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Abstract

We model an agency relationship in which the agentís cost is non-monotonic with
respect to type and the type is correlated with a public ex-post signal. The principal
can use lotteries to exploit the type-signal correlation within the limit of the agentís
liability. We establish conditions for Örst-best implementation, highlighting two e§ects
on contractual design. First, the structure of the optimal lottery varies across types
and, for each type, it depends on whether the cost is U shaped or reverse U shaped with
respect to type. Second, as compared to the case of monotonic cost, the design of incentive
compatible lotteries is easier when the cost is U shaped, more di¢cult when the cost is
reverse U shaped. The root of the second e§ect is that incentives are non-monotonic
either below or above some interior types. The two e§ects involve that non-monotonicity
is unfavorable to the principal when the cost is reverse U shaped. This conclusion is
at odds with the wisdom, concerning settings without correlated information, that non-
monotonicity, which triggers countervailing incentives, enhances contracting.
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1 Introduction

We investigate the optimal contractual design in agency relationships in which the cost

incurred by the agent in the trade with the principal is non-monotonic with respect to his

private information (the type). Whereas agency problems of this kind have already been

studied, the novelty of our analysis is that it focuses on environments in which a publicly

observable signal conveys information about the type after the contractual transaction has

occurred, and the agent is protected by limited liability.

Characterizing the optimal contract in agency problems with non-monotonic cost, Maggi

and Rodriguez-Clare [16] (MRC hereafter) show that the proÖt targeted to each possible type

of agent depends Önely on the shape of the cost with respect to the type. The reason is

that the agent has countervailing incentives to misrepresent information. That is, the agent is

tempted to either overstate or understate his type, depending on whether the type belongs to

the increasing or the decreasing side of the cost. Therefore, for each given type, the contractual

solution depends on the exact side of the cost function to which that type belongs. This, in

turn, depends on whether the cost is U shaped or reverse U shaped. This result is rather general

and, not surprisingly, it also emerges in other studies on agency problems with countervailing

incentives.1

Principal-agent relationships with ex-post informative signals are examined in another cate-

gory of contract-theoretic models, pioneered by Riordan and Sappington [19].2 In those models,

each type of agent is faced with a lottery of proÖts, in addition to being assigned a cost reim-

bursement. Incentive constraints depend on the properties of the conditional probabilities of

the signal realizations and on the properties of the cost function. The former determine the

e§ectiveness of the lottery at extracting the gain in cost reimbursement possibly associated

with a fake report; the latter determine the magnitude of that gain. Riordan and Sappington

[19] show that the characteristics of the cost are irrelevant, and Örst best is implemented, as

long as the vectors of conditional probabilities of the signals are linearly independent across

1Agengy problems with countervailing incentives to misrepresent information are found in: procurement,
when Örms are specialized (Boone and Schottmuller [4]) and when they have a privileged knowledge of the
quality of a public signal about their production costs (Che and Sappington [5]); regulation, when the Örm incurs
a Öxed cost inversely related with the privately known marginal cost (Lewis and Sappington [14], MRC), with
non-linear pricing under price cap (Jullien [11]), when two-product monopolists face complementary demands
(Aguirre and Beitia [2]) and when utilities are subject to universal service obligations (Poudou et al. [18]);
labour and Önancial contracts, when the hidden e§ort exerted by the agent is complementary to his privately
known ability in accomplishing the task for the principal (Ollier and Thomas [17]); vertical relationships, when
retailers need to specialize some assets before contracting with the upstream suppliers (Acconcia et al. [1]);
conáicts on investment levels between uninformed shareholders and informed managers (Degryse and de Jong
[8]); landowner-farmer contracts with up-front capital endowments (Lewis and Sappington [15]); government-
taxpayer relationships, when the government wishes to improve the wellbeing of low-skill individuals by taxing
high-skill individuals but is aware that the latter will emigrate if the utility they attain within the country is
less than the utility they would attain in other jurisdictions (Krause [13]).

2For instance, in procurement and regulation, information about the productivity or the production cost of
the Örm is obtained by observing the behaviour or the market performance of another Örm operating in the
same sector in a neighboring economy. Information is also conveyed by an audit of the Örmís activity or an ex-
post evaluation of the Örmís performance. In these and many other instances, the newly acquired information
is observable and veriÖable, and the principal can use it in the contractual o§er to the agent.
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types.3 On the other hand, when this condition is violated the principal needs to design a

lottery which is su¢ciently unfavorable to types that gain in cost reimbursement, if they make

a fake report. That lottery is found to be such that the agent is rewarded only for the signal

that is least likely to be drawn by types that would gain in cost reimbursement with a fake

report. With the cost being increasing in type, these are low types exaggerating information,

and the lottery is e§ective as long as the cost is either convex or not highly concave. Intuitively,

in those cases, the gains in cost reimbursement for low types exaggerating information are not

too high relative to the losses in cost reimbursement for high types understating information.

Hence, the lottery will permit the extraction of the gains in cost reimbursement from low types

without being attractive to high types.

Considering limited liability on the agentís side, which seems to be the rule rather than

an exception in practice, Gary-Bobo and Spiegel [10] further demonstrate that the principal is

most likely to implement Örst best if she compensates the agent exactly as shown by Riordan

and Sappington [19]. However, in that study attention is restricted to the case of a convex cost.

In a companion paper (Danau and Vinella [7]), we highlight that an e¢cient outcome may be at

reach under limited liability even when the concavity of the cost function is more pronounced

than is admitted by the lottery proposed by Riordan and Sappington [19]. E§ecting that

outcome requires using a di§erent lottery, which is yet feasible only if the agentís liability is

not too tight. Noticeably, in all these models the cost is taken to be monotonic with respect to

type, an assumption which we relax in this study. This permits us to investigate what e§ects

are induced on the design of the optimal contract when the cost of the agent is U shaped and

when it is reverse U shaped with respect to type, in line with MRC.

To consider alternative shapes of the cost function, we assume, similarly to MRC, that the

agentís total cost includes a variable cost of production, which is linear in type, and a Öxed cost

of production, to be interpreted as an opportunity cost of being in the trade with the principal,

which declines with the type and can take any shape. Moreover, in line with the literature

on contractual design with informative signals, we allow for a signal correlated with the type

to be publicly observed ex post and investigate under what conditions the Örst-best allocation

is e§ected. Following Demougin and Garvie [9], Gary-Bobo and Spiegel [10] and Danau and

Vinella [7], we assume that the agentís proÖt cannot fall below a certain value regardless of the

signal realization. Under limited liability, the optimal contract will depend Önely on the shape

of the cost.4

We show that non-monotonicity induces two speciÖc e§ects on the lottery design. To explain

them, it is useful to recall how the lotteries should be structured to attain contractual e¢ciency

when the cost increases monotonically with the type, as developed extensively in Danau and

3At the Örst-best allocation, the entire surplus is retained from the agent and the volume of trade is e¢cient.
The result that this allocation is e§ected contractually under the assumption of linear independence is also found
by CrÈmer and McLean [6] in an auction context with correlated private information across participants.

4Remarkably, one particular case would be that in which the agent is not protected by limited liability
and, yet, whether or not full e¢ciency is attained depends on the shape of the cost, as shown by Riordan
and Sappington [19]. Indeed, from Gary-Bobo and Spiegel [10] we know that the lottery that Riordan and
Sappington [19] Önd to attain full e¢ciency as long as the cost is not highly concave, is the locally incentive
compatible lottery under which the limited liability constraints are relaxed to the utmost.
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Vinella [7]. In that case, for any intermediate type !; lower (more e¢cient) types gain in cost

reimbursement, if they announce !; higher (less e¢cient) types lose in cost reimbursement,

instead. It follows that the lottery designed for type ! should accomplish two tasks to achieve

e¢ciency. First, it should extract any potential gain in cost reimbursement from types below !;

second, it should not grant any beneÖts which overcome the potential loss in cost reimbursement

to types above !. In the setting here considered, the signals are obviously used in lotteries to

pursue analogous purposes for any intermediate type. Nonetheless, the following two speciÖc

e§ects will be identiÖed.

The Örst e§ect is that the structure of the optimal lottery varies across types and, for

each type, it depends on whether the total cost is U shaped or reverse U shaped. To see why,

consider that when the cost is U shaped low types gain in cost reimbursement if they understate

information, whereas high types gain if they overstate information. The converse occurs when

the total cost is reverse U shaped, instead. For any type ! in the interior of the feasible set,

a proper choice of the lottery structure cannot be made without considering whether lower

or higher neighboring types gain in cost reimbursement, if they report !. The relevance, for

contractual design, of the speciÖc type realization and the shape of the total cost is not novel

with respect to the Öndings of MRC. However, whereas in MRC those aspects determine what

exact incentives must be accounted for in contractual design, in our framework they dictate

how the lottery of any given type should be structured to be incentive compatible for each and

every other type.

The second e§ect of non-monotonicity is that, as compared to the case of monotonic cost,

the design of incentive compatible lotteries is easier when the cost is U shaped but more di¢cult

when the cost is reverse U shaped. This e§ect arises because, for any given type !; some types

which lie on one side of ! gain in cost reimbursements, whereas the other types on the same

side lose, if they report !: First consider a U shaped cost. Very low types may be penalized

in cost reimbursement, if they mimic some ! on the increasing side of the cost. Similarly, very

high types may be penalized, if they mimic some ! on the decreasing side of the cost. This

facilitates the task of designing lotteries such that the intermediate types are not attractive

reports to both lower and higher types. For instance, if ! belongs to the decreasing side of the

cost, then not only lower types but also some of the higher types lose in cost reimbursement,

if they mimic !: Hence, incentive compatibility is more easily attained than with a monotonic

cost. Importantly, with a reverse U shaped cost, the second e§ect acts in the opposite direction,

making it more di¢cult to reconcile the incentives of the types below and above !: For instance,

if ! belongs to the increasing side of the cost, then not only lower types but also some of the

higher types may gain in cost reimbursement, if they report !. This occurs, indeed, when the

cost is sharp sloping, in which case it is impossible to make the lottery of type ! incentive

compatible for all the other types.

Taken together, the two e§ects of non-monotonicity explain the following general result of

our study. For any given level of the agentís liability, under some regularity conditions, the

principal is able to attain the Örst-best outcome by means of a suitable choice of the lotteries,
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if and only if either the total cost is U shaped, or it is reverse U shaped and not too sharp

sloping. This points to the conclusion that, in agency relationships with correlated information,

facing an agent with reverse U shaped cost makes the screening task more problematic for the

principal than facing an agent with monotonic cost, at odds with the wisdom proper of the

literature on agency problems with countervailing incentives.

To the same conclusion points another, more speciÖc result, which we derive through a

comparison of the case in which the cost is sharp sloping reverse U shaped with the case in

which the cost increases monotonically with type. This latter case arises when the declining

e§ect induced by the opportunity cost is not pronounced enough to countervail the rising e§ect

induced by the production cost. The result is that, in the non-monotonic setting, Örst-best is

implemented in the presence of lower degrees of concavity of the opportunity cost, given an

equal level of the agentís liability. Therefore, non-monotonicity of the cost restricts the family

of cost functions for which the principal attains full e¢ciency.

This paper is Örstly related to the studies on agency problems with countervailing incentives

to misrepresent information. Whereas in the pioneering study of Lewis and Sappington [14]

attention is restricted to the case of a reverse U shaped cost, Maggi and Rodriguez-Clare [16]

and various authors thereafter Önd that the contractual solution changes as the cost takes

di§erent shapes.5 It is thus not surprising that the shape of the cost will play an important

role also in our analysis. Peculiar to our framework is that the shape of the cost a§ects the

choice of a lottery, which cannot be the case in settings without informative signals.

