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Abstract 

In this paper we address the topic of guessing games. By developing a generalised theory of 

naïveté, we show how Güth et al.’s result (i.e. convergence toward interior equilibria is faster than 

convergence toward boundary equilibria) is compatible with Nagel’s theory of boundedly rational 

behaviour. However, we also show how, under new model parameterisation, neither Güth et al.’s 

story of convergence towards interior equilibria, nor Nagel’s theory of boundedly rational 

behaviour are verified. We conclude that the results of Nagel (1995) and Güth et al. (2002), 

however interesting, are severely affected by the ad hoc parameterisation chosen for the game.  
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1. Introduction 

In the last decade a growing effort has been devoted to explore the p-beauty contest game 

(Nagel, 1995; Duffy and Nagel, 1997; Canerer et al., 1998; Weber, 2003). The game itself 

is well known and extremely simple: players are asked to choose a number from a closed 

interval. The winning player will be the one that gets closer to a target number G. Such 

target is defined as the average of all guesses plus a constant, multiplied by a real number 

known to all players. Formally, we can write the target as: ⎟
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simplest form the game parameterisation is set as follows:  0 ≤ p < 1 , n is the number of 

players in the contest, [ ]⊂∈ 100,0ig R is subject i’s guess and d is a constant set equal to 0.  

Under such definition of G the game-theoretical solution is a unique Nash equilibrium 

where all players choose 0.1 In fact, playing 0 is the only strategy that survives the 

procedure of iterated elimination of dominated strategies (IEDS). Let us assume that in the 

first iteration all players play the highest possible number (100 in our case); here we can 

immediately observe that the winning number will be g = p100. Now, a rational agent 

should know this and hence play p100. However, if all players are rational, the target will 

shift to g = p (p100) or to g = p2100. Hence, rational players will now play p2100. This 

process goes on until the only possible equilibrium is reached, i.e. 0100 == ∞pg . Of 

course, this solution requires that players constantly behave rationally (i.e. for all the 

infinite iterations of the game) and that everybody knows that everybody else also behaves 

always rationally. Note that the IEDS suggests what should not be played, and after an 

infinite number of iterations, the Nash equilibrium is reached.  

Nagel, in her seminal paper, suggested “that the ‘reference point’ or starting point for the 

reasoning process is 50 and not 100. The process is driven by iterative, naïve best replies 

rather than by an elimination of dominated strategies” (1995: 1325). The iterative naïve 

best replies (INBR) strategy assumes that, at each level, every player believes that he/she is 

exactly one level of reasoning deeper than all other players.2 A Level-0 player chooses a 

                                                 
1 Note that “[f]or p = 1 and more than two players, the game is a coordination game, and there are infinitely 
many equilibrium points in which all players chose the same number”. For p > 1 and 2p < n “all choosing 0 
and all choosing 100 are the only equilibrium points. Note that for p > 1 there are no dominated strategies” 
(Nagel, 1995: 1314). 
2 Please note that in what follows we shall use Level, Step and Degree interchangeably.   
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number randomly in the given interval [0, 100], with the mean being 50. Therefore, a 

Level-1 player gives best reply to the belief that everybody else is Level-0 and thus chooses 

p50. Following this line of reasoning, a Level-2 player chooses p250, a Level-k player 

chooses pk50, and so on. A player who takes infinite steps of reasoning, and believes that 

all players take (infinite-1) steps, chooses 0, the Nash equilibrium. This interpretation of 

the converging pattern towards the equilibrium implies that different subjects are 

characterised by different cognitive levels. 

Bosch-Domènech et al. (2002) analysed ‘newspaper and lab beauty-contest experiments’ 

and categorised subjects according to their depth of reasoning. The authors recognised that 

subjects were actually clustered at Level-1, Level-2, Level-3 and Level-infinity as assumed 

by Rosemary Nagel. 

All these results apply to the standard p-beauty contest game. Under such a standard 

parameterisation of the game - i.e. [ ]100,0∈ig , p < 1, and d = 0 - both the iterative naïve 

best replies and the iterated elimination of dominated strategies require the same number 

of iterations in order to solve the game. The picture changes if we set 0≠d ; in this case 

the game might well exhibit an interior equilibrium (i.e. different from 0 or 100) and, for 

specific values of p, the solution of the game obtained, using the two different strategies, 

involves different numbers of iterations needed to reach the equilibrium. 

