor and illegal waste dumps3. The second is the Brindisi 
area, characterized by the presence of industries with high environmental impact, 
located along its eastern border. Several epidemiological studies have revealed 
critical situations4. 

However, the purpose of this paper is to document a different phenomenon, i.e. 
the presence of an excess mortality for lung cancer among resident males in the 
southeast part of the Salento peninsula. This increasead level of risk was first 
documented in a report of the Registro Tumori Puglia (formerly known as Registro 
Tumori Jonico Salentino), and further analyzed by one of the authors of this paper, 
using mortality data for the 1992-2001 period5. Here, we present an updated analysis 

1  A. WEINBERG, P.M. JACKSON, C. DECOURTNEY, K. CRAVATT, J. OGO, M.M. SANCHEZ, G. 
TORTOLERO-LUNAS, R.L. ROLLINS, Progress in addressing disparities through comprehensive cancer 
control, in “Cancer Causes & Control”, 21:12 (2010), pp. 2015–2021.  
2  S.M. CRAMB, K.L. MENGERSEN, P.D. BAADE, Developing the atlas of cancer in Queensland: 
methodological issues, in “International Journal of Health Geographics”, 10:9 (2011), 
doi:10.1186/1476-072X-10-9. 
3 R. PIRASTU, P. COMBA, I. IAVARONE, A. ZONA, S. CONTI, G. MINELLI, V. MANNO, A. MINCUZZI, S. 
MINERBA, F. FORASTIERE, F. MATALONI, A. BIGGERI, Environment and Health in Contaminated Sites: 
The Case of Taranto, Italy, in “Journal of Environmental and Public Health”, Article ID 753719 
(2013), doi:10.1155/2013/753719. 
4 C. MANGIA, A. BRUNI, M. CERVINO,  E.L. GIANICOLO, Sixteen-year air quality data analysis of a high 
environmental risk area in Southern Italy, in “Environmental Monitoring and Assessment”, 183:1-4 
(2011), pp. 555–570.  
5 M. BILANCIA, A. FEDESPINA, Geographical clustering of lung cancer in the province of Lecce, Italy: 
1992-2001, in “International Journal of Health Geographics”, 8:40 (2009). doi:10.1186/1476-072X-8-
40.
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conducted using data over two distinct time intervals (2002-2005 and 2006-2009). 
The obtained results show that the excess mortality is still present, and that the causes 
of such geographical disparity remain somewhat obscure. 

The paper is organized as follows. Section 2 introduces the necessary notation 
and the basic Poisson model when the outcome of interest is the area-level count of 
an adverse health event. In Section 3 the basic concepts of Bayesian hierarchical 
modeling are introduced, and the spatio-temporal model used to analyze the data is 
shortly explained. In Section 4, some mathematical difficulties associated with priors 
for the spatial distribution of relative risks are highlighted. Section 5 contains a brief 
introduction to local cluster detection using the Kulldorff’s circular scan statistic. 
Section 6 contains a pointer to the numerical facilities used to map the relative risk 
estimates. Section 7 contains results and maps depicting the geographical variation in 
risk. The paper ends in Section 8 with some clues for future research. 

2. - First, we introduce the necessary notation. Let Yit  denote the number of
deaths observed within the i-th area ( i =1,2,…,N ) during the time window t 
( t =1,2,…,T ). We can broadly assume that, independently in each area and time 
windows, death counts follow a Poisson distribution: 

Yit ~
ind
Poisson(Nit pit ) , (1) 

where pit  represents the mortality rate within area i and time windows t and, in a 
similar vein, Nit is the amount of person-years at risk in each time interval 
considered. With the help of a suitable reference rate p , we are able to re-parametrize 
to area-specific relative risks θit = pit p  such that: 

Nit pit = Nit pθit = Eitθit , (2) 

in which Nit p = Eit  represents the number of expected deaths under the reference rate 
p. When the reference population is the same as the population under study, we set
the reference rate as: 

p = Yit
i,t
∑ Nit

i,t
∑ . (3) 

 This internal standardization centres the data with respect to the current maps. 
Therefore, the re-parametrized Poisson model assumes the form: 

Yit ~
ind
Poisson(Eitθit ) , (4) 
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in which the Eits  are (improperly) regarded as fixed, whereas Yits  are regarded as 
random and conditionally indipendent of one another given the relative risks θits . The 
obvious summaries of the Poisson model (4) are the maximum likelihood estimates 
(MLE) of area-specific relative risks θ̂it = SMRit =Yit Eit  (SMR = Standardized 
Mortality Ratio). The areas where there is an excess of risk are those in which the 
number of observed deaths exceeds the expected ones (and hence SMRit >1). 

