

COURSE OF STUDY: Master Course in Plant Medicine (LM69)

ACADEMIC YEAR: 2023-2024

ACADEMIC SUBJECT: Genetic resistance (IC Biodiversity and ecosystem services)

General information	
Year of the course	Second
Academic calendar (starting and	Second semester (February 26, 2024 – June 14, 2024)
ending date)	
Credits (CFU/ETCS):	3
SSD	AGR/12
Language	Italian
Mode of attendance	Not mandatory, but recommended

Professor/ Lecturer	
Name and Surname	Giovanni Luigi BRUNO
E-mail	giovanniluigi.bruno@uniba.it
Telephone	080 544 3085 / 347 26 11185
Department and address	Campus E. Quagliariello, Dipartimento di Scienze del Suolo della Pianta e degli
	Alimenti, Sez. Patologia vegetale, 2° piano
Virtual room	Microsoft Teams Code: qrvrkal
Office Hours (and modalities:	Monday to Friday 10:30 - 12:30 according to an established appointment