Güth et al. (2002) proposed a game where d was initially set equal to 0 and subsequently 

equal to 50. This allowed them to analyse the p-beauty contest from a different perspective, 

comparing, among other things, interior and boundary equilibria. They showed that the 

convergence toward the equilibrium is faster when the equilibrium is interior. 

In this paper we aim at generalising the iterative naïve best replies strategy to the wider 

class of games with interior equilibria; analyse Güth et al.’s results concerning the 

properties of interior equilibria in a more general setting; and compare the iterative naïve 

best replies strategy with the iterative elimination of dominated strategies for the 

generalised p-beauty contest. We shall do this by means of a laboratory experiment. 

 

2. A generalisation of the INBR strategy to a game with interior equilibria 

Let n (> 2) be the number of subjects in the game. Each of them has to choose a 

number [ ]HLgi ,∈ , where ∈HL,  R. Their pay-off function is: 
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where C is a positive (monetary) endowment, c (> 0) is a fine subject i has to pay for every 

unit of deviation between his/her guess gi and the target number G.3 Then, for all ∈d  R 

and [ )1,0∈p  there is a unique Nash equilibrium, which is given by: 
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If we want to solve this generalised p-beauty contest game with the iterative naïve best 

replies strategy we need to redefine it. Since the guessing interval is [L, H], the focal point4 

should be 
2

LH + . The equilibrium using the iterative naïve best reply strategy is given by: 
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Now we have defined a generalised theory of naïveté which can be applied both to 

boundary solutions (as it was originally defined by Nagel, 1995) as well as to interior 

equilibria; this simple generalisation will help us comparing it with rationality theory.5 

 

2.1 Rationality vs. naivety: posing our research questions 

As already discussed, a p-beauty contest game exhibits a unique boundary Nash 

equilibrium if the target number is ⎟⎟
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of rationality, such converging dynamics takes, theoretically, infinite steps. The situation 

changes if we consider d values which are greater than 0. In this case the converging 

equilibrium could be boundary as well as interior. 

                                                 
3 Note that this pay-off function was first used in Güth et al. (2002). We prefer it over the standard “winner 
takes it all” pay-off function as it prevents subjects’ income polarisation.  
4 We are borrowing this term from Nagel (1995) where the focal point was ad-hoc set equal to 50.  
5 In what follows, when talking of ‘theory of naïveté’, we refer explicitly to Nagel’s iterative naïve best 
replies strategy and to the iterative elimination of dominated when talking of ‘rationality theory’. 
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Güth et al. (2002) carried out an experiment aiming at testing the diverse converging 

equilibria generated, assigning different values to the parameter d. The authors observed in 

the lab different converging speeds for different model parameterisations; specifically, they 

compared two treatments characterised by the following parameters: p = ½ , g∈[0, 100], d 

= 0 and p = ½ , g∈[0, 100], d = 50. Conducting a laboratory experiment, the authors 

observed that the latter treatment converged towards its Nash equilibrium faster than the 

former. This result counters the fact that the two treatments had the same degree of 

complexity. Such apparent contradiction was justified by the authors arguing that the 

observed difference in converging speeds was due to the fact that in the first case (i.e. d = 

0) the steady state was a boundary equilibrium (i.e. 0), whereas in the second case (i.e. d = 

50) the system converged towards an interior equilibrium (i.e. 50). Hence, they concluded 

that “interior equilibria trigger more equilibrium-like behaviour than boundary equilibria” 

(2002: 223). 

Although it seems appealing, this explanation might be misleading. In fact, dropping the 

assumption of perfect rationality and applying the theory of naïveté generalised in the 

section above, we can theoretically calculate the converging dynamics and the equilibria 

obtainable, using Güth et al. (2002) parameterisation and then compare these results to 

those obtained applying rationality.  