Estimates derived from the Poisson model are ready for mapping and GIS 
analyses, although SMRs tend to be unreliable estimators of the underlying risks, as 
Var(θ̂it ) =θit Eit . Since the expected counts depend on the underlying population at 
risk, the precision of the SMRs will vary inversely with the size of the population. As 
a consequence, any map suggesting outliers may be spurious, since the extreme 
values may result from a large degree of variability of the estimates. For example, 
sparsely populated areas can visually dominate the map, but provide the least reliable 
estimates. 

3. - A way for overcoming the above mentioned issue consists in borrowing
information from sources other than the observation at hand, in order to improve the 
properties of the relative risk estimates, achieving a better mean squared error. For 
example, under the Poisson model (4) we are not able to exploit the information that 
disease outcomes in spatial units are often not independent of each other. As a 
consequence, risk levels of areas that are close to each other tend to be positively 
correlated, as they share a number of spatially varying characteristics. 

From this perspective, the most commonly used models are derived from the full 
Bayesian approach. This class of models allow for the augmentation of the Poisson 
likelihood function, in order to incorporate a spatially correlated structure of the 
relative risk, resulting in a Bayesian hierarchical model. This hierarchical structure 
promotes the concept of Bayesian smoothing, whereby the estimation of relative risk 
is based upon not only the data observed for the selected region, but from 
neighbouring regions as well. Following this approach, the log-relative risks of the 
Poisson likelihood are modeled as a suitable combination of fixed and random 
effects, leading to the specification6,7,8:  

ηit = log(θit ) =α +υi +ν i + (β +δi )× t . (5) 

6  L. BERNARDINELLI, D. CLAYTON, C. PASCUTTO, C. MONTOMOLI, M. GHISLANDI, M. SONGINI, 
Bayesian analysis of space-time variation in disease risk, in “Statistics in Medicine”, 14:21-22 (1995), 
pp. 2433–2443.  
7 B. SCHRÖDLE, L. HELD, A primer on disease mapping and ecological regression using INLA, in 
“Computational Statistics”, 26:2 (2011), pp. 241–258.  
8 N. WHITE, Review of statistical methods for disease mapping, 2012, http://eprints.qut.edu.au/56859/. 
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In this classical formulation, introduced to analyse the variation of a given 
disease in space and time, random effects υi  allow for spatially structured risk 
patterns, being defined from the following set of conditional distributions: 

υi υ j ~ N
1
mi

υ j,
συ
2

mij: j~i
∑

"

#
$$

%

&
'' , (6) 

where j : j ~ i{ }  is the set of first-order neighbours of area i, whereas mi  is the 
cardinality of this set. In the context of disease mapping, the prior specification (6) 
has been proposed as an efficient solution to model spatial dependencies9, and it is 
commonly referred to intrinsic conditional autoregression (ICAR). On the contrary, 
random effects ν i describe sources of extra-Poissonian variation that are not spatially 
structured (for example, data inaccuracies that inflate the marginal variance to a level 
greater than that expected under the standard Poisson model). A zero-mean 
exchangeable Gaussian prior is commonly used for unstructured effects: 

ν i ~
iid
N 0,σν

2( ) . (7) 

The terms δ i  represent local deviations between the global time trend β  and the 
area specific trend. When δi < 0  the area-specific trend is steeper ?? than the global 
trend, whilst δi > 0  implies that the area-specific trend is steeper than the global 
trend. We assume that random effects δ i  follow a Gaussian exchangeable prior with 
zero mean and variance σδ

2 . Other non-parametric specifications are possible, such as 
a random-walk stochastic trend10, but this approach was not considered here as only a 
short time interval is taken into account. 