Our paper is also related to the literature on contractual design with ex-post informative

signals and limited liability on the agentís side. Within that literature, in line with Demougin

and Garvie [9], Gary-Bobo and Spiegel [10], and Danau and Vinella [7], we take limited liability

to be represented as a lower bound on the proÖts that can be assigned to the agent in the

various possible contingencies.6 This formalization admits a natural interpretation: it reáects

a commitment of the principal to preserve the agentís Önancial viability, along a widespread

practice. In addition, it enables us to focus on the restrictions that are imposed by the agentís

limited liability on the optimal lottery design, rather than on the trade-o§ between optimal

transfers and trade distortions.7

5Jullien [11] extends the analysis of MRC by relaxing the assumption of full participation and exploring
common values situations in which the private information parameter has a direct impact on the principalís
welfare.

6Unlike in the other two studies cited in the text and in the model here developed, in Gary-Bobo and Spiegel
[10] the ex-post signal is an exogenous shock which a§ects the cost of production. Because of this, in their model
not only the compensation but also the allocation depends on the signal realization. In this respect, their study
comes closer to those about contractual design with correlated information, such as the study of CrÈmer and
McLean [6] who consider an auction context with correlated private information across participants. However,
no substantial di§erence follows in terms of the principalís achievements.

7A di§erent form of limited liability, mirroring the principalís imperfect ability to tax the agent, would
require the transfer to the agent not being too low in any possible state. That case is explored by Demougin
and Garvie [9] and Kessler et al. [12] in models without non-monotonicity.
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1.1 Outline

The reminder of the article is organized as follows. In section 2 we describe the model, we

state the principalís programme and we characterize the Örst-best allocation. Section 3 o§ers

an overview of our analytical approach and main Öndings. The analysis of the lottery design

is developed in section 4. In section 5 we provide conditions under which Örst best is attained

for di§erent shapes of the agentís opportunity cost. In section 6 we discuss the beneÖt that

non-monotonicity grants to the principal in settings with correlated information, relative to

settings without correlated information, as considered by MRC. Section 7 brieáy concludes.

Most mathematical details are relegated to an appendix.

2 The model

A principal contracts with an agent for the provision of q units of some good (or service).

They are both risk neutral.

Consumption of q units of the good yields a gross utility of S (q) : We assume that the

function S ($) is twice continuously di§erentiable and such that S 0 ($) > 0 and S 00 ($) < 0:

Furthermore, S (0) = 0 and the Inadaís conditions are satisÖed.

To be in the trade with the principal and supply q units of the good, the agent incurs a

total cost of C (q; !) = !q + K (!) : The marginal cost ! 2
!
!; !
"
; where ! > ! > 0; captures

the agentís e¢ciency in the production activity. K (!) represents the agentís opportunity cost

of renouncing to other businesses, which depends on e¢ciency. Assuming that K ($) is twice
continuously di§erentiable, we assume that K 0 (!) < 0 for all ! : the less e¢cient that the agent

is in the relationship with the principal, the worse that his outside opportunity is. We also

take K 00 ($) to have a constant sign across types, which will be functional to the exposition of
results below.

Information structure Nature draws ! and the agent observes its realization (his type)

before receiving the contractual o§er. The public beliefs about ! are reáected in the continu-

ously di§erentiable density function f (!) : The associated cumulative distribution function is

denoted F (!) : The agentís marginal cost is correlated with a random signal s (the "state" of

nature). This is hard information and can be included in a legally enforceable contract. For

instance, in regulatory settings the signal can be the behavior or the market performance of

another Örm, which conveys information about production costs. It can also be the outcome

of an audit or performance evaluation. We assume that the signal is drawn from the discrete

support N & f1; ::; ng ; where n ) 3; and publicly observed after the contract has been signed
and the level of output has been chosen (or the output has been delivered). The degree of

correlation between type and signal is commonly known prior to the contractual o§er being

made. It is measured by the probability ps (!) > 0 of observing signal s 2 N conditional on

the type being !: The function ps ($) is twice continuously di§erentiable for all types.
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The contract The Revelation Principle applies and the principal can restrict attention to di-

rect mechanisms in which the agent reports truthfully (or, equivalently, he picks the contractual

option targeted to his type within the menu o§ered by the principal). As the signal is publicly

observed ex post, it can be used to condition the compensation to the agent. For instance,

when a regulator (or public procurer) audits the activity of the regulated Örm (or contractor),

the compensation to the Örm can be made contingent not only on Örmís report (or contractual

choice) but also on the outcome of the audit, which is informative about the Örmís e¢ciency.

Formally, the take-it-or-leave-it o§er is a proÖle of allocations fq (!) ; t (!)g ; 8!; where q (!)
is the quantity an agent of type ! will produce and t (!) & (t1 (!) ; :::; tn (!)) is the vector of

the monetary transfers he will receive in states 1 to n: Considering both the production cost

and the opportunity cost, the proÖt that type !0 obtains when ! is announced and signal s is

realized, is given by e1s (! j!0 ) & ts (!), (!0q (!) +K (!0)) : We let 1s (!) & e1s (! j! ) and denote
the lottery of proÖts designed for an agent of type ! as the vector ! (!) & (11 (!) ; :::; 1n (!)) :
As usual, it is more convenient to consider the proÖts (rather than the transfers) as the decision

variables. The principal rewards the agent in state s if 1s ($) > 0 and punishes him if 1s ($) < 0:
Rewriting e1s (! j!0 ) as

e1s (! j!0 ) = 1s (!) + (! , !0) q (!) +K (!),K (!0) ;

it becomes visible that the payo§ of type !0 includes two components. The Örst is the proÖt this

type receives when it reports ! and signal s is realized. The second is the cost reimbursement

type !0 obtains, net of the cost it incurs to produce the q (!) units of the good recommended by

the principal from type !: Therefore, the expected payo§ of an agent of type !0 who announces

! is given by

Es [e1s (! j!0 )] =
X

s2N

ps (!
0) 1s (!) + (! , !0) q (!) +K (!),K (!0) ; (1)

and includes the expected value of the lottery of proÖts he is faced with and the net cost

reimbursement.

The principalís programme The principalís programme is formulated as follows:

Max
fq(%);!(%);8%g

Z %

%

fS (q (!)), (!q (!) +K (!)), Es [1s (!)]g dF (!)

subject to

Es [1s (!)] ) Es [e1s (!0 j! )] ; 8!; !0; (IC%
0

% )

Es [1s (!)] ) 0; 8!; (PC%)

1s (!) ) ,L; 8!; 8s 2 N: (LLs%)

(IC%
0

% ) is the incentive constraint whereby an agent of type ! has no incentive to report !
0 6= !

(or to pick the contractual option designed for type !0): (PC%) is the ex-ante participation
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constraint which ensures that type ! obtains a non-negative proÖt in expectation. (LLs%) is the

limited liability constraint which ensures that the highest deÖcit the agent is exposed to does

not exceed L > 0 in any state s: The formulation of this constraint mirrors the principalís

commitment to prevent the agent from becoming so Önancially distressed that the activity

must be interrupted, at least as long as the agent does not attempt to conceal information.8

The Örst-best allocation At the Örst-best allocation the quantity is such that S 0(q& (!)) =

!; 8!: Given the properties of the function S ($) ; the Örst-best quantity is positive and unique
for any given value of !; and the function q& ($) is continuous for all values of !: Moreover, the
proÖts are such that all surplus is extracted from any type of agent, namely:

Es[1s (!)] =
X

s2N

ps (!) 1s (!) = 0; 8!: (2)

We will look for conditions under which the principal decentralizes this allocation through the

contract.

The properties of the conditional probabilities In the framework we consider, the con-

ditional probabilities of the signals display the following properties:

p1 (!)

p1 (!
0)

>
ps (!)

ps (!
0)
>
pn (!)

pn (!
0)
; 8!; !0 such that ! ) !0; 8s 6= 1; n (3)

p001 (!) < 0 and p00n (!) < 0; 8!: (4)

The conditions in (3) represent a weaker version of the monotonic likelihood property, which is

standard in the contract-design literature. Here, it is required to hold for any triplet of signals

that includes the two extreme signals 1 and n; it does not need to hold for all possible signals.

Concavity of the conditional probability of some signals, as here imposed by (4) on 1 and n; is

also required in Riordan and Sappington [19] (Corollary 1.4) and Gary-Bobo and Spiegel [10]

(Assumption 1). It is thus not surprising that it will have bite in our model as well. Taken

together, (3) and (4) entail some monotonicity on the expected value of the lottery faced by

all the types that deliver some given report. To illustrate, let us consider again the triplet of

types
&
!'; !; !+

'
and suppose that they all report !: Under (3), the probability of receiving

proÖt 11 (!) is increasing across types !
'; ! and !+: Conversely, the probability of receiving

proÖt 1n (!) is decreasing across types !
'; ! and !+: Moreover, under (4), the proÖt variation

faced by type !' in state 1; as it reports ! rather than truthtelling, is greater than that faced

by type !+ with that same report. Conversely, the proÖt variation faced by type !' in state n

is smaller than that faced by type !+:

8If L = 0; then limited liability constraints boil down to ex-post participation constraints. Looking at that
case would prevent us from studying Örst-best implementation, which is, in that case, beyond reach.
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3 Informal presentation of results

We begin by providing a heuristic presentation of our Öndings. To that end, we begin by

stating the incentive constraint (IC%%0); whereby ! is not an attractive report to type !
0 :

X

s2N

ps(!
0)1s(!

0) )
X

s2N

ps(!
0)1s(!) + (! , !0) q(!) +K (!),K(!0):

The impact of the signals is visible in the terms
P

s2N ps(!
0)1s(!

0) and
P

s2N ps(!
0)1s(!); which

represent the expected value of the lottery faced by type !0; respectively, if it tells the truth and

if it lies. Without signals, each of those terms would be replaced by a single proÖt, namely 1(!0)

and 1(!). The second term in the right-hand side of (IC%%0); namely (! , !
0) q(!)+K (!),K(!0);

represents the di§erence between true and fake cost incurred when the report ! is made. At

Örst-best allocation, (2) holds for !0; and the constraint reduces to

X

s2N

ps(!
0)1s(!) . (!0 , !) q&(!) +K(!0),K (!) : (5)

According to (5), the expected value of the lottery type !0 is faced with, if it reports !; should not

exceed the di§erence between true and fake cost. The value this di§erence takes depends not

only on how !0 compares with ! but also on whether the cost is or not monotonic. Consequently,

the lottery of proÖts to be designed for type ! will also depend on whether the cost is or not

monotonic. This will becomes clearer as we present the two cases of monotonic and non-

monotonic cost here below.

3.1 Monotonic cost

Both here and elsewhere in the study, when the cost is assumed to be monotonic, attention

is restricted to the case in which the cost increases for all types. The reason is that this is

tantamount to the "standard" case considered by the literature on contractual design with

informative signals and limited liability. Formally, in our model: q& (!) +K 0 (!) > 0; 8!:
To analyse (5) with regards to types both below and above !; we take any triplet of types

&
!'; !; !+

'
including ! and such that !' < ! < !+: When type !' reports !; the di§erence

between true and fake cost, namely
)
!' , !

*
q&(!) + K(!') , K (!) ; takes a negative value.

That is, types that exaggerate information gain in cost reimbursement. Hence, the expected

proÖt faced by type !'; if it reports !; must be negative. Under (2), the lottery of type ! should

include at least one positive proÖt (a reward) and at least one negative proÖt (a punishment).

Take such proÖts to be 11 (!) and 1n (!) : With
P

s2N ps
)
!'
*
1s (!) < 0 =

P
s2N ps (!) 1s (!)

and p01 ($) > 0 > p0n (!) ; given (3), it must be the case that 11 (!) > 0 > 1n (!). That is, type
! must be rewarded when the signal that is least likely to be drawn by type !' is realized; it

must be punished when the signal that is the most likely to be drawn by type !' is realized.

Obviously, type !+ is faced with the same proÖts, if it reports !:With those proÖts, the lottery

will come out to be favourable (rather than unfavourable) to type !+; since this type is more
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likely to draw signal 1 than signal n: However, this does not need be an issue. Indeed, when type

!+ reports !; the di§erence between true and fake cost, namely
)
!+ , !