We report these results in table 1 below. Under the assumption of rationality (i.e. repeated 

elimination of strictly dominated strategies), an infinite number of iterations is required 

independently from the value assigned to d, hence suggesting that the problems have an 

identical degree of complexity. The picture changes under bounded rationality assumption 

(i.e. INBR): in this case an infinity-order belief is required to reach the Nash equilibrium 

when d = 0, and only a zero-order belief when d = 50. In fact, when d = 50, subjects 

immediately play the Nash equilibrium (which in this case is 50) irrespectively to their 

sophistication level.6 

This finding suggest that, if we buy Nagel’s idea of bounded rationality and apply the  

generalised theory of naïveté previously derived, Güth et al. (2002) experimental results 

could be explained by the fact that the two treatments have a different degree of complexity 
                                                 
6 This can be easily proved numerically. Note that in this very specific case the Nash equilibrium coincides 
with the “expected choice of a player who chooses randomly from a symmetric distribution” as well as to “a 
salient number à la Shelling” (Nagel, 1995: 1315). 
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rather then by the intrinsic capacity of triggering equilibrium-like behaviours of interior 

equilibria. 

 

IEDS INBR IEDS INBR
1 0<g<50 g=25 25<g<75 g=50
2 0<g<25 g=12.5 37.5<g<62.5 g=50
3 0<g<12.5 g=6.25 43.74<g<56.25 g=50
4 0<g<6.25 g=3.13 46.87<g<53.12 g=50
…

infinity g=0 g=0 g=50 g=50

p=1/2, d=0, L=0, H=100 p=1/2, d=50, L=0, H=100
Step

 
Table 1: Güth et al. (2002) treatments - IEDS vs. INBR 

 

In short, we are posing here the problem of understanding what the true reason behind the 

observed difference in converging dynamics is. In what follows we shall attempt to test the 

robustness of Güth et al. (2002) results by replicating the p-beauty experiment using 

different parameterisations. Subsequently, we shall focus our attention on Nagel’s theory of 

naïveté, attempting to understand if it holds also for games which display interior 

equilibria.  

 

3. Aim and setting of the experiment  

As discussed above, a preliminary target of our experiment is testing the robustness of the 

hypothesis according to which “[a]n interior equilibrium […] is supposed to yield smaller 

deviations of the guesses from the game-theoretic equilibrium than a boundary equilibrium, 

since participants often try to avoid extreme choices …” (Güth et al., 2002: 221-22). In 

order to test for the validity of such hypothesis we will consider a new set of problems’ 

characterisation defined by different parameterisations of the game. Specifically, we shall 

compare the original parameterisation adopted by Güth et al. with a similar setting where 

we vary the value of p (set equal to 2/3) and the value of d (set equal to 25 and 50). It is 

worth noting that, like in the original experimental setting, this new parameterisation 

produces an interior game-theoretical equilibrium and a boundary one (when the value of d 

is respectively 25 and 50). If Güth et al.’s result is robust to different model 
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parameterisations, we would expect to observe a faster convergence in the game with 

interior equilibrium; otherwise, we shall confute the validity of their results for problems’ 

parameterisations different from those originally selected by the authors. 

Once addressed this point, we will move on to consider Nagel’s theory of naïveté in the 

case of games with interior equilibria. In doing so, we will study the first-period choices in 

two games characterised as above (i.e. p = 2/3 and d = 25 or 50) and in a new game 

parameterisation where we will vary the interval [ ]HL, , assigning different values to the 

upper and lower bound. This will allow us to verify the occurrence of Nagel’s naïveté also 

in games with interior equilibria. 

 

3.1 The design of the experiment  

In each treatment of the experiment there are n = 32 subjects divided into 8 groups, each of 

4 subjects. In each group subjects have to guess a number in the real interval [L, H]. The 

closer their guess is to the target the higher is the pay-off. As discussed above, the general 

form of the pay-off function is: ( ) ⎟⎟
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The experiments were run in October 2005 at the Max Planck Institute of Jena. The 

software of the computerised experiment was developed in z-Tree (Fischbacher, 1998). 

Jena University students who participated at the experiment were recruited using the 

ORSEE software (Greiner, 2004). The age of players ranged from 21 to 31 years, and the 

average pay-off paid to players amounted to 11.95 Euro (sd = 1.76), the duration of each 

treatment was 40 minutes. Groups were formed randomly at the beginning of the 

experiment and were kept invariant over the whole experiment (i.e. 40 periods). 