Finally, Bayesian hierarchical modeling envisages specification of the prior 
distribution of the random effect variance parameters συ

2,σν
2 . These distributions are 

parametrized by hyperparameters which control the variability of the relative risks 
across the map. In Section 7, we will briefly discuss a few common alternatives to 
eliciting these priors, minimizing the risk of over-smoothing of the estimated relative 
risks. 

4. - A few technical details concerning the prior distribution (6) are worth noting.
A broad class of spatially structured priors is obtained by implicitly specifying a 
Gaussian Markov Random Field11 (GMRF) with the following set of conditional 
distributions: 

9 J. BESAG, J. YORK, A. MOLLIÈ, Bayesian image restoration, with two applications in spatial statistics, 
in “Annals of the Institute of Statistical Mathematics” 43:1 (1991), pp. 1–20. 
10 SCHRÖDLE, HELD, op. cit., p. 4 
11 H. RUE, L. HELD, Gaussian Markov Random Fields: Theory and Applications (Monographs on 
Statistics and Applied Probability,Vol. 104), 2005, London, Chapman & Hall. 
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υi υ j ~ N wijυ j,συ
2qii

−1

j: j~i
∑
#

$
%%

&

'
(( , (8) 

for i =1,2,…,N , and for some set of coefficients wij for j ≠ i, and wii = 0{ }  whose 
nonzero terms implicity define the relation ~  (which might be more general, in this 
context, than the first order neighbourliness). Of course, even though the conditional 
distributions (8) are well defined, we are not sure that a joint GMRF exists with the 
prescribed Markov properties. By using the Brook’s expansion, it can be proved that 
the set of Gaussian conditionals (8) defines a GMRF for the vector υ = υ1,…,υN( )T

having the following joint specification: 

υ ~ N 0,συ
2Q−1( ) , (9) 

where the precision matrix Q  has diagonal elements qii , whereas qij = qiiwij  for i ≠ j , 
provided that Q  is positive definite and that the compatibility conditions 
qiiwij = qjjwji  hold (to ensure that QT =Q ). When these two conditions are satisfied, it 
is a simple task to verify that Q = D−1(I −W ) , with W = wij{ }  and 
D = diag q11

−1,…,qNN
−1{ } .

The ICAR prior (6) is obtained as a special case of the model defined above, by 
taking wij =1  if areas i and j are neighbours, and wij = 0  otherwise (including the case 
that wii = 0 ). Under these circumstances wij =mi

−1  and qii =mi , finding again the 
conditional specification (6). However, simple inspection reveals that the 
corresponding precision matrix Q  has rank N −1  and so is not positive definite. 
Hence the ICAR model can be considered as a limiting form of the CAR model, in 
which συ

2  is only interpretable conditionally and no longer as a marginal variance, 
because the joint specification no longer exists. However, from a Bayesian viewpoint 
we can still write the joint version of the conditional specification (6) as an improper 
prior over the space of spatially structured effects: 

π υ συ
2( )∝ exp −

1
2συ

2 υi −υ j( )
2

j: j~i
∑

$

%
&&

'

(
)) . (10) 

With this prior specification, Bayesian posterior learning may become 
problematic as the improper ICAR prior only informs about contrasts υi −υ j  for 
j ~ i , but it does not identify the overall mean α  for the log-relative risks. With an 

improper prior over α , it can be formally proved that the joint posterior distribution 
of model parameters is not integrable12. This result just reflects the fact that the 
baseline effect cannot be resolved neither in the likelihood nor in the prior structure 

12 M. GHOSH, K. NATARAJAN, L.A. WALLER, D. KIM, Hierarchical Bayes GLMs for the analysis of 
spatial data: An application to disease mapping, in “Journal of Statistical Planning and Inference”, 
75:2 (1999), pp. 305–318. 
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of the model. A common solution to generate a proper posterior is to identify the 
overall mean by adding the constraint: 

υi = 0
i=1

N

∑ , (11) 

which results in a proper embedded posterior distribution over a constrained lower-
dimensional parameter space13. Of course, for the same identifiability purpose a sum-
to-zero constraint is imposed on random effects ν i  and δi  as well. 