*
q&(!)+K(!+),K (!) ;

takes a positive value. That is, types that understate information lose in cost reimbursement.

Hence, the expected proÖt faced by type !'; if it reports !; can be positive, in turn. This all

yields the following pair of conditions:

X

s2N

ps
)
!'
*
1s (!) < 0 <

X

s2N

ps
)
!+
*
1s (!) :

A lottery with these characteristics can be made su¢ciently unfavourable to type !'; while not

being too favourable to type !+; as long as the gain in cost reimbursement accruing to type

!'; if it reports !; is not too high relative to the loss in cost reimbursement faced by type !+;

following that same report. This requires the cost not being highly concave with respect to

type.

3.2 Non-monotonic cost

To account for the possibility of the cost being non-monotonic with respect to type, we

deÖne b! such that q&(b!) + K 0(b!) = 0; as is usual in the literature on agency problems with

countervailing incentives. In this section, we take b! to exist and to lie in the interior of the
feasible set: b! 2

)
!; !
*
:

Over the two ranges of types identiÖed by b!; the marginal cost has opposite signs that
depend on the speciÖc shape of the total cost. When the cost is U shaped with respect to type,

as represented in graph (i) of Figure 1, q& (!) + K 0 (!) < 0; 8! < b!; and q& (!) + K 0 (!) > 0;

8! > b!: The converse is true when the cost is reverse U shaped, as represented in graph (ii) of
Figure 1. It is thus not surprising that the sign of the cost di§erence in (5) will now depend

both on how !0 compares with ! and on the shape of the total cost. To get a Örst clue on the

consequences this all has in term of lottery design, it is useful to consider that two speciÖc

e§ects are at work thereof.

The Örst e§ect is that the structure of the lottery di§ers across types and, for each type,

it depends on the shape of the cost. Consider, for instance, a U shaped total cost. On the

decreasing side of the curve in graph (i) of Figure 1, type !3 gains in cost reimbursement, if it

reports !1; type !2 loses, instead. Hence, type !3 should face a lottery with negative expected

value, if it reports !1; which further involves that type !2 will rather face a lottery with positive

expected value, if it delivers that same report. The converse occurs with types on the increasing

side of the cost. For instance, type !5 should face a lottery with negative expected value, if it

reports !4; which further involves that type !6 will face a lottery with positive expected value.

It is thus evident that the lottery of a type on the decreasing side of the cost cannot have

the same structure as the lottery of a type on the increasing side of the cost. In addition, for

each given type, the structure of the lottery will also change if the cost is reverse U shaped,

as represented in graph (ii) of Figure 1. Given that gains and losses in cost reimbursement are

reversed between the two sides of the cost curve in that case, the incentives to cheat will be

10



Figure 1: Total cost as a function of type

reversed as well.

The second and more intriguing e§ect is that, for any given type in the interior of the feasible

set, either lower types or higher types may not display monotonic incentives to misrepresent

information. Depending on the shape of the total cost, non-monotonicity may either facilitate

or impose restrictions to the possibility of designing incentive compatible lotteries for some

intermediate types. To clarify, it is useful to look again at the two cases in which the cost is U

shaped and reverse U shaped with respect to type.

Let us Örst consider a U shaped cost. In graph (i) of Figure 1, some of the types above !1
gain in cost reimbursement if they claim !1: Such types are those in the range (!1;b!]; together
with those in the range (b!; h (!1)); for some h (!1) that pins down the type which neither gains
nor loses in terms of cost reimbursement, if it reports !1: When some types above b! do not
gain in cost reimbursement, namely those in the range

!
h (!1) ; !

"
; if this range exists, the

second e§ect is at work. Importantly, this e§ect facilitates the lottery design. First, due to

the countervailing e§ect induced by the opportunity cost, the types above b! that gain in cost
reimbursement if they report !1; gain less than type b!: Hence, the lottery any such type faces
when reporting !1 will be su¢ciently unattractive, if it is so to type b!: Second, the types above
b! that lose in cost reimbursement, if they report !1; have no interest in delivering that report,
since they would then face a lottery with negative expected value, as any other type above !1:

Analogous reasoning applies, mutatis mutandis, to type !4; and the types below b! that may
claim !4:

A di§erent conclusion is reached when the cost is reverse U shaped in that the second e§ect

complicates the lottery design rather than facilitating it. Consider, for instance, type !1 in

graph (ii) of Figure 1. As the lottery of !1 must discourage lower types from exaggerating

11



information, it will have a positive expected value to higher types claiming !1. This is not an

issue as long as types immediately above !1 are concerned, provided those types lose in cost

reimbursement, if they report !1: However, due to the countervailing e§ect triggered by the

opportunity cost, there are types above b! which gain in cost reimbursement, if they report !1.
These are the types in the range

!
h (!1) ; !

"
; if it exists. For instance, one such type might be

!5 in graph (ii) of Figure 1. The lottery of !1 being favorable to those types, they will enjoy

a double beneÖt by claiming !1: In that case, it is impossible for the principal to make the

lottery of type !1 incentive compatible for all the other types, while also retaining all surplus

from type !1: For analogous reason, some types below b! may enjoy a double beneÖt when they
report a type like !4 and, again, it may be impossible to design an e§ective lottery for type

!4: This kind of di¢culty arises with types on either side of the total cost when this cost is

sharp sloping (the opportunity cost is concave). Then, unlike with a U shaped total cost, the

second e§ect may prevent Örst-best implementation. When the total cost is smooth sloping

(the opportunity cost is slightly convex), instead, the second e§ect is not at work and, as with

a U shaped total cost, incentive compatible lotteries can be designed to attain the Örst-best

outcome.

We are now ready to develop the formal analysis and highlight the exact mechanics through

which the two e§ects of non-monotonicity determine the contractual attainments.

4 The lottery design

We proceed as follows. First, we reformulate the agentís incentive constraints to make

it apparent how the properties of the probabilities of the signals a§ect the way in which

the principal can attain incentive compatibility under limited liability. Next, we restate the

principalís programme accordingly and we investigate how the lottery should be structured to

solve it. Lastly, we highlight the speciÖc e§ects of non-monotonicity on the lottery design.

Being based on (2), we obtain an expression of 11 (!) ; which can then be used to derive a new

formulation of (5). Recall that (5) is the incentive constraint whereby ! is not an attractive

report to type !0: Using (3) and taking again the triplet
&
!'; !; !+

'
; the new formulation

speciÖes in the following two conditions, respectively, for !0 = !' and !0 = !+ (details are

provided in Appendix A.1):

1n (!) .
! , !'

,pn(!)
q& (!) +

K(%)'K(%")
%'%"

pn(%
")

pn(%)
, p1(%

")
p1(%)

,
X

s 6=1;n

1s (!)
ps (!)

pn(!)

ps(%
")

ps(%)
, p1(%

")
p1(%)

pn(%
")

pn(%)
, p1(%

")
p1(%)

(6)

1n (!) )
!+ , !
,pn(!)

q& (!) +
K(%+)'K(%)

%+'%
p1(%

+)
p1(%)

, pn(%
+)

pn(%)

,
X

s 6=1;n

1s (!)
ps (!)

pn(!)

p1(%
+)

p1(%)
, ps(%

+)
ps(%)

p1(%
+)

p1(%)
, pn(%

+)
pn(%)

: (7)

Under (6), ! is not an attractive report to lower types; under (7), ! is not an attractive report

to higher types. Joint inspection of (6) and (7) highlights why it is useful to work with this pair

of conditions, instead of dealing with the single incentive constraint. Indeed, this "duplication"
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shows how the proÖt should be chosen in state n for any "intermediate" type ! to attract lies

neither from lower types nor from higher types. The higher that 1n (!) is the more that type

!' is eager to claim !: On the other hand, the lower that 1n (!) is the more that type !
+ is

eager to claim !: Therefore, types !' and !+ are both unwilling to announce ! only if the value

of 1n (!) is set neither too low nor too high. Taking the limit of the right-hand side of (6) and

(7), respectively, as !' ! ! and !+ ! !; we see that the two conditions hold jointly if and

only if:

1n (!) =
q& (!) +K 0 (!) +

P
s 6=1;n 1s(!)ps(!)

,
p01(%)

p1(%)
, p0s(%)

ps(%)

-

,pn(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

- : (8)

This is the state,n proÖt such that any incentives to mimic a neighboring type are eliminated.
Using (8), (6) and (7) are respectively reformulated as follows:

q& (!) +K 0 (!) )
)
! , !'

*
 
q& (!) +

K (!),K
)
!'
*

! , !'

! p01(%)

p1(%)
, p0n(%)

pn(%)

pn(%
")

pn(%)
, p1(%

")
p1(%)

(9)

+
X

s 6=1;n

1s (!) ps (!)

0
p01(!)

p1(!)
,
p0n(!)

pn(!)

10

@
ps(%

")
ps(%)

, p1(%
")

p1(%)

pn(%
")

pn(%)
, p1(%

")
p1(%)

,
p01(%)

p1(%)
, p0s(%)

ps(%)

p01(%)

p1(%)
, p0n(%)

pn(%)

1

A

and

q& (!) +K 0 (!) .
)
!+ , !

*
 
q& (!) +

K
)
!+
*
,K (!)

!+ , !

! p01(%)

p1(%)
, p0n(%)

pn(%)

p1(%
+)

p1(%)
, pn(%

+)
pn(%)

(10)

+
X

s 6=1;n

1s (!) ps (!)

0
p01(!)

p1(!)
,
p0n(!)

pn(!)

10

@
p1(%

+)
p1(%)

, ps(%
+)

ps(%)

p1(%
+)

p1(%)
, pn(%

+)
pn(%)

,
p01(%)

p1(%)
, p0s(%)

ps(%)

p01(%)

p1(%)
, p0n(%)

pn(%)

1

A :

We see that (9) and (10) hold jointly only if

)
!+ , !

* q& (!) + K(%+)'K(%)
%+'%

p1(%
+)

p1(%)
, pn(%

+)
pn(%)

,
)
! , !'

* q& (!) + K(%)'K(%")
%'%"

pn(%
")

pn(%)
, p1(%

")
p1(%)

(11)

.
X

s 6=1;n

1s (!) ps (!)

0

@
ps(%

")
ps(%)

, p1(%
")

p1(%)

pn(%
")

pn(%)
, p1(%

")
p1(%)

,
p1(%

+)
p1(%)

, ps(%
+)

ps(%)

p1(%
+)

p1(%)
, pn(%

+)
pn(%)

1

A :

In the limit, (11) reduces to (9) as !' ! ! and to (10) as !+ ! !: The incentive constraints

can thus be replaced by the local incentive constraint (8), which must hold for all !; together

with (11), which must hold for all triplets
&
!'; !; !+

'
. In what follows, we refer to (11) as to

the global incentive constraint.

Taking this all into account, and provided that the agent retains no surplus to deliver the
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Örst-best quantity, the principalís programme is reformulated as follows:

Max
!(%);8%

Z %

%

(S (q& (!)), C (q& (!) ; !)) dF (!)

subject to

(2) ; (8) ; (11) and (LLs%) :

We now need to understand how the lottery is to be structured for any type ! so that all the

constraints in the programme are satisÖed.