 

4. Results and interpretation 

4.1 Studying converging dynamics 

In this section we will analyse the results obtained in our experiments. However, before 

moving to our new findings we shall recall results obtained by Güth et al. (2002) which 

will serve as a reference point to our study. Schematically we summarise Güth et al. results 

in the following table: 
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Parameterisation Game-theoretical    
equilibrium

Speed of 
convergence

Güth et al. 
Treatment 1

p=1/2, d=0,        
L=0, H=100

Convergence toward a 
boundary equilibrium (g=0) slower

Güth et al. 
Treatment 2

p=1/2, d=50,       
L=0, H=100

Convergence toward an 
interior equilibrium (g=50) faster

 
Table 2: Güth et al. (2002) summary of results  

 

As we can see, the authors presented two comparable cases and showed how the treatment 

where the game-theoretical equilibrium is interior, displayed a higher speed of 

convergence. We shall now present our results and compare them to those obtained by 

Güth et al.  

In figures 1 and 2 we report the average guesses in each group for our first and second 

treatments. These results appear to confute the findings of Güth et al. (2002), as guesses 

converge steadily towards the equilibrium, but the interior equilibria treatment converges 

slower.  
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               Figure 1: Treatment 1 - group averages (p = 2/3; d = 25) 
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               Figure 2: Treatment 2 - group averages (p = 2/3; d = 50) 

 

In fact, in treatment 2 the system reaches a steady boundary equilibrium in less than 25 

iterations. This result is consistent for each of the eight groups considered in our 

experiment, a fact which gives a certain degree of robustness to it. On the contrary, not all 

groups considered in treatment 1 reach a steady equilibrium within the time frame 

considered (i.e. 40 periods). Moreover, the converging dynamic towards the interior 

equilibrium is on average statistically significantly slower; more precisely we tested the 

hypothesis that the two distributions have the same variance. We used the Freund-Ansari-

Bradley test. In periods 1, 4, and 6 we rejected the null hypothesis at a significance level of 

10 percent and in periods 2 and 3 we rejected the null hypothesis at a significance level of 5 

percent, in favour of the alternative hypothesis that the variance in treatment 2 is smaller. 

Hence we can infer that convergence towards equilibrium is faster in treatment 2. 

Note that this finding confutes also the generalised version of Nagel’s theory of naïveté as 

also in this case an infinity-order belief is required to reach the equilibrium when d = 50, 

and only a zero-order belief is required when d = 25. As is shown in table 3, following the 

generalised naïveté theory when d = 25, subjects should immediately play the Nash 

equilibrium irrespectively to their sophistication level. However, this does not happen in 

the lab. 
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IEDS INBR IEDS INBR
1 16.67<g<83.33 g=50 33.33<g<100 g=66.67
2 27.78<g<72.22 g=50 55.56<g<100 g=77.78
3 35.18<g<64.81 g=50 70.37<g<100 g=85.19
4 43.41<g<56.58 g=50 80.24<g<100 g=90.12
…

infinity g=50 g=50 g=100 g=100

Step
Treatment 1                         

p=2/3, d=25, L=0, H=100
Treatment 2                         

p=2/3, d=50, L=0, H=100

  
Table 3: Treatments 1 and 2 - IEDS vs. INBR 

 

All in all, this first set of results would suggest a rejection of both Güth et al. (2002) 

account of convergence (i.e. that interior equilibria trigger more equilibrium-like behaviour 

than boundary equilibria) as well as our generalisation of Nagel (1995) theory of naïveté, as 

they proved to be not robust to our new model parameterisation.  

This could also imply that Nagel’s game-theoretical result cannot be generalised to interior 

equilibria as it holds solely for boundary equilibria. In what follows, we shall concentrate 

our attention on first-period choices in order to investigate whether this last hypothesis is 

actually confirmed by different model parameterisations.   