5. - The assessment of spatial variation in risk is aimed at producing a global map
of important spatial effects, while simultaneously removing any disturbing noise. On 
the other side, in studying local area clustering we are concerned with ‘a 
geographically and/or temporally bounded group of occurrences of sufficiente size 
and concentration to be unlikely to have occurred by chance’14.  

While a wide range of methods have been proposed to test for local spatial 
clustering, the spatial scan statistic (introduced in a remarkable series of papers 
published during the mid ’1990s 15,16) is by far the most popular. A circular window is 
imposed on the map and its centre is allowed to move at any position, so that this 
circular window defines a potential cluster by including different sets of neighbouring 
areas. For practical purposes, the centre of each circular window is placed only at the 
small area centroids, and the radius is allowed to vary from zero to a maximum radius 
so that the window never includes more than a fixed percentage of the population at 
risk. A very large number of distinct circular windows will be created by this method, 
and each Z  defined by a circle consists of all those areas whose centroids lie inside 
the circle. 

Throughout this section study region will be denoted as G . For simplicity, we 
suppress the explicit time dependency as well. For a given window Z , we assume 
that events are generated by an inhomogeneous Poisson process having the following 
intensity function for all x ∈G : 

λ x( ) = pZµ(x)IZ (x)+ pZµ(x)IZ (x) , (13) 

where Z =G Z , IZ (⋅)  is the indicator function over the window Z , pZ  and pZ  
indicate the probability that one individual at risk – living respectively inside or 
outside Z  – has a given disease, and µ(x)  models the spatial distribution of the 

13 A.E. GELFAND, S.K. SAHU, Identifiability, Improper Priors, and Gibbs Sampling for Generalized 
Linear Models, in “Journal of the American Statistical Association”, 94:445 (1999), pp. 247–253. 
14  E.G. KNOX, Detection of clusters, in P. Elliot (Ed.), Methodologies of Enquiry into Disease 
Clustering, 1989, pp. 17–22, Small Area Health Statistics Unit, London. 
15 M. KULLDORFF, N. NAGARWALLA, Spatial disease clusters: Detection and inference, in “Statistics in 
Medicine”, 14:8 (1995), pp. 799–810.  
16 M. KULLDORFF, A spatial scan statistic, in “Communications in Statistics - Theory and Methods”, 
26:6 (1997), pp.1481–1496.  
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population at risk over G . Under the Poisson likelihood implied by these premises, to 
test the alternative hypothesis of local raised incidence H1 : pZ > pZ  versus the null 
H0 : pZ = pZ  we can consider the following generalised likelihood-ratio statistic17 for 
a specific circular window Z : 

ΛZ =
max p>q L(Z, pZ , pZ )
max p=q L(Z, pZ , pZ )

=
Y (Z )
E(Z )
"

#
$

%

&
'

Y (Z )
Y (Z )
E(Z )
"

#
$

%

&
'

Y (Z )

I Y (Z )
E(Z )

>
Y (Z )
E(Z )

"

#
$

%

&
' , (14) 

where Y (Z )  (resp.: Y (Z ) ) represents the random number of deaths occurred inside 
(resp.: outside) Z , and E(Z )  is the expected number of deaths inside Z  under the 
reference rate p . The spatial scan statistic Λ  is the maximum of the likelihood ratio 
(14) over all the candidate clusters Z : 

Λ =maxZ ΛZ , (15) 

which identifies the most likely cluster (MLC), that is the least likely to have 
occurred by chance. The distribution of the test statistic (14) under H0  has no simple 
closed form, even though an approximate p-value can be obtained using a Monte 
Carlo approach to evaluate MLC’s statistical significance18. In the jargon of spatial 
statistics literature, a significant MLC is often referred to as a ‘primary’ cluster. 