For the time being, we neglect global incentive compatibility and look for the locally incen-

tive compatible lottery under which limited liability constraints are weakest. First take type

! to be such that q& (!) +K 0 (!) > 0: Recall that this is the case of all types when the cost is

monotonically increasing everywhere. To satisfy the local incentive constraint (8), it should be

considered that the types below ! gain in cost reimbursement, if they report !: With that re-

port, such types are less likely to receive 11 (!) than any other proÖt. Therefore, to discourage

them from announcing !; the principal should set 11 (!) to be the highest proÖt of type !; hence

a reward. Under (2), with 11 (!) being a reward, at least one of the remaining proÖts should

be a punishment. In fact, limited liability constraints are weakest if the remaining proÖts are

all punishments, set such that 1s(!) = 1n(!); 8s 6= 1; n: Suppose that, for some given s 6= 1; n;
1s(!) and 1n(!) are not both punishments or, more generally, their values are di§erent. Then,

there is room for relaxing limited liability constraints by adjusting proÖts in such a way that

(8) still holds. For instance, if 1n(!) < 1s(!); then (LLn% ) could be relaxed by raising 1n(!):

In turn, 1s(!) should be decreased to preserve local incentive compatibility, and 11 (!) should

be adjusted to also secure surplus extraction. The locally incentive compatible lottery which

relaxes limited liability constraints to the utmost is thus derived. This lottery, denoted !) (!) ;

is structured as follows (see Appendix A.2 for mathematical details):

11 (!) = (q& (!) +K 0 (!))
1, p1(!)
p01(!)

(12)

1s (!) = (q& (!) +K 0 (!))
p1(!)

,p01(!)
; 8s 6= 1: (13)

Next take type ! to be such that q& (!) +K 0 (!) < 0. To satisfy (8), which is now conveniently

reformulated in terms of 11 (!) ; rather than of 1n (!) ; it should be considered that the types

which might want to report ! are those above ! in this case. Under (3), those types are less

likely to draw signal n than any other signal. Hence, n is the state in which type ! should be

assigned the highest proÖt (a reward). In all other states, it should face an equal punishment,

instead. This is the incentive compatible lottery which weakens limited liability constraints to
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the utmost. Formally, the lottery, denoted !* (!) ; is composed as follows (see Appendix A.3):

1n (!) = (q& (!) +K 0 (!))
1, pn (!)
p0n (!)

(14)

1s (!) = (q& (!) +K 0 (!))
pn(!)

,p0n(!)
; 8s 6= n: (15)

Lemma 1 (LLs%) is satisÖed for all s 2 N if and only if it is satisÖed for s = n by lottery

!) (!) ; when ! is such that q& (!) +K 0 (!) > 0; and for s = 1 by lottery !* (!) ; when ! is such

that q& (!) +K 0 (!) < 0:

This result clariÖes that it is not possible for the principal to design a locally incentive

compatible lottery that satisÖes limited liability constraints in any possible contingency, if

!) (!) and !* (!) fail to do so, respectively, for ! such that q& (!) +K 0 (!) > 0 and ! such that

q& (!)+K 0 (!) < 0: Nonetheless, one should not conclude that the limited liability constraint is

necessarily binding at least in some state when those lotteries are used. Actually, depending on

the magnitude of L; it may be the case that (LLs%) is slack for any s: Under this circumstance,

insisting on those lotteries restricts the possibility, for the principal, of taking advantage of

correlated information to enhance contracting. This suggests that there might be scope for

adopting a di§erent lottery of proÖts, if !) (!) and !* (!) fail to satisfy the global incentive

constraint (11).

Unlike the local incentive constraint (8), the global incentive constraint (11) is relaxed to

the utmost when both the proÖt assigned in state 1 and the proÖt assigned in state n; rather

than only one of them, are set to di§er from the proÖt assigned in all the other states. Indeed,

the principal can take greater advantage of the correlation between signal and type, if she

saturates (LLs%) ; 8s 6= 1; n; and then uses the proÖt in state n to satisfy (8) and adjusts the
proÖt in state 1 to retain all surplus. For any type ! this lottery, to be denoted !+ (!) ; looks

as follows (see Appendix A.4):

11 (!) =
q& (!) +K 0 (!), Lp

0
n(%)
pn(%)

p1 (!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

- , L (16)

1n (!) =
L
p01(%)

p1(%)
, (q& (!) +K 0 (!))

pn(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

- , L (17)

1s (!) = ,L; 8s 6= 1; n: (18)

Lemma 2 For any !; there exists a lottery of proÖts for such that (11) is satisÖed jointly with
(LLs%) ; 8s 2 N; if and only if this is the case of lottery !+ (!) :

Noticeably, unlike the proÖts previously characterized (recall Lemma 1), those in lottery

!+ (!) apply regardless of the sign of q& (!)+K 0 (!) ; for the following reason. As far as types in

a neighborhood of ! are concerned, the incentives to report ! are relevant in only one direction.

That is, either only types immediately below ! might be attracted by the report !; or only types
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immediately above ! might be attracted by that report. By contrast, when it comes to consider

more distant types, the incentives to report ! are relevant both downwards and upwards. Hence,

the global incentive constraint must be veriÖed for types both below and above !: To see what

this all entails, Örst suppose that ! is such that q& (!)+K 0 (!) > 0: Then, the types which might

want to report ! are those immediately below !; which would gain in cost reimbursement. In

this case, it is beneÖcial to reward type ! in state 1 because signal 1 is least likely to be drawn

by those types. Next suppose that ! is such that q& (!) + K 0 (!) < 0: Then, the types which

might want to report ! are those immediately above !: It is now beneÖcial to reward type !

in state n because signal n is least likely to be drawn by those types. In substance, proÖts in

states 1 and n are conveniently chosen to satisfy the local incentive constraint jointly with (2)

because one signal between 1 and n is least likely to be drawn by any type which might have

an incentive to report !: Once this is done, it remains to set the other proÖts in such a way

that the global incentive constraint (11) is satisÖed as well.

In deÖnitive, depending on how stringent the local incentive constraint is, the contractual

o§er will include one of the lotteries !) (!) and !+ (!) for ! such that q& (!) +K 0 (!) > 0; and

one of the lotteries !* (!) and !+ (!) for ! such that q& (!) +K 0 (!) < 0.

4.1 The e§ects of non-monotonicity on the lottery choice

To explain how non-monotonicity of the cost a§ects the lottery choice, we Örst return to

the monotonic case, focusing again on a positive marginal cost for all types. Recall that in our

model this is the case when q& (!) + K 0 (!) > 0; 8!: From previous lemmas we deduce that,

in this case, the principal should choose between !) (!) and !+ (!) : As !) (!) is the locally

incentive compatible lottery which relaxes limited liability constraints to the utmost (Lemma

1), it should be chosen when limited liability is the main concern. In turn, as !+ (!) is the

lottery which relaxes global incentive constraints to the utmost under limited liability (Lemma

2), it is preferable when the main concern is global incentive compatibility, and limited liability

is not too tight. Therefore, the choice between !) (!) and !+ (!) depends on how concerning

limited liability and global incentive compatibility are.

To examine the lottery choice in depth, it is useful to have a look at the way in which the

use of lotteries helps the principal extract surplus. By announcing !; type !' gains an amount

of
)
! , !'

*
q& (!) +K (!),K

)
!'
*
in terms of cost reimbursement but it also incurs a penalty

equal to the expected value of the lottery, which is negative:

X

s

1s (!) ps
)
!'
*
= 1n (!)

X

s 6=1

ps (!)

0
ps(!

')

ps(!)
,
p1(!

')

p1(!)

1

= 1n (!)
p1(!), p1(!')

p1(!)
:

On the other hand, by announcing !; type !+ loses an amount of
)
!+ , !

*
q& (!)+K

)
!+
*
,K (!)

in terms of cost reimbursement but it also obtains a gain equal to the expected value of the
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lottery, which is now positive:

X

s

1s (!) ps
)
!+
*
= 1n (!)

X

s 6=1

ps (!)

0
ps(!

+)

ps(!)
,
p1(!

+)

p1(!)

1

= 1n (!)
p1(!), p1(!+)

p1(!)
:

With p1 ($) being concave under (4), the principal can use !) (!) if the ratio between the
penalty incurred by type !' and the gain obtained by type !+ in terms of lottery is greater

than the ratio between the gain obtained by type !' and the penalty incurred by type !+ in

terms of cost reimbursement. This is the case when the following condition is satisÖed:

q& (!) +
K(%)'K(%")

%'%"

q& (!) + K(%+)'K(%)
%+'%

.
p1(%)'p1(%")

%'%"

p1(%
+)'p1(%)
%+'%

: (19)

Under (19), there exists a negative value of 1n (!) such that neither type !
' nor type !+ Önds

it convenient to announce !. When (19) does not hold but the limited liability constraints are

not saturated, the principal should renounce to !) (!) in favour of !+ (!) : This would enable

the principal to ináict higher punishments and, hence, to relax the conáict between upward

and downward incentive constraints to the utmost.

Let us now turn to the case in which the cost is non-monotonic with respect to type. Recall

that the marginal cost q& (!) + K 0 (!) is now positive for all ! on one side of b! and negative
for all ! on the other side. We identify two speciÖc e§ects of non-monotonicity on contractual

design.

First, as regards types such that q& (!) +K 0 (!) < 0 (decreasing cost), the principal has to

choose between !* (!) and !+ (!) (rather than between !) (!) and !+ (!)) because those types

gain in cost reimbursement, if they understate (rather than overstating) information. Thus,

the condition under which upward and downward incentive constraints are jointly satisÖed for

any triplet
&
!'; !; !+

'
is speciÖed as follows:

pn(%)'pn(%")
%'%"

pn(%
+)'pn(%)
%+'%

.
q& (!) +

K(%)'K(%")
%'%"

q& (!) + K(%+)'K(%)
%+'%

: (20)

When (20) holds, there exists a negative value of 11 (!) such that ! is an attractive report

neither to type !' nor to type !+. Once again, when (20) fails to hold and provided that limited

liability constraints are not saturated, the principal should rather rely on !+ (!) : Overall, the

choice is between !) (!) and !+ (!) for ! such that q& (!) +K 0 (!) > 0 and between !* (!) and

!+ (!) for types such that q& (!) +K 0 (!) < 0: As shown by MRC, it is the shape of K ($) that
determines the ranges of types with increasing and decreasing cost. In our case, the shape

of K ($) determines whether !) ($) or !* ($) should be used for the types in the two ranges,
provided that (19) and (20) hold.
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Second, whereas with a monotonic cost all types below ! gain in cost reimbursement, if they

pretend !; and all types above ! lose instead, this may not be the case with a non-monotonic

cost. To see this, it is useful to deÖne h (!) such that:

q& (!) +
K (!),K (h (!))

! , h (!)
= 0: (21)

That is, h (!) is the type which neither gains nor loses in terms of cost reimbursement, if it

reports !: Importantly, h (!) may or may not coincide with some type in the interior of the

feasible set. When h (!) 2
)
!; !
*
the incentives to misrepresent information are not monotonic

across all types below ! and across all types above !: First take ! such that q& (!)+K 0 (!) > 0: By

announcing !; type !+ loses in cost reimbursement if !+ > h (!), whereas it gains if !+ < h (!).

Take now q& (!)+K 0 (!) < 0: By announcing !; type !+ incurs a penalty in cost reimbursement

if !+ < h (!) and a gain if !+ > h (!). Similar considerations can be made for types !'. This

e§ect imposes restrictions on the design of incentive compatible lotteries. For instance, when

q& (!)+K 0 (!) < 0 a lottery designed to extract the gain in cost reimbursement from types below

! may attract lies from types above h (!), which gain in both cost reimbursement and lottery

by announcing !. To ascertain whether all types below (above) ! get a bonus by reporting !;

or they all lose, it is necessary to assess how h (!) compares with !: The next result shows that

this is related to the shape of the cost (the proof is in Appendix B).