 

4.2 Studying first-period choices 

Figure 3 displays first choices frequencies for both treatment 1 and treatment 2 described in 

the section above. As we can immediately observe, in figure 3a almost half of the subjects 

immediately played the (interior) Nash equilibrium. This might lead us to maintain that 

agents are behaving rationally, as they are instantly able to solve the game applying the 

iterated elimination of dominated strategies. However, we should note that in this very 

specific case the Nash equilibrium coincides with the salient number calculated following 

Nagel’s definition of a player strategic of degree 0. Moreover, as showed in table 3, it 

coincides also with the choice of a person strategic of degree n ∈ N (i.e. invariantly of the 

sophistication level, a person playing the iterative naïve best replies always chooses 50).  
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          3a: (p = 2/3; d = 25; [0, 100])                                                3b: (p = 2/3; d = 50; [0, 100])  

    Figure 3: Choices in the first period - Treatments 1 and 2  

 

This implies that, by simply looking at this data, we cannot distinguish among subjects 

playing 50 as they could be rationally applying the IEDS strategy or they could be as well 

behaving naively and following an INBR strategy. 

We now turn to look at the second treatment. In this case the Nash equilibrium was 

boundary and equal to 100 and was played in the first period by almost 30 percent of the 

players. Note that the a person playing strategic of degree 1 would play 66.67; a person 

strategic of degree 2 would play 77.78, and so on (as reported in the last column of table 3 

above). Not many subjects played strategic of degree 1, 2, 3, …, as can be easily detected 

in figure 3b. However, almost 30 percent of them might have played strategic of degree 

infinite or, alternatively, might have rationally applied the IEDS strategy. Interestingly, 

almost 20 percent of the subjects (i.e. 6 out of 32) played 50, which in this case was not a 

focal point in the sense of being the expected choice of a player who chooses randomly 

from a symmetric distribution, but was probably perceived as a salient number being the 

mean of the interval [0, 100]. This fact leads us to believe that when the focal point à la 

Nagel coincides with a salient number (like the mean of the interval) we might observe 

players guessing that number for reasons other than playing strategic of degree 0, as 

suggested by Nagel (1995). 

In other words, we shall maintain that Nagel’s results might be affected by the specific 

parameterisation of the model. In order to test this hypothesis we ran two new treatments 

where the interval boundaries were shifted to the right and were selected as odd integers. 

Treatment 1 Treatment 2 
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Specifically we selected the following interval: [13, 129]. All other parameters were left 

unaltered. The Nash equilibrium and its converging dynamic are reported in table 4 for 

both strategies.  

 

IEDS INBR IEDS INBR
1 25.33<g<102.67 g=64.00 42<g<119.33 g=80.67
2 33.56<g<85.11 g=59.33 61.33<g<112.89 g=87.11
3 39.03<g<73.41 g=56.22 74.22<g<108.60 g=91.41
4 42.69<g<65.60 g=54.15 82.81<g<105.73 g=94.27
…

infinity g=50 g=50 g=100 g=100

Treatment 4                         
p=2/3, d=50, L=13, H=129Step

Treatment 3                         
p=2/3, d=25, L=13, H=129

 
Table 4: Treatments 3 and 4 - IEDS vs. INBR 

 

Note that treatments 1 and 3 and treatments 2 and 4 share the same parameters (p and d) 

and converge to the same Nash equilibrium (in treatment 4, though, the Nash equilibrium is 

interior whereas in treatment 2 it is boundary). We tested the hypothesis that (T1 - T3) and 

(T2 - T4) come from the same distribution using the Wilcoxon Signed Ranks Test; we can 

reject the null hypothesis respectively at the 0.0001 and at the 0.001 level. This result 

suggests that many players do not choose numbers at random but instead are influenced by 

the value of the boundaries L and H of the game. 

In treatments 3 and 4 the game-theoretical Nash equilibrium is always interior and requires 

an infinity-order belief to be reached independently of the strategy adopted. Looking at 

figures 4a and 4b we can easily observe that guesses are much less clustered if compared to 

treatments 1 and 2; further, the number of subjects playing immediately the Nash 

equilibrium is lower than that observed in figures 1 and 2. Specifically, in treatment 3 only 

15 percent of subjects played immediately Nash, and in treatment 4 this share raised 

slightly to nearly 22 percent.   
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                 4a: (p = 2/3; d = 25; [13, 129])                                            4b: (p = 2/3; d = 50; [13, 129])  

   Figure 4: Choices in the first period - Treatments 3 and 4 

 

As in both treatments there is a very low level of clustering around any focal point, it is 

hard to believe that agents have been following an iterative naïve best replies strategy.7 

However, we shall try to verify if data actually clusters around those iteration levels. In 

order to test this hypothesis we follow the methodology proposed by Nagel (1995); 

specifically, we define neighbourhood8 of Step i, where [ ]4,3,2,1,0∈i .  