6. - The calculations reported in this paper were made possibile by the use of R
3.2.119. In particular, Bayesian estimation of space-time model (5) was carried out by 
using the Integrated Nested Laplace Approximation (INLA20,21), which has been 
developed as a computationally efficient alternative to Markov Chain Monte Carlo 
(MCMC) numerical schemes. The INLA approach is implemented in the R-INLA22 
package, which substitutes a standalone program built around the GMRFLib library. 
For the interested reader, the web-site http://www.r-inla.org/ provides documentation 
and many worked examples. Finally, the Kulldorff method for finding the MLC was 

17 KULLDORFF, NAGARWALLA, op. cit., p. 7 
18 Z. ZHANG, R. ASSUNÇÃO, M. KULLDORFF, Spatial Scan Statistics Adjusted for Multiple Clusters, in 
“Journal of Probability and Statistics”, Article ID 642379 (2010), doi: 10.1155/2010/642379. 
19 R CORE TEAM, R: A Language and Environment for Statistical Computing, 2015, Vienna, Austria.
Retrieved from http://www.r-project.org/ 
20 H. RUE, S. MARTINO, N. CHOPIN, Approximate Bayesian inference for latent Gaussian models by 
using integrated nested Laplace approximations, in “Journal of the Royal Statistical Society: Series B 
(Statistical Methodology)”, 71:2 (2009), pp. 319–392.  
21 M. BLANGIARDO, M. CAMELETTI, G. BAIO, H. RUE, Spatial and spatio-temporal models with R-
INLA, in  “Spatial and Spatio-Temporal Epidemiology”, 4 (2013), pp. 33–49. 
22 T.G. MARTINS, D. SIMPSON, F. LINDGREN, H. RUE, Bayesian computing with INLA: New features, in 
“Computational Statistics & Data Analysis”, 67 (2013), pp. 68–83.  
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implemented using an ad hoc function available in the SpatialEpi23 package. 
Source code is available from authors upon request. 

7. - Updated mortality data used in this paper are distributed by the Apulian
Epidemiological Regional Centre24, and cover periods 2002-2005 ( t =1) and 2006-
2009 ( t = 2 ). We consider the number of deaths occurred among male residents in the 
258 municipalities of Apulia, Italy, for malignant neoplasm of trachea, bronchus, and 
lung (ICD-IX: 162). The amounts of person-years at risk Nit  were based on ISTAT 
resident population estimates, available as of January 1st of each year between 2002 
and 200925. The internally standardized reference rate (3) was p = 75.784  deaths for 
100,000 males at risk per year. 

Following the methodological recommendations of NHCS Methodological Issues 
in Measuring Health Disparities26, we compared disparities, across geographic areas 
and over time, converting any set of estimates of the relative risks !θit  to rates 
!pit = p !θit , using the global rate p  as a reference point. Our relative disparity measure 

(RD) is defined as: 

RDit =
Rate of interest (p !θit )− reference rate (p)

reference rate (p)
•100%= !θit −1( )•100% . (16)

Figure 1 shows map of geographical relative disparity based on the maximum 
likelihood estimates θ̂it =Yit Eit , corresponding to area-specific SMRs of lung cancer 
among male residents. Interpretation is not easy due to the sampling variability that is 
inherent in such estimates (see also Figure 2, showing the large variability of the 
distribution of SMRs, for both time intervals considered here). However, despite the 
presence of this disturbing noise, it seems possibile to conclude that: 1) an increasing 
trend in the relative disparity in the North-South direction is clearly seen. A large 
region including both the southern part of the province of Brindisi and the southeast 
part of the Salento peninsula presents higher mean relative disparities, with many 
areas having a relative disparity greater than 200% of the reference rate. Some areas 
showing increased disparities are present along the border of the province of Foggia 
as well, although these values are obtained in small areas having a low population at 