Lemma 3 If either K 00 (!) < 0 or K 00 (!) ) , (q& (!))0 ; 8!; then h (!) > ! if and only if ! < b!:
If 0 < K 00 (!) < , (q& (!))0 ; 8!; then h (!) < ! if and only if ! < b!:

The various cases identiÖed by the lemma are better understood by looking at the graphs

in Figure 4.1. In each graph, the thick line represents q& (!) +K 0 (!) as a function of !: Each

of the two dashed lines represents q& (!) + K(%)'K(x)
%'x as a function of x 2

!
!; !
"
for some given

value of !; taken to be !1 < b! for the upper line and !2 > b! for the other. These are the values
of ! at which the thick line and each of the two dashed lines cross. The values of x at which

the dashed lines cross the horizontal axis are h (!1) and h (!2) : Graph (i) shows that when the

opportunity cost is concave, by reporting !1 < b!; any type x < !1 and any type x 2 (!1; h (!1))
gains in cost reimbursement because q& (!1) +

K(%1)'K(x)
%1'x

> 0 for all types in those ranges; by

contrast, any type x > h (!1) loses in cost reimbursement because q& (!1) +
K(%1)'K(x)

%1'x
< 0: By

reporting !2 > b!; any type x < h (!2) gains because q& (!2) + K(%2)'K(x)
%2'x

> 0; whereas any type

x > h (!2) ; whether below or above !2; loses because q& (!2) +
K(%2)'K(x)

%2'x
< 0: Graphs (ii) and

(iii) are interpreted in a similar manner, mutatis mutandis.

Taking the two e§ects together, it is not surprising that the shape of K ($) determines the
principalís contractual attainments, which we now turn to present.
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5 Conditions for Örst-best implementation

5.1 K ($) convex

When the opportunity cost is convex, regardless of the exact degree of convexity, it is not

an issue for the principal to attain global incentive compatibility. This Önding is formalized

here below (and proved in Appendix C).

Lemma 4 If K 00 ($) ) 0; then (11) is satisÖed 8!:

It follows directly from the lemma that the condition for global incentive compatibility is

weakest with either !) (!) or !* (!) ; depending on the sign of the marginal cost and, hence,

on the shape of the total cost.

First take K ($) to be slightly convex
)
0 . K 00 ($) < , (q& ($))0

*
; entailing that the total cost

is reverse U shaped with respect to type. We saw that non-monotonicity of the cost induces

two potential e§ects on contractual design. However, the second e§ect is not at work in this

case. Take any intermediate type !: As the marginal opportunity cost varies little with type,

all types below ! gain in cost reimbursement, if they report !; whereas all types above ! lose.

Consider, for instance, ! < b! and some type !+ above !: If !+ < b!; then type !+ loses in
cost reimbursement, if it reports !; provided the total cost is increasing for both ! and !+: If

!+ > b!; instead, then type !+ is penalized in cost reimbursement over the range (b!; !+); where
the marginal gain in opportunity cost is lower than the marginal loss in production cost; it

obtains a prize in cost reimbursement over the range (!;b!); where the converse occurs. With
K ($) slightly convex, the marginal e§ect associated with the opportunity cost is small, hence
so is the prize in cost reimbursement as well. Therefore, type !+ incurs a net penalty, if it

claims !; as is the case if the total cost increases for all types. Formally, h (!) does not lie

within the set of feasible types. Being based on a similar argument, one can explain why, for

any ! > b!; types below ! are all penalized in cost reimbursement, if they report !; even if the
total cost is increasing. Ruled out the second e§ect, it remains to verify that (19) is satisÖed
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for all ! < b! and (20) for all ! > b!: One can easily check that this is true, indeed, given the
convexity of K ($) and the concavity of p1 ($) and pn ($) according to (4): As already explained,
under these circumstances, !) (!) and !* (!) are the most e§ective lotteries at extracting any

gains in cost reimbursement, respectively, from types with increasing and decreasing cost.

Next take K ($) to be highly convex (K 00 ($) > , (q& ($))0); entailing that the total cost is U
shaped with respect to type. Then, the task of screening types is even easier for the principal.

Consider again ! < b! and some type !+ > !: If !+ < b!; then, obviously, type !+ obtains a prize
in cost reimbursement, if it reports !; because the marginal gain in production cost exceeds the

marginal loss in opportunity cost. If !+ > b!; instead, two contrasting e§ects are again to be
considered, as with K ($) slightly convex. Particularly, in this case, type !+ obtains a prize in
cost reimbursement over the range (!;b!); where the marginal gain in production cost exceeds
the marginal loss in opportunity cost; it is penalized over the range (b!; !+); where the converse
occurs. For high types, such that !+ > h (!) ; the loss induced by the opportunity cost is

su¢ciently high that reporting ! yields a net penalty in cost reimbursement. Therefore, lottery

!* (!) ; as designed to discourage types in the range (!; h (!)] from claiming !; is a fortiori

e§ective with types in the range
)
h (!) ; !

"
; provided those types lose in cost reimbursement,

if they announce !: Analogously, when ! > b!; the lottery !) (!) is especially e§ective at
discouraging types in the range [!; h (!)) from pretending !; provided those types lose in cost

reimbursement, if they announce !: The following result is obtained (the proof is in Appendix

D).

Proposition 1 Assume that K 00 ($) ) 0: First best is implemented if and only if:

(q& (!) +K 0 (!))
p1(!)

p01(!)
. L; 8! such that q& (!) +K 0 (!) > 0 (22)

(q& (!) +K 0 (!))
pn(!)

p0n(!)
. L; 8! such that q& (!) +K 0 (!) < 0: (23)

This result compares with Proposition 2 in Gary-Bobo and Spiegel [10]. They assume that

the agentís cost is increasing and convex for all types. In that case, in spite of the agent being

protected by limited liability, Örst best is at hand, provided that local incentive constraints

hold. When the cost is non-monotonic, but still convex with respect to type, there is only one

novel aspect to that Önding: local incentive compatibility requires targeting a di§erent lottery

to the types with decreasing cost.

5.2 K ($) concave

We now take K 00 ($) < 0: Although the total cost is reverse U shaped as in the case of

K ($) slightly convex, the e§ect of variations in the opportunity cost is now important and

the second e§ect may be at work. When it is so, unlike in the case of K ($) highly convex, it
worsens contracting, imposing restrictions on Örst-best implementation. Recalling the example

with ! < b! and !+ > b!; the prize in cost reimbursement accruing to type !+ over the range
(!;b!); if it announces !; is not necessarily lower than the penalty incurred over the range (b!; !+):
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Actually, this is not the case whenever !+ belongs to the range
)
h (!) ; !

"
; if this range exists.

Then, !) (!) fails to be incentive compatible because, by claiming !; the types in that range

would gain in cost reimbursement and, in addition, they would also face a favorable lottery.

Analogously, the lottery !* (!) assigned to ! > b! is not incentive compatible for the types in
the range [!; h (!)) ; if this range exists, because such types would all obtain a double beneÖt

by reporting !: In either case, the principal extract all surplus without triggering lies, only

if !+ (!) is adopted. The following lemma summarizes these results (see Appendix E for the

proof).

Lemma 5 Suppose that K 00 ($) < 0:
(i) ! < b! and h (!) =2

)
!; !
*
: Full surplus extraction is attained if and only if this is the case

with lottery !) (!) when (19) holds, and with lottery !+ (!) otherwise.

(ii) ! > b! and h (!) =2
)
!; !
*
: Full surplus extraction is attained if and only if this is the

case with lottery !* (!) when (20) holds, and with lottery !+ (!) otherwise.

(iii) h (!) 2
)
!; !
*
: Full surplus extraction is attained if and only if this is the case with

lottery !+ (!) :

In substance, !+ (!) is more e§ective than a lottery yielding the same punishment in all

states but one not only when K ($) is too concave to have (19) or (20) satisÖed, but also
when non-monotonicity of the total cost makes global incentive compatibility di¢cult to attain

(formally, when h (!) 2
)
!; !
*
):We now derive conditions under which Örst best is implemented,

according to the optimal lotteries to be targeted to di§erent ranges of types for di§erent degrees

of concavity of K ($) (mathematical details are found in Appendix F).

Proposition 2 Assume that K 00 ($) < 0: First best is implemented if and only if either:
(i) (19) and (22) hold for ! . b!; (20) and (23) hold for ! ) b!; and h (!) =2

)
!; !
*
;

or

(ii) the following condition holds for all triplets
&
!'; !; !+

'
:

q& (!) + K(%)'K(%")
%'%"

p1(%)'p1(%")
(%'%")p1(%)

, pn(%)'pn(%")
(%'%")pn(%)

,
q& (!) + K(%+)'K(%)

%+'%
p1(%

+)'p1(%)
(%+'%)p1(%)

, pn(%
+)'pn(%)

(%+'%)pn(%)

(24)

. L
X

s 6=1;n

ps(!)

0

@
p1(%

")
p1(%)

, ps(%
")

ps(%)

p1(%
")

p1(%)
, pn(%

")
pn(%)

,
p1(%

+)
p1(%)

, ps(%
+)

ps(%)

p1(%
+)

p1(%)
, pn(%

+)
pn(%)

1

A :

Proposition 2 enriches Proposition 1 in Danau and Vinella [7] by considering also the case in

which the agentís total cost is non-monotonic with respect to type. To highlight what changes

with a non-monotonic cost, we Örst restate that result in the context of this study.

Corollary 1 Assume that K 00 ($) < 0 and that q& (!)+K 0 (!) > 0; 8!: First best is implemented
if and only if either (19) and (22) are jointly satisÖed, or (19) is violated and (24) is satisÖed.

When the cost increases with type everywhere the principal should adopt either lottery

!) (!) ; which is most likely to satisfy limited liability constraints, or lottery !+ (!) ; which is
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most likely to avoid conáicts between upward and downward incentive constraints. The former

is preferable with a mild concavity of the opportunity cost, the latter with a more pronounced

concavity. The choice between !) (!) and !+ (!) explains the alternative conditions required in

Corollary 1. The result in Proposition 2 is similar in this respect. Actually, the choice between

lottery !) (!) and !+ (!), and that between !* (!) and !+ (!), depend on the degree of concavity

of K ($) : This explains why in Proposition 2 there are two pairs of relevant conditions, namely
(22) and (19) if ! < b!; and (23) and (20) if ! > b!:
There are nonetheless two essential di§erences between Proposition 2 and Corollary 1. In

the framework of Proposition 2, !+ (!) is more likely to be preferable to !) (!) and !* (!)

when the restrictions imposed by the non-monotonicity of the cost are severe (formally, when

h (!) 2
)
!; !
*
); an issue which is of course absent in the context of Corollary 1. Less evident is

that, if lottery !+ (!) is adopted, then the relevant condition (24) is not equally tight when the

cost is monotonic and when it is not. As stated in the next corollary, for some intermediate

degree of concavity ofK ($) ; the principal attains the Örst-best outcome (through lottery !+ (!))
when the cost increases for all types ((24) holds) but this is not necessarily the case otherwise

(the proof is in Appendix G).

Corollary 2 Assume that K 00($) < 0:
(i) Suppose that q& (!)+K 0 (!) > 0; 8!; and that K($) is "su¢ciently little concave" to have

q& (!) +K 0 (x)

q& (!) + K(%)'K(x)
%'x

.
p01(x)

p1(%)
, p0n(x)

pn(%)

p1(%)'p1(x)
(%'x)p1(%)

, pn(%)'pn(x)
(%'x)pn(%)

; if x < ! (25)

q& (!) +K 0 (x)

q& (!) + K(%)'K(x)
%'x

)
p01(x)

p1(%)
, p0n(x)

pn(%)

p1(%)'p1(x)
(%'x)p1(%)

, pn(%)'pn(x)
(%'x)pn(%)

; if x > !: (26)

Then, (24) holds for all triplets
&
!'; !; !+

'
:

(ii) Suppose that q& (!)+K 0 (!) > 0; 8! < b!; and q& (!)+K 0 (!) < 0; 8! > b!; and that K($)
is "su¢ciently little concave" that

1. (25) holds if either x > ! and x > h (!) or x < ! and x < h (!) ;

2. (26) holds if h (!) < x < ! or ! < x < h (!) :

Then, (24) holds for all triplets
&
!'; !; !+

'
if and only if

q& (!) +K 0 (!)
p01(%)

p1(%)
, p0n(%)

pn(%)

. L
X

s 6=1;n

ps(!)