Intervals between two neighbourhood intervals of Step i and Step i + 1 are called interim 

intervals. In figure 5 we show the relative frequency of each of these neighbourhood and 

interim intervals for the respective treatment. Note that we cannot define neighbourhoods 

for treatment 1 as the iterative naïve best replies strategy leads to the Nash equilibrium at 

each and every iteration step. Hence, all neighbourhoods would overlap around the game-

theoretical equilibrium. 

Looking at figure 5 we can easily observe that there is not much clustering around iteration 

levels. The relative frequency is never higher than 15.6 percent, being on average lower 

than 6 percent. Not surprisingly, most of the frequencies are clustered in the upper and 

lower interim interval. This is certainly due to the fact that these are broader intervals; 

however, confronting these charts with those reported in figures 3 and 4, we can maintain 

                                                 
7 That is, taking (H + L)/2 +d as an initial reference point and considering several iteration steps from this 
point (Step 0  p [(H + L)/2 + d]; Step 1  p (Step 0 +d); …;Step i  p(Step i-1 +d)). 
8 In general the neighbourhood interval of Step i has the boundaries (Step i)ph and (Step i)p-h, where h is the 
smallest integer such that two neighbourhood intervals do not overlap. Following Nagel (1995), we rounded 
intervals upper and lower boundaries to the nearest integers, since mostly integers were observed.   

Treatment 3 Treatment 4 
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that people tend to cluster initially around round numbers which they perceive as salient 

(like 100, 50 or even 60 and 70 when the guessing space was set as [13, 129]). These 

findings confirm our assumption that subjects tend to play the focal point when it coincides 

with other salient numbers of the distribution. 
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Treatment 3: p=2/3, d=25, L=13, H=129
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Treatment 4: p=2/3, d=50, L=13, H=129
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   Figure 5: Relative frequencies of choices in the first period according to the interval 

classification with reference point (H + L)/2 +d 
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5. Conclusions 

In this paper we have addressed the topic of guessing games with the aim of understanding 

if people play in a rational or naïve way. Two pieces of results of the relevant literature 

triggered our interest. First, Nagel showed how in the first period players deviate strongly 

from game-theoretic solution. Hence, she proposed a “theory of boundedly rational 

behaviour in which the ‘depth of reasoning’ are of importance” (1995: 1325). The author 

showed that starting from a reference point X (where X was set equal to 50) iteration steps 1 

and 2 play a significant role, that is, most of the observations are in the corresponding 

neighbourhoods. Second, Güth et al. (2002) studied people’s behaviour in four different 

types of experimental beauty-contests. Under the assumption of rational behaviour they 

found faster convergence to the equilibrium when the equilibrium was interior.  

By developing a generalised theory of naïveté (which accounted for interior equilibria) we 

showed how Güth et al.’s result was compatible with Nagel’s theory of boundedly rational 

behaviour. However, we also wanted to test the sensitivity of both results to different 

model parameterisations. By conducting a new series of experiments we countered both 

results showing how, under new parameters, neither the convergence towards interior 

equilibria was always faster, nor the starting from a reference point X (which in our case 

was different from 50), iteration steps 1 and 2 played any significant role.  

We conclude that the results of Nagel (1995) and Güth et al. (2002), however interesting, 

are severely affected by the ad hoc parameterisation chosen for the game. Far from 

providing conclusive evidence on the issue of guessing games and people behaviours, this 

paper aims at raising questions: what are the true driving forces behind subjects decision in 

a p-beauty contest game? Further, do subject in the lab behave rationally or do they follow 

naïve strategies? Can we really define a unifying theory of behaviour applicable to all 

subjects? 
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