23  C. CHEN, A. Y. KIM, M. ROSS, J. WAKEFIELD, SpatialEpi: Methods and Data for Spatial 
Epidemiology, 2014, R package version 1.2.1, http://CRAN.R-project.org/package=SpatialEpi.
24 S. BARBUTI, M. QUARTO, C. GERMINARIO, R. PRATO, P. LOPALCO, E. COVIELLO, G. CAPUTI, D. 
MARTINELLI, S. TAFURI, M.T. BALDUCCI, L. LAMARINA, F. FORTUNATO, R. BERARDINO, A.M. 
ARBORE, M.D. PALMA, Atlante delle Cause di Morte della Regione Puglia: Anni 2000–2005, 2006, 
Regione Puglia - Osservatorio Epidemiologico della Regione Puglia. 
25 http://demo.istat.it/archivio.html 
26  K. KENNETH, E. PAMUK, J. LYNCH, O. CARTER-POKRAS, I. KIM, V. MAYS, J. PEARCY, V. 
SCHOENBACH, J.S. WEISSMANN, Methodological issues in measuring health disparities, 2005, U.S. 
Department of Health and Human Services. Retrieved from http://stacks.cdc.gov/view/cdc/6654. 
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risk and elevated variability of the corresponding SMRs; 2) the time evolution of 
adverse health events seems to be stationary, and no significant increase in the risk 
estimates is apparent when we examine the 2006-2009 period against 2002-2005. 

In order to confirm these findings, we fitted the Bayesian spatio-temporal model 
specified by the Poisson likelihood (4) and the linear predictor (5) plus a suitable 

FIGURE 1 - Spatial distribution of relative mortality in lung cancer of males in Apulia, Italy, during the 
2002-2005 and 2006-2009 periods. Maps are based on maximum likelihood estimates (MLE) of the 
relative risks (SMRs) from the saturated Poisson likelihood (4). 

FIGURE 2 - Boxplots comparing the distribution of maximum likelihood estimates (MLE) of the 
relative risks (SMRs) for lung cancer of males in Apulia, Italy, during the 2002-2005 and 2006-2009 
periods. 
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prior specification, a somewhat detailed account of which is provided in both Section 
3 and 4. As we said before, the variability of Bayesian smoothed estimates across the 
map crucially depends on hyperparameters of the prior distribution of συ

2,σν
2 . By 

default, we have specified weakly informative priors on the log of both structured and 
unstructured effect precision27, exploring different hyperprior settings as follows: 

Model 1: logτυ ~ Gamma(0.5, 0.0005) , logτν ~ Gamma(0.5, 0.0005) ; 
Model 2: logτυ ~ Gamma(1, 0.0005) , logτν ~ Gamma(1, 0.0005) ; 
Model 3: logτυ ~ Gamma(0.1, 0.1) , logτν ~ Gamma(0.1, 0.1) . 

We set logτδ ~ Gamma(1, 0.0005)  for the log-precision of the local effects δi  and 
a diffuse prior over the trend parameter β . A sound albeit informal criterion to decide 
among several competing Bayesian specifications is a generalization of the Akaike 
Information Criterion (AIC), based on the posterior distribution of the deviance 
statistic: 

D η( ) = −2 log f y η( )+ 2 logh y( ) , (17) 

where the log-likelihood of the current model is compared to the saturated log-
likelihood h(y) , which is a function of the observed data vector y  alone and does not 
affect posterior inference. For the Poisson likelihood (4) written in terms of the vector 
η  of area-specific log-relative risks ηit , such that exp(ηit ) =θit , the deviance statistic 
(17) assume the form: 

D(η) = 2 Yi log
Yit

exp(ηit )Eit

!

"
#

$

%
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!" $%
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As a measure for comparing complex hierarchical models in which the number of 
parameters is not clearly defined, we can define the Deviance Information Criterion28 
(DIC): 

DIC = D+ pD , (19) 

where D  is the posterior mean of the saturated deviance (18) and: 

pD = D−D E η y( )"# $% , (20) 

27 The precision is defined as the inverse variance τ =1 σ 2 . 
28 D.J. SPIEGELHALTER, N. BEST, B.P. CARLIN, A. VAN DER LINDE, Bayesian measures of model 
complexity and fit, in “Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, 
64:4 (2002), pp. 583–639. 
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equals the posterior expectation of deviance minus the deviance evaluated at the 
posterior expectation of log-relative risks. The proposed criterion can be justified by 
several arguments, on which D  can be considered as a posterior summary of the 
goodness of fit of the current model, whilst pD  (the effective number of parameters, 
obtained after removing the interdependencies across parameter in the likelihood 
introduced by random effects in higher levels) is a penalty term measuring the 
complexity of the model. It is clear that smaller values of DIC will indicate a better-
fitting model, after penalizing it for the effective dimension of the parameter space. 