0

@
p01(%)

p1(%)
, p0s(%)

ps(%)

p01(%)

p1(%)
, p0n(%)

pn(%)

,
p1(h(%))
p1(%)

, ps(h(%))
ps(%)

p1(h(%))
p1(%)

, pn(h(%))
pn(%)

1

A ; if ! < b! (27)

q& (!) +K 0 (!)
p01(%)

p1(%)
, p0n(%)

pn(%)

) L
X

s 6=1;n

ps(!)

0

@
p01(%)

p1(%)
, p0s(%)

ps(%)

p01(%)

p1(%)
, p0n(%)

pn(%)

,
p1(h(%))
p1(%)

, ps(h(%))
ps(%)

p1(h(%))
p1(%)

, pn(h(%))
pn(%)

1

A ; if ! > b!. (28)

The corollary presents results for the two cases of monotonic cost (case (i)) and non-

monotonic cost (case (ii)): A common feature of the two cases is that the bonus in cost reim-
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bursement, which the agent can appropriate by mimicking a type "distant" from the true type,

is lower the less concave that the opportunity cost is. Thus, as long as the concavity of K($)
is su¢ciently mild, correlated information is a powerful tool to make such a lie unproÖtable.

In either case, it follows that lotteries can be used to extract the associated beneÖt without,

yet, attracting lies from other types which could rather gain from the lottery. However, by

comparing the two cases, it emerges that the Örst-best allocation is at reach for di§erent de-

grees of concavity of K($):Whereas in case (i) it is not complicated to ensure that upward and
downward incentive constraints are jointly satisÖed, di¢culties can arise in case (ii) : To see

this, Örst consider ! < b! and suppose that the principal designs a lottery for type ! in such
a way that there is no lower type !' which obtains any beneÖt, if it announces !: Then, one

cannot take for granted that such a lottery will also be unattractive to type !+: For instance,

if !+ > b!; then, by reporting !, type !+ might gain in both lottery and cost reimbursement,
provided that the total cost decreases for types in (b!; !+): In a similar fashion, when ! > b!
a lottery designed for type ! in such a way that it is unattractive to type !+; may end up

attracting some type !' such that !' < b! < !. It follows that when the total cost is sharp

sloping reverse U shaped, contractual e¢ciency is at reach for lower degrees of concavity of the

opportunity cost than in the monotonic case.

Corollary 2 is also instructive about the level of liability which is required to attain e¢ciency

when the total cost is reverse U shaped rather than monotonic. First consider the monotonic

case and take (25) and (26) to be satisÖed. Then, the required level of liability is pinned down

by (22) and (23). Recall that these are the conditions under which the principal can construct a

locally incentive compatible lottery which complies with the limited liability constraints. Global

incentive compatibility (as expressed by (25) and (26)) is not related to limited liability, instead.

Next consider a reverse U shaped cost and take (25) and (26) to be violated. Then, Örst-best

implementation depends on whether or not it is possible to have (27) and (28) satisÖed. As

these conditions depend on L; it is apparent that, unlike with a monotonic cost, the possibility

of attaining global incentive compatibility is now related to the magnitude of the deÖcits the

agent can sustain. Moreover, global incentive compatibility (as now expressed by (27) and (28))

imposes more severe restrictions than local incentive compatibility, as the following corollary

states (see Appendix H for the proof).

Corollary 3 Condition (27) is tighter than (22) : Condition (28) is tighter than (23).

From Corollary 3 we deduce that a greater liability is required for the Örst-best allocation

to be implemented with a sharp sloping reverse U shaped cost (case (ii) of Corollary 2) than

with a monotonic cost (case (i) of Corollary 2). Provided in the former case it is more di¢cult

to make "distant" types unattractive reports for the reasons previously explained, a greater

risk exposure of the agent is necessary for the principal to be able to take enough advantage

of the correlation between type and signal.
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6 Discussion

We now clarify how our study is related to that of MRC. To that end, it is useful to recall

that, in their setting without informative signals, the incentive constraint whereby ! is not an

attractive report to any type !0 reduces to

1 (!0) ) 1 (!) + (! , !0) q (!) +K (!),K (!0) ; 8!0 6= !; (29)

where, obviously, lotteries do not appear. There are essentially two cases to consider out of the

analysis of MRC. We brieáy review them below, discussing how useful non-monotonicity is to

the principal when correlated information is available, relative to situations in which it is not.

1: K 00 ($) > , (q& ($))0 From the analysis of MRC it emerges that, in this case, because the

marginal cost with respect to type is di§erent from zero (q& (!) + K 0 (!) ? 0); the principal

needs to concede information rents to (nearly) all types and distort quantities accordingly to

contain those rents. This is in line with the classical result obtained by Byron and Myerson

[3] in a model with monotonically increasing cost. However, unlike in that model, in MRC

the incentives to cheat are not systematic across types in that the types below and above
b! 2

)
!; !
*
display opposite incentives. Furthermore, the incentives of all but the extreme types

are strong when the countervailing e§ect induced by the opportunity cost is pronounced and,

hence, the marginal opportunity cost is high. Being based on these results, it is di¢cult to

conclude whether, in general, the second-best contractual attainments are closer to the Örst-

best benchmark when the agentís cost is monotonic or, rather, when it is U shaped. In our

setting with correlated information, we could establish that, regardless of whether the cost is

monotonic or U shaped, the principal is able to design incentive compatible lotteries which

extract all surplus from the agent, at least as long as his liability is not too little. That is,

the principal implements Örst best in both situations, and one does not face the di¢culty of

assessing under what cost features the contractual attainments are closer to the respective

Örst-best benchmarks.

2: K 00 ($) < , (q& ($))0 In this case, information rents and output distortions reáect the fact

that, unlike with a monotonically increasing cost, high types have incentives to understate

information. MRC distinguish situations in which the marginal opportunity cost increases

smoothly (0 . K 00 ($) < , (q& ($))0) from situations in which it decreases with type (K 00 ($) < 0):
In the former case, incentives to cheat are generally weaker, and the principal is able to retain

all surplus from a bunch of intermediate types, which display the weakest incentives. By

contrast, in the latter case, all types but b! obtain an information rent. This suggests that
contracting is more e¢cient when the opportunity cost is slightly convex rather than concave.

Less clear is whether the principal is better o§ when the agentís cost is reverse U shaped rather

than monotonic. Assuming that K ($) is concave, Lewis and Sappington [14] demonstrate that
countervailing incentives enhance contracting. However, that result is derived in a speciÖc

24



example and it is di¢cult to assess its generality. Our analytical framework enables us to be

more conclusive, in that respect, with regards to environments with ex-post informative signals.

We establish that the countervailing e§ect on incentives associated with the opportunity cost,

when this is concave, imposes contractual restrictions and, unlike with di§erent shapes ofK ($) ;
Örst-best implementation may not be at reach. We can thus conclude that when the total cost

is reverse U shaped and sharp sloping (K ($) is concave), in our framework, non-monotonicity
is unfavorable to the principal, at odds with the conclusion Lewis and Sappington [14] draw in

their example without signals.

7 Conclusion

We investigated Örst-best implementation in a principal-agent model with correlated infor-

mation in which the agentís cost is non-monotonic with respect to type, as in the literature on

countervailing incentives. We showed that constructing incentive compatible lotteries under

limited liability is a trickier task as compared to situations in which the cost is monotonic,

instead. Moreover, when the cost is reverse U shaped Örst best is implemented under more

restrictive conditions than with a monotonic cost. Interestingly, this is at odds with settings

without informative signals, in which, as Lewis and Sappington [14] - [15] suggest, the principal

may want to create or reinforce countervailing incentives to enhance contracting.

We highlighted how the features of the optimal lottery are tied, on the one hand, to the

speciÖc type of the agent and, on the other, to the shape of the opportunity cost faced by the

agent in the trade with the principal. Unlike in settings without correlated information, in

our framework the principalís contractual attainment (namely, whether or not she implements

Örst best) only depends on how concave the opportunity cost is with respect to type, given

the agentís liability. However, like in those settings, whether the opportunity cost is highly

convex, slightly convex, or concave is critical to the optimal contractual design. Considering

the large variety of real-world agency relationships characterized by non-monotonicities of the

kind represented in our model, it is important to gain a full understanding of the optimal

lottery design for practical use in those environments when correlated information is available.

Whereas we focused on Örst-best implementation, a natural observation would be that a

full-áedged analysis would require looking at second-best contractual design as well. In fact,

this exercise might be lengthy and tedious but not particularly insightful. On the one hand, the

standard Örst-order approach is unlikely to be applicable with a continuum of types in that the

contractual allocation may not be di§erentiable, a concern already expressed in previous studies

(see Kessler et al. [12], for instance). On the other hand, even if the technical complications

are addressed, one would expect the second-best solution to display similar features to the

solution characterized by MRC, up to some enhancements in the e¢ciency of the contractual

allocation as induced by the introduction of lotteries and depending on the intensity of the

correlation between signal and type. This all motivated us to restrict attention to Örst-best

implementation.
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A The lottery design

A.1 Derivation of (6) and (7)
Using (2), we rewrite (5) as

(! , !0) q&(!) +K (!),K (!0) .
nX

s=1

1s(!)(ps(!), ps (!0)): (30)

From (2) we also obtain the following expression of 11 (!) :

11 (!) = ,
nX

s=2

1s (!)
ps(!)

p1(!)
:

Replacing in (30) we obtain a formulation without 11 (!) ; namely:

(! , !0) q&(!) +K (!),K (!0)

.
X

s 6=1;n

1s (!) ps (!)

0
p1 (!

0)

p1(!)
,
ps (!

0)

ps(!)

1
+ 1n (!) pn(!)

0
p1 (!

0)

p1(!)
,
pn (!

0)

pn(!)

1
;

which is equivalent to

1n (!) pn(!)

0
p1 (!

0)

p1(!)
,
pn (!

0)

pn(!)

1
(31)

) (! , !0) q&(!) +K (!),K (!0),
X

s 6=1;n

1s (!) ps (!)

0
p1 (!

0)

p1(!)
,
ps (!

0)

ps(!)

1
:

First take !0 = !' < !: Then, dividing both sides of (31) by pn(!)
0
pn(%")
pn(%)

,
p1(%")
p1(%)

1
; which is

positive given (3), we obtain (6). Next take !0 = !+ > !: Then, dividing both sides of (31) by

pn(!)

0
p1(%+)
p1(%)

,
pn(%+)
pn(%)

1
; which is positive given (3), we obtain (7).

A.2 Derivation of (12) and (13)
Using 1s (!) = 1n (!) ; 8s 6= 1; n; we rewrite (8) as

1n (!) =
q& (!) +K 0 (!) + 1n (!)

P
s 6=1;n ps(!)

,
p01(%)

p1(%)
, p0s(%)

ps(%)

-

,pn(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

- ;

which further becomes

,1n (!) pn(!)
0
p01(!)

p1(!)
,
p0n(!)

pn(!)

1
= q& (!) +K 0 (!) + 1n (!)

X

s 6=1;n

ps(!)

0
p01(!)

p1(!)
,
p0s(!)

ps(!)

1
:

27



Regrouping terms with 1n (!) yields

, (q& (!) +K 0 (!)) = 1n (!)

"
pn(!)

0
p01(!)

p1(!)
,
p0n(!)

pn(!)

1
+
X

s 6=1;n

ps(!)

0
p01(!)

p1(!)
,
p0s(!)

ps(!)

1#

= 1n (!)
X

s 6=1

ps(!)

0
p01(!)

p1(!)
,
p0s(!)

ps(!)

1

= 1n (!)

 
p01(!)

p1(!)

X

s 6=1

ps(!),
X

s 6=1

p0s(!)

!
:

Using
P

s 6=1 ps(!) = 1, p1(!) and
P

s 6=1 p
0
s(!) = ,p01(!); we rewrite

, (q& (!) +K 0 (!)) = 1n (!)

0
p01(!)

p1(!)
, p01(!) + p

0
1(!)

