Principali informazioni	A.A. 2017-2018
sull'insegnamento	
Titolo insegnamento	Pattern Recognition
Corso di studio	Informatica (Magistrale)
Crediti formativi	6 (4 + 2)
Denominazione inglese	Pattern Recognition
Obbligo di frequenza	
Lingua di erogazione	Italiano

Docente responsabile	Nome Cognome	Indirizzo Mail
	Giuseppe Pirlo	Giuseppe.pirlo@uniba.it
Luogo ed Orario di Ricevimento	Dip. Informatica 6° Piano	Stanza 611

Dettaglio credi formativi	Ambito	SSD	Crediti
	disciplinare		
	Formazione	ING-INF/05	6 (4 + 2)
	Scientifica		

Modalità di erogazione	
Periodo di erogazione	Primo Semestre
Anno di corso	Secondo Anno
Modalità di erogazione	Lezioni frontali
	Esercitazioni in laboratorio

Organizzazione della didattica	
Ore totali	150
Ore di corso	62
Ore di studio individuale	88

Calendario	
Inizio attività didattiche	Settembre 2017
Fine attività didattiche	Gennaio 2018

Syllabus		
Prerequisiti	Propedeuticità	
Risultati di apprendimento previsti	Conoscenza e capacità di comprensione	
	- Acquisizione di conoscenze relative a ambiti	
	progettuali strategici su sistemi di pattern recognition.	
	- Comprensione delle criticità nello sviluppo di sistemi	
	di pattern recognition.	
	Conoscenza e capacità di comprensione applicate	
	- Capacità di progetto e realizzazione di semplici	
	applicazioni di pattern recognition.	
	Autonomia di giudizio	
	- Gli studenti sono in grado di apprezzare le criticità	
	di diversi sistemi di pattern recognition e di operare le	

necessarie scelte sulla base dei diversi requisiti

- L'autonomia di giudizio viene acquista attraverso lo studio e l'interpretazione critica di testi e programmi.
- Il raggiungimento dell'adeguata autonomia è verificato attraverso delle esercitazioni, che si tengono durante il corso, e con l'esame finale di profitto.
- Abilità comunicative
- Gli studenti sono in grado di esporre le tematiche incluse nel programma del corso mediante il lessico specifico della disciplina.
- Capacità di apprendere
- Gli studenti sono in grado di approfondire in autonomia le tematiche incluse nel programma del corso anche ricorrendo a risorse non direttamente coinvolte nella erogazione delle ore di lezione

Contenuti di insegnamento

Analisi del segnale determinitica e statistica.

Caratteristiche dei processi stocastici: di Gauss, di Poisson;

Analisi di insieme e trasformate polinomiali. Analisi di Fourier e cenni sulle altre trasformate come quella di Hilbert, di Adamard, di Haar, ecc... .

Sistemi discreti e loro caratteristiche, relazione tra sistemi continui e sistemi discreti. Fenomeno dell'aliasing. Relazione di Parseval e Algoritmi FFT: DIT e DIF.Interpolatori Lagrangiani e loro uso nei sistemi di acquisizione ad alta risoluzione.

Teoria dei processi Markoviani;

Elementi di un Hidden Markov Models ed esempi reali: per le previsoni metereologiche per lo studio dei giochi, ecc...;

I tre problemi centrali degli Hidden Markov Models:

Algoritmo Forward-Backward (AFB), Algoritmo di Viterbi (AV), Algoritmo Baum-Welch (ABW);

Calcolo dell'abattimento della complessità computazionale degli Algoritmi AFB,AV e ABW;

Tipi di HMM: modello completamente connesso, modello sinistra destra, altri tipi di modelli;

Modelli per osservazioni continue negli HMM; Densità di osservazioni continue.

Altri algoritmi di riconoscimento statistici e dinamici, il caso delle Wrapping Funtions.

Riconoscimento di forme: Zonizzazioni classiche (regolari), Zonizzazioni di Voronoi.

Processi di mapping e classificazione.

Algoritmi di ottimizzazione e convergenza, algoritmi genetici e Membership Functions di tipo:

Abstract level,

Ranked level,

Measurement levels.

Indagine sull'uso delle funzioni esponenziali.

Data Base internazionali e realizzazione di esperimenti con uso di Data Base internazionali (esemplificazione con l'uso della directory BR 10 del CEDAR DB per il riconoscimento di cifre).

Funzioni di trasferimento neuro muscolari : Log-norm, Delta-log, Sigma-log.

Algoritmi di combinazione di classificatori; Tecniche di riconoscimento multiesperto.

Abstract level approach: Modello majority vote, Modello Ranked level:Behavioural knowledge space, Dempster Shafer, Measurement Level: Massima Probabilità, Regola Somma, Regola Prodotto.

Applicazione: Riconoscitori di caratteri e di singole parole, il riconoscimento del manoscritto:

- I. Offline recognition;
- 2. Classification/Decision Theory;
- 3. Historical document processing;
- 4. Forensic;
- 5. Segmentation;
- 6. Arabic Related;
- 7. Multilingual Recognition;
- 8. Applications;
- 9. Writer identification;
- 10. Online recognition;
- 11. Classification / Decision Theory

Frameworks di progettazione: il Framework Visiquest e il frameworks da open source Simulik. Casi di studio.

Programma	
Testi di riferimento	-Gernot A. Fink; Markov Models for PatternRecognition:
	From Theory to Applications. Springer 2008.

- -L. R. Rabiner (1989); A Tutorial on Hidden Markov Models, Proceedings of the IEEE 77 (2):277-286.
- -Introduzione all'Analisi Spettrale ed Algoritmi FFT; Adriatica Editirice 1987
- -C. Y. Suen, Frontiers in Handwriting Recognition, Centre for Pattern

Recognition & Machine Intelligence Concordia
University, Published by CENPARMI. ISBN 1-895193-00-1,
1990, pp. 1-211.

- -S. N. Srihari, III International Workshop in Handwriting Recognition, Buffalo May 25-27, 1993, supported by United States Postal Service and CEDAR Buffalo USA. pp.:1-465.
- -Prooceedings of the IV IWFHR, December 7-9, 1994 Taipei, Taiwan, Republic of China.
- -J. H. Kim Proceedings of 6th IWFHR, Seul, Korea, 1998.
- -L. Schomaker, Proceedings of 7th IWFHR, 11-13 September 2000 Amsterdam, The Netherlands.
- -S. N. Srihari & M. Cheriet, Proceedings of 8th IWFHR, August 6-8, 2002, Niagara-on-the-Lake, Ontario, Canada. IEEE Computer Society order Number PR01692, Library of Congress Number 2002108205, ISBN 0-7695-1692-0.
- -H. Fujisawa & G. Lorette, Proceedings of 9th IWFHR, 26-29 October 2004, Central Research Laboratory of Hitachi, Ltd. (HCRL), Kokubunji, Tokyo, Japan.
- -G. Lorette, H. Bunke & L. Schomaker, Proceedings of 10th IWFHR October 23-26, 2006, La Baule, Centre de Congress Atlantia, France.
- -C. Y. Suen, Eleven International Conference on Frontiers in Handwriting Recognition, Montreal Quebec Canada August 19-21, 2008. ISBN 1-895193-03- 6.
- -B.B.Chaudhuri, . Chaudhuri, Proceedings of the 12-th International Conference on Frontiers in Handwriting Recognition, Kolkata, India, Published by the IEEE Computer Society, 10662 Los Vaqueros, Los Alamitos, CA, 90720-1314, IEEE Computer Society Order Number P4221 BMS Part Number: CFP10311- PRT, Library of Congress

	Number 2010931536, ISBN 978-0-7695-4221-8, 2010.	
	-D. Impedovo, G. Pirlo, Proceedings of the 13-th	
	International Conference on Frontiers in Handwriting	
	Recognition, sept. 18-20,2012. Published by IEEE	
	Computer Society, Conferene Publishing Services (CPS),	
	http://www.computer.org/cps. ISBN-13:	
Note ai testi di riferimento	I libri di testo sono integrati con le slide e le dispense del docente	
Metodi didattici	Lezioni frontali e attività laboratoriali.	
Metodi di valutazione	Prova orale	
Criteri di valutazione		
Altro		