Model D pD DIC 
Model1 2764.25 110.01 2874.26 
Model2 2766.18 106.93 2873.12 
Model3 2752.89 124.88 2877.76 

TABLE 1 – Deviance Information Criterion (DIC) for the three Bayesian spatio-temporal specifications 
defined by the likelihood/linear predictor (4)-(5), and the prior/hyperprior setting detailed in Section 3 
and 7. D  is the posterior mean of the saturated deviance (18), measuring model fit; pD  is the effective 
number of parameters, representing model complexity. 

Table 1 presents the DIC components for the three specifications. It is apparent 
that Model 2 has a consistently lower number of effective parameters, resulting in 
the smaller DIC. Bayesian smoothed estimates of the area-speficic relative risks 
provided by Model 2 are showed in Figure 3. By visual eximination, the presence of 
a strong overall spatial trend in the disparity estimates is revealed, with spatial effects 
dominating the variability across the map and the highest disparities being estimated 
across the municipalities of the southeast part of the Salento peninsula.  

FIGURE 3 - Spatial distribution of relative mortality in lung cancer of males in Apulia, Italy, during the 
2002-2005 and 2006-2009 periods. Maps are based on smoothed posterior estimates of the relative risks 
(SMRs) from the Bayesian spatio-temporal specifications defined by the likelihood/linear predictor (4)-
(5), and the prior/hyperprior setting described in Section 3 and 7 (Model 2). 
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Also in this case, the existence of a global temporal trend in the relative risk 
surface cannot be confirmed. The fixed effects estimated by INLA are presented in 
Table 2, and if exponentiated they can be interpreted as relative risks. In particular, 
the global increase in risk from time period 1 to period 2 amounts to a modest 1.23%, 
exp(0.0122) ≅1.0123 . In addition, the 95% posterior credible interval (-2.4%, 4.99%) 
includes 1%, meaning equal risk surfaces between the two time intervals. The same 
conclusion is apparent if we examine the boxplot of smoothed relative risk posterior 
estimates presented in Figure 4. For the 2002-2005 period we have a mean of 1.10, 
(interquartile range = 0.4677), versus the 2006-2009 period for which the mean is 
1.1120 (interquartile range = 0.4643).  

Mean SD 2.5% 50% 95% 
α  0.0368 0.0320 -0.0262 0.0368 0.0994 
β  0.0122 0.0186 -0.0243 0.0123 0.0487 

TABLE 2 – Summary statistics for Model 2: posterior mean, posterior standard deviation (SD) and 
posterior 95% credible interval for the fixed effects of the spatio-temporal model defined by the 
specification (4)-(5) and the prior/hyperprior setting described in Section 3 and 7. 

The detection of MLCs using the Kulldorff’s circular scan statistic with 5% of the 
total population at risk to define the maximum circle size is presented in Figure 5. In 

Figure 4 - Boxplots comparing the smoothed posterior estimates of the relative risks (SMRs) from the 
Bayesian spatio-temporal specifications defined by the likelihood/linear predictor (4)-(5), and the 
prior/hyperprior setting described in Section 3 and 7 (Model 2), for lung cancer of males in Apulia, 
Italy, during the 2002-2005 and 2006-2009 periods. 
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both time periods, the primary cluster includes a collection of municipalities across 
the central-eastern part of the Salento area. Hence, the results of the disease mapping 
exercise are strenghtened by the detection of spatial clusters. For the 2002-2005 
period the p-value of MLC and the relative risk estimate inside the cluster were 
respectively p = 0.001  and RR =1.5669 , whilst we had p = 0.001  and RR =1.5994  
for the 2006-2009 period. 

8. - Although not directly comparable, the results presented in this paper confirm
the previous findings29. The study identified a significant spatial cluster of excess 
male lung cancer mortality, located in a collection of municipalities lying across the 
southeast part of the Salento peninsula. The search for those risk factors responsible 
of the increase in risk is still underway. Exposure to environmental carcinogens (such 
as radon), as well as tobacco inhalation, are major risk factors for developing lung 
cancer. Familial heredity also increases an individual’s risk, although the impact of 
complex genetic factors on the development of lung cancer remains unclear30. 