1

= 1n (!)
p01(!)

p1(!)
:

Rearranging and recalling that 1s (!) = 1n (!) ; 8s 6= 1; n; (13) is obtained.
Replacing (13) in 11 (!) = ,

P
s 6=1 1s (!)

ps(%)
p1(%)

yields

11 (!) = (q
& (!) +K 0 (!))

X

s 6=1

ps (!)

p01 (!)
:

Because
P

s 6=1 ps(!) = 1, p1(!); (12) is obtained.

A.3 Derivation of (14) and (15)
The procedure is similar to that followed to derive (12) and (13), except that (2) is now

used to obtain an expression of 1n (!) (rather than of 11 (!)) and the local incentive constraint
is rewritten in terms of 11 (!) (rather than of 1n (!) ; as in (8)). SpeciÖcally, from (2) we have

1n (!) = ,11 (!)
p1 (!)

pn (!)
,
X

s 6=1;n

1s (!)
ps (!)

pn (!)
: (32)

We use the latter to rewrite (5) for !' and !+; as follows:

11 (!) )

)
! , !'

*0
q& (!) +

K(%)'K(%")
%'%"

1
,
P

s 6=1;n 1s (!) ps (!)

0
pn(%")
pn(%)

,
ps(%")
ps(%)

1

p1 (!)

0
pn(%")
pn(%)

,
p1(%")
p1(%)

1 (33)

11 (!) .

)
!+ , !

*0
q& (!) +

K(%)'K(%+)
%'%+

1
+
P

s 6=1;n 1s (!) ps (!)

0
pn(%+)
pn(%)

,
ps(%+)
ps(%)

1

p1 (!)

0
p1(%+)
p1(%)

,
pn(%+)
pn(%)

1 : (34)
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Setting 11 (!) = 1s (!) ; 8s 6= 1; n; in these inequalities yields:

11 (!) )
)
! , !'

*
pn (!)

pn
)
!'
*
, pn (!)

 
q& (!) +

K (!),K
)
!'
*

! , !'

!
(35)

11 (!) .
)
!+ , !

*
pn (!)

pn (!), pn
)
!+
*
 
q& (!) +

K (!),K
)
!+
*

! , !+

!
: (36)

As !' ! ! and !+ ! ! these conditions are jointly satisÖed if and only if 11 (!) is given by:

11 (!) = (q
& (!) +K 0 (!))

pn (!)

,p0n (!)
:

Because 11 (!) = 1s (!) ; 8s 6= 1; n; (15) is obtained. Using this in (32), (14) is obtained.

A.4 Derivation of (16) and (17)
Set 1s (!) = ,L in (8) to get

1n (!) =
q& (!) +K 0 (!), L

P
s 6=1;n ps(!)

,
p01(%)

p1(%)
, p0s(%)

ps(%)

-

,pn(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

-

=
q& (!) +K 0 (!), L

,
p01(%)

p1(%)

P
s 6=1;n ps(!),

P
s 6=1;n p

0
s(!)

-

,pn(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

- :

Using
P

s 6=1;n ps(!) = 1, p1(!), pn(!) and
P

s 6=1;n p
0
s(!) = ,p01(!), p0n(!) further yields

1n (!) =
q& (!) +K 0 (!), Lp

0
1(%)

p1(%)
+ Lpn(!)

,
p01(%)

p1(%)
, p0n(%)

pn(%)

-

,pn(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

- ;

from which (17) is obtained.
Replace (17), together with 1s (!) = ,L; 8s 6= 1; n; in 11 (!) = ,

P
s 6=1 1s (!)

ps(%)
p1(%)

: It yields

11 (!) = L
X

s 6=1;n

ps (!)

p1 (!)
,

2

4
L
p01(%)

p1(%)
, (q& (!) +K 0 (!))

pn(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

- , L

3

5 pn (!)
p1 (!)

= L
X

s 6=1;n

ps (!)

p1 (!)
,
L
p01(%)

p1(%)
, (q& (!) +K 0 (!))

pn(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

- pn (!)

p1 (!)
+ L

pn (!)

p1 (!)

= L
X

s 6=1

ps (!)

p1 (!)
,
L
p01(%)

p1(%)
, (q& (!) +K 0 (!))

p1(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

- :
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Using
P

s 6=1;n ps(!) = 1, p1(!) and
P

s 6=1;n p
0
s(!) = ,p01(!);this further becomes

11 (!) =
q& (!) +K 0 (!), Lp

0
1(%)

p1(%)

p1(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

- + L
1, p1 (!)
p1 (!)

=
q& (!) +K 0 (!), Lp

0
1(%)

p1(%)
+ L

h
p01(%)

p1(%)
, p01(!),

p0n(%)
pn(%)

(1, p1 (!))
i

p1(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

-

=
q& (!) +K 0 (!), Lp

0
n(%)
pn(%)

, L
,
p01(!), p1 (!)

p0n(%)
pn(%)

-

p1(!)
,
p01(%)

p1(%)
, p0n(%)

pn(%)

- ;

from which (16) is derived.

B Proof of Lemma 3
Here and in subsequent proofs, we will be based on the equivalence between K 00 ($) < 0 and

the following:

K 0 (x) >
K (!),K (x)

! , x
> K 0 (!) ; 8x < ! (37)

K 0 (x) <
K (x),K (!)

x, !
< K 0 (!) ; 8x > !: (38)

(I) ! < b!: Replacing x with h (!) in (37) and (38), we can write

K 00 ($) < 0,

8
>><

>>:

K(h(%))'K(%)
h(%)'% > K 0 (!) if h (!) < !

K(h(%))'K(%)
h(%)'% < K 0 (!) if h (!) > !

:

Adding q (!) on each side of the right-hand conditions above and using the deÖnition of h (!)
in (21), we further deduce the following:

K 00 ($) < 0,

8
><

>:

q& (!) +K 0 (!) < 0 if h (!) < !

q& (!) +K 0 (!) > 0 if h (!) > !

(39)

Recall that for ! < b! it is q& (!) +K 0 (!) < 0 if and only if K 00 ($) ) , (q& (!))0 : We use this
in (39) to deduce the following:

1 if K 00 ($) < 0; then q& (!) +K 0 (!) > 0; and hence h (!) > !;

1 if 0 . K 00 ($) < , (q& ($))0 ; then q& (!) +K 0 (!) > 0; and hence h (!) < !;

1 if K 00 ($) > , (q& ($))0 ; then q& (!) +K 0 (!) < 0; and hence h (!) > !:

(II) ! > b!: Recall that for ! > b! it is q& (!) +K 0 (!) < 0 if and only if K 00 ($) < , (q& (!))0 :
We use this in (39) to deduce the following:
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1 if K 00 ($) < 0; then q& (!) +K 0 (!) < 0; and hence h (!) < !;

1 if 0 . K 00 ($) < , (q& ($))0 ; then q& (!) +K 0 (!) < 0; and hence h (!) > !;

1 if K 00 ($) ) , (q& ($))0 ; then q& (!) +K 0 (!) > 0; and hence h (!) < !:

C Proof of Lemma 4
(I) 0 . K 00 ($) < , (q& ($))0

(I:1) ! < b!; in which case q& (!) +K 0 (!) > 0: Recall that
)
IC%

%"

*
and

)
IC%

%+

*
are rewritten

as (6) and (7). Setting 1n (!) = 1s (!) in (6) and (7), they are further rewritten as

1n (!) .
,
)
! , !'

*
p1(!)

p1(!), p1(!')

 
q& (!) +

K (!),K
)
!'
*

! , !'

!
(40)

1n (!) )
,
)
!+ , !

*
p1(!)

p1(!
+), p1(!)

 
q& (!) +

K
)
!+
*
,K (!)

!+ , !

!
: (41)

91n (!) such that both of these conditions hold if and only if:

! , !'

p1(!), p1(!')

 
q& (!) +

K (!),K
)
!'
*

! , !'

!
(42)

.
!+ , !

p1(!
+), p1(!)

 
q& (!) +

K
)
!+
*
,K (!)

!+ , !

!
;

which is (11) as rewritten for 1n (!) = 1s (!). From (38), we have
K(%+)'K(%)

%+'% > K 0 (!) : Because

q& (!)+K 0 (!) > 0; we also have q& (!)+
K(%+)'K(%)

%+'% > 0 so that (42) is rewritten as (19). Because
p001($) < 0 (under (4)), the right-hand side of (19) is above one. Because K 00 ($) > 0 implies
K(%+)'K(%)

%+'% >
K(%)'K(%")

%'%" ; the left-hand side of (19) is below one. Hence, in this case, (19) is
satisÖed.
(I:2) ! > b!; in which case q& (!) +K 0 (!) < 0. Recall that setting 11 (!) = 1s (!) ;

)
IC%

%"

*

and
)
IC%

%+

*
are rewritten as (35) and (36). 911 (!) such that both conditions hold if and only

if:

! , !'

pn(!
'), pn(!)

 
q& (!) +

K (!),K
)
!'
*

! , !'

!
(43)

.
!+ , !

pn(!), pn(!+)

 
q& (!) +

K
)
!+
*
,K (!)

!+ , !

!
;

which is (11) rewritten for 11 (!) = 1s (!). From (37) and (38), we have
K(%+)'K(%)

%+'% > K 0 (!) >
K(%)'K(%")

%'%" : Because q& (!) +K 0 (!) < 0; we also have q& (!) +
K(%)'K(%")

%'%" < 0: (43) is satisÖed

when q& (!) +
K(%+)'K(%)

%+'% > 0, !+ > h (!) ; which is true because h (!) < b! < ! and ! < !+:
(II) K 00 ($) ) , (q& ($))0

(II:1) ! < b!; in which case q& (!) + K 0 (!) < 0: Recall from Lemma 3 that ! < h (!) : If
!+ < h (!) ; then the right-hand side of (43) is negative. The left-hand side of (43) is negative
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as well. Hence, (43) is rewritten as (20). Because p00n($) < 0 given (4); the left-hand side of (20)
is below 1: Moreover, because K 00 ($) > 0; the right-hand side of (20) is above 1: Hence, (20) is
satisÖed.
(II:2) ! > b!; in which case q& (!) + K 0 (!) > 0. Because q& (!) +

K(%+)'K(%)
%+'% > 0; (42) is

rewritten as (19). Because p001($) < 0 (under (4)), the right-hand side of (19) is higher than 1:
Because K 00 ($) > 0; the left-hand side of (19) is lower than 1: Hence, (19) holds.

D Proof of Proposition 1

For ! < b! the optimal lottery is !) (!) (Lemma 4). (LLs%) is satisÖed for all types if and
only if 1s (!) ) ,L; 8!; 8s 6= 1: Using (13), this inequality is rewritten as (22).
Analogously, for ! > b! the optimal lottery is !* (!) (Lemma 4). (LLs%) is satisÖed for all

types if and only if 1s (!) ) ,L; 8!; 8s 6= n: Using (15), this inequality is rewritten as (23).

E Proof of Lemma 5
(I) ! < b!: In this case, q& (!) + K 0 (!) > 0 and the choice is between !) (!) and !+ (!)

(Lemma 1 and 2). Because K 00 ($) < 0 it follows from (37) that
K(%)'K(%")

%'%" > K 0 (!) ; and

from (38) that K 0 (!) >
K(%+)'K(%)

%+'% : Moreover, because q& (!) + K 0 (!) > 0; we have q& (!) +
K(%)'K(%")

%'%" > 0: If !+ < h (!) ; then:

q& (!) +
K (!),K (h (!))

! , h (!)
= 0 < q& (!) +

K (!),K
)
!+
*

! , !+

and (42) is rewritten as (19). Both the left-hand side and the right-hand side of (19) are
positive so that (19) is not implied by the assumptions of the model and is to be veriÖed. If
(19) is satisÖed, and hence (11) is satisÖed with !) (!) ; then !) (!) is optimal (Lemma 1 and

2). If !+ ) h (!) ; then with analogous reasoning we deduce that q& (!)+
K(%)'K(%+)

%'%+ < 0 so that
the right-hand side of (42) is negative. Because the left-hand side is positive, (42) is violated.
Hence, (11) is not satisÖed with !) (!) and !+ (!) is optimal.
(II) ! > b!: In this case, q& (!) + K 0 (!) < 0 and the choice is between !* (!) and !+ (!)