Previous research has focused on further aspects, such as the relevance of an 
important meteorological phenomenon, frequently observed on the Salento peninsula, 
consisting in the convergence of sea breezes in the middle of the peninsula, which 
would be responsibile for the transport of the emissions resulting primarily from the 
large industrial plants localized near the coasts in Brindisi and Taranto31,32,33. Of 

29 BILANCIA, FEDESPINA, op. cit., p. 2 
30 R.W. LOGAN, D.K. SARKAR, Genetic variation of the natural killer gene complex has a role in lung 
cancer susceptibility, in “Journal of Thoracic Disease”, 5:1 (2013), pp. 3–5. 
31 C. MANGIA, P. MARTANO, M.M. MIGLIETTA, A. MORABITO, A. TANZARELLA, Modelling local winds 
over the Salento peninsula, in “Meteorological Applications”, 11:3 (2004), pp. 231–244.  

FIGURE 5 - Most likely cluster (MLC) of lung cancer mortality of males in Apulia, Italy, during the 
2002-2005 and 2006-2009 periods. 
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course, at the present state of knowledge, it is a questionable theorem to affirm the 
existence of a direct causal link between pollutants originating from a distant single 
industrial source and the excess mortality for lung cancer observed among resident 
males. 

The absence of a similar spatial pattern in risk among resident females34 suggests 
that the role of occupational risk factors should be further considered. In particular, 
the 2009 IARC work group determined that there was sufficient evidence in humans 
for lung carcinogenicity of occupational exposures occurring during work activities in 
the following 6 occupational categories35: 1) coal gasification; 2) coke production; 3) 
iron and steel founding; 4) aluminum production; 5) painting; 6) rubber production 
industry. Others IARC group 1 lung carcinogen metals, such as arsenic and arsenic 
compounds, beryllium, cadmium, chromium and nickel are important for numerous 
common products, including textile products. The link between human health and the 
local industrial system present in the southern part of the Salento peninsula has not 
yet been investigated. 

From a purely statistical point of view, a reasonable way to identify factors 
associated with spatial distribution of disease consists in representing the outcome 
variabile as a function of  some selected area-specific explanatory variables: 

ηit = log(θit ) =α +γ1xi1 +!+γ pxip + random effects . (21) 

For example, the relationship between socioeconomic factors and mortality for 
lung cancer in Tuscany has been investigated36, confirming the presence of an 
association with a latency time of 10 years. Researchers should be aware that 
regression modeling of aggregated data may inadequately represent the exposure-
response relationship at the individual level, an effect known as ecological bias37. 
However, these analyses may identify areas where the incidence/mortality level is not 
accounted for by the explanatory variables (i.e. known risk factors). These areas, once 
indentified, might be targeted for further investigations. Future research will 
undoubtely benefit from explicitly investigating all the above-mentioned issues. 

32 C. MANGIA, I. SCHIPA, A. TANZARELLA, D. CONTE, G.P. MARRA, G. P., M. M. MIGLIETTA, U. RIZZA, 
A numerical study of the effect of sea breeze circulation on photochemical pollution over a highly 
industrialized peninsula, in “Meteorological Applications”, 17:1 (2010), pp. 19–31. 
33 C. MANGIA, M. CERVINO, A.E.L. GIANICOLO, Secondary Particulate Matter Originating from an 
Industrial Source and Its Impact on Population Health, in “International Journal of Environmental 
Research and Public Health”, 12:7 (2015), pp. 7767–7781.  
34 BILANCIA, FEDESPINA, op. cit., p. 2 
35 R.W. FIELD, B.L. WITHERS, Occupational and Environmental Causes of Lung Cancer, in “Clinics in 
Chest Medicine”, 33:4 (2012), pp. 681–703. 
36 E. DREASSI, A space–time analysis of the relationship between material deprivation and mortality 
for lung cancer, in “Environmetrics”, 14:5 (2003), pp. 511–521. 
37  H. MORGENSTERN, Ecologic Studies in Epidemiology: Concepts, Principles, and Methods, in 
“Annual Review of Public Health”, 16:1 (1995), pp. 61–81. 
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