(Lemma 1 and 2). Because K 00 ($) < 0; it follows from (38) that
K(%+)'K(%)

%+'% < K 0 (!) ; and

from (37) that K 0 (!) <
K(%)'K(%")

%'%" : Moreover, because q& (!) + K 0 (!) < 0; we have q& (!) +
K(%+)'K(%)

%+'% < 0: If !' > h (!) ; then:

q& (!) +
K (!),K

)
!'
*

! , !'
< q& (!) +

K (!),K (h (!))
! , h (!)

= 0

and (43) is rewritten as (20). With p00n($) < 0 (under (4)), the left-hand side of (20) is below

1: Because
K(%)'K(%")

%'%" >
K(%+)'K(%)

%+'% ; the right-hand side of (20) is below 1 as well. Hence, we
cannot conclude that (20) is satisÖed and it must be veriÖed. If (20) is satisÖed, and hence
(11) is satisÖed with !* (!) ; then !* (!) is optimal (Lemma 1 and 2). If !' . h (!) ; then with

analogous reasoning we deduce that q& (!) +
K(%)'K(%")

%'%" > 0; involving that the left-hand side
of (43) is positive and the condition is violated. Hence, (11) is not satisÖed with !* (!) and
!+ (!) is optimal.
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F Proof of Proposition 2

Derivation of (24)

Given (3), the di§erence in the brackets multiplied by 1s (!) ps(!) in (11) is negative for
all triplets

&
!'; !; !+

'
: Hence, (11) is weakest when 1s (!) = ,L; 8s 6= 1; n: Replacing these

values, (11) is reformulated as (24).

Limited liability constraints are satisÖed

We are left with verifying (LL1%) and (LL
n
% ) :

(I) ! < b!: From (17), we see that (LLn% ) holds because
p01(%)

p1(%)
, p0n(%)

pn(%)
> 0 (given (3)) and

q& (!) +K 0 (!) . Lp01 (!) =p1(!) (by (22)). From (16), we see that (LL1%) holds because
p01(%)

p1(%)
,

p0n(%)
pn(%)

> 0 and p0n (!) < 0 (given (3)) together with q
& (!) +K 0 (!) > 0:

(II) ! > b!: From (16), we see that (LL1%) holds because p
0
n (!) < 0 (given (3)) and q

& (!) +
K 0 (!) ) Lp0n(!)=pn(!) (by (23)): From (17), we see that (LLn% ) holds because q& (!)+K 0 (!) < 0:
Overall, (LL1%) and (LL

n
% ) are satisÖed 8!:

G Proof of Corollary 2
DeÖne the functions:

' (x) &
q& (!) + K(%)'K(x)

%'x
p1(%)'p1(x)
(%'x)p1(%)

, pn(%)'pn(x)
(%'x)pn(%)

and g (!) such that q& (!)+K 0 (g (!)) = 0:We will identify the conditions under which '0 (x) ) 0
for x = !' and for x = !+: We have '0 (x) ) 0 if and only if:

(q& (!) +K 0 (x))

0
p1(!), p1(x)

p1(!)
,
pn(!), pn(x)

pn(!)

1
(44)

. (! , x)
0
q& (!) +

K (!),K (x)
! , x

10
p01(x)

p1(!)
,
p0n(x)

pn(!)

1
:

Under (3), p1(%)'p1(x)
p1(%)

, pn(%)'pn(x)
pn(%)

> 0 if and only if x < !: Hence, (44) is equivalent to the
following pair of conditions:

q& (!) +K 0 (x) .
0
q& (!) +

K (!),K (x)
! , x

1 p01(x)

p1(%)
, p0n(x)

pn(%)

p1(%)'p1(x)
(%'x)p1(%)

, pn(%)'pn(x)
(%'x)pn(%)

; if x < ! (45)

q& (!) +K 0 (x) )
0
q& (!) +

K (!),K (x)
! , x

1 p01(x)

p1(%)
, p0n(x)

pn(%)

p1(%)'p1(x)
(%'x)p1(%)

, pn(%)'pn(x)
(%'x)pn(%)

; if x > !: (46)

(I) either @b! or b! > !: In this case, q& (!)+K 0 (x) > 0 and q& (!)+ K(%)'K(x)
%'x > 0; 8x; 8!: For

x < ! (44) is equivalent to (45), which is reformulated as (25); for x > ! (44) is equivalent to
(46), which is reformulated as (26). If K ($) is su¢ciently little concave that (25) and (26) hold,
then the left-hand side of (24) increases with !' and decreases with !+: As the right-hand side
of (24) decreases with !' and increases with !+ (given (3)), it follows that (24) is tightest as
!' ! ! and !+ ! !; in which case it is satisÖed. Hence, (24) is satisÖed any triplet

&
!'; !; !+

'
:

(II) b! 2
)
!; !
*
: Using d

dx

,
K(x)'K(%)

x'%

-
< 0 (which follows from K 00 ($) < 0) together with the
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deÖnition of h (!) ; we see that q& (!) + K(%)'K(x)
%'x > 0 if and only if x < h (!) : (44) is rewritten

as (25), if either x < ! and x < h (!) or x > ! and x > h (!) ; it is rewritten as (26), if either
x < ! and x > h (!) or x > ! and x < h (!).
We now verify the pairs f!; xg for which the associated condition (25) or (26) is violated.

Because K 00 ($) < 0; b! < g (!) < h (!) 8! < b! and h (!) < g (!) < b! 8! > b!.
(II:1) If ! < b! together with g (!) < x < h (!) ; then the associated condition (26) is

violated and '0 (x) < 0 for any degree of concavity of K ($) : If x =2 [g (!) ; h (!)] ; then the
associated condition (25) or (26) can be satisÖed. Because !' < ! < g (!) ; only !+ can belong
to [g (!) ; h (!)] : Hence, for any !' < !; '0

)
!'
*
> 0 if the associated condition (25) or (26) is

satisÖed so that (24) is tightest as !' ! !. Therefore, (24) is to be veriÖed for !' ! ! and
some !+ > ! (see below).
(II:2) If ! > b! together with h (!) < x < g (!) ; then the associated condition (26) is

violated. Again, '0 (x) < 0 for any degree of concavity of K ($) : If x =2 [h (!) ; g (!)] ; then the
associated condition (25) or (26) can be satisÖed. Because !+ > ! > g (!) ; only !' can belong
to [h (!) ; g (!)] : Hence, (24) is satisÖed for any !+ < ! if it is satisÖed for !+ ! !. Therefore,
(24) is to be veriÖed for !+ ! ! and some !' < ! (see here below).

Verify (24) on the range [g (!) ; h (!)] when ! < b! and [h (!) ; g (!)] when ! > b!

(I) ! < b! and !' ! !:
'0
)
!+
*
> 0 if !+ < g (!) ; '0

)
!+
*
< 0 if !+ 2 [g (!) ; h (!)] ; '0

)
!+
*
> 0 if !+ > h (!) :

Hence, (24) is tighter at ! than at g (!) ; it is tighter at h (!) than at g (!) ; it is tighter at h (!)
than at !: To verify if (24) is tightest as !+ ! ! we need to recall the deÖnition of ' (x) and
check whether:

' (!) < ' (h (!)) : (47)

(47) is equivalent to:

q& (!) +K 0 (!)
p01(%)

p1(%)
, p0n(%)

pn(%)

<
q& (!) + K(%)'K(h(%))

%'h(%)
p1(%)'p1(h(%))
(%'h(%))p1(%)

, pn(%)'pn(h(%))
(%'h(%))pn(%)

= 0:

This is impossible because the left-hand side is positive. Hence, the left-hand side of (24) is
highest for !+ = h (!) ; in which case '

)
!+
*
= 0: Because the right-hand side of (24) is lowest

for !+ ! !; we need to compare (24) for !+ = h (!) and for !+ ! !: For !+ = h (!) and !' ! !
(24) is rewritten as (27). For !+ ! ! (24) reduces to 0 . 0; and hence it is satisÖed as an
identity. Therefore, (24) holds for any triplet

&
!'; !; !+

'
if and only if (27) is satisÖed.

(II) ! > b! and !+ ! !:
'0
)
!'
*
> 0 if !' > g (!) ; '0

)
!'
*
< 0 if !' 2 [h (!) ; g (!)] ; '0

)
!'
*
> 0 if !' < h (!) :

Hence, (24) is tighter at ! than at g (!) ; it is tighter at h (!) than at g (!) ; it is tighter at h (!)
than at !: To verify if (24) is tightest as !' ! ! we need to check if:

' (!) > ' (h (!)) (48)

(48) is equivalent to:

q& (!) +K 0 (!)
p01(%)

p1(%)
, p0n(%)

pn(%)

>
q& (!) + K(%)'K(h(%))

%'h(%)
p1(%)'p1(h(%))
(%'h(%))p1(%)

, pn(%)'pn(h(%))
(%'h(%))pn(%)

= 0;

which is not true because the left-hand side is negative. As in (I) ; we need to verify (24) for
!' = h (!) : Provided that !+ ! !; (24) is rewritten as the converse of (27), namely as (28).
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H Proof of Corollary 3

(27) implies (22)

Multiply both sides of (27) by the positive di§erence p01(%)

p1(%)
, p0n(%)

pn(%)
and rearrange to obtain

q& (!) +K 0 (!)

. L

8
<

:
p01(!)

p1(!)
,
p01(!)

p1(!)
pn(!) + p

0
n(!),

p01(%)

p1(%)
, p0n(%)

pn(%)

p1(h(%))
p1(%)

, pn(h(%))
pn(%)

B
(1, pn(!))

p1(h (!))

p1(!)
, 1 + pn(h (!))

C9=

; :

As the right-hand side is lower than Lp01(!)=p1(!); this is tighter than (22) if and only if

,
p01(%)

p1(%)
, p0n(%)

pn(%)

p1(h(%))
p1(%)

, pn(h(%))
pn(%)

B
(1, pn(!))

p1(h (!))

p1(!)
, 1 + pn(h (!))

C
< pn(!)

0
p01(!)

p1(!)
,
p0n(!)

pn(!)

1
:

Multiplying both sides by
h,

p1(h(%))
p1(%)

, pn(h(%))
pn(%)

-.,
p01(%)

p1(%)
, p0n(%)

pn(%)

-i
> 0 and rearranging, we ob-

tain [(p1(h (!)), p1(!)) /p1(!) ] > 0; which is true given (3).

(28) implies (23)

Multiply both sides of (28) by the positive di§erence p01(%)

p1(%)
, p0n(%)

pn(%)
and rearrange to obtain

q& (!) +K 0 (!)

) L

8
<

:(1, pn(!))
p01(!)

p1(!)
+ p0n(!),

p01(%)

p1(%)
, p0n(%)

pn(%)

p1(h(%))
p1(%)

, pn(h(%))
pn(%)

B
(1, pn(!))

p1(h (!))

p1(!)
, 1 + pn(h (!))

C9=

; :

As the right-hand side is higher than Lp0n(!)=pn(!); this is tighter than (23) if and only if

,
p01(%)

p1(%)
, p0n(%)

pn(%)

pn(h(%))
pn(%)

, p1(h(%))
p1(%)

B
(1, pn(!))

p1(h (!))

p1(!)
, 1 + pn(h (!))

C
< (1, pn(!))

0
p01(!)

p1(!)
,
p0n(!)

pn(!)

1
:

Multiplying both sides by
h,

pn(h(%))
pn(%)

, p1(h(%))
p1(%)

-.,
p01(%)

p1(%)
, p0n(%)

pn(%)

-i
> 0 and rearranging, we ob-

tain [(pn(h (!)), pn(!)) /pn(!) ] > 0; which is true given (3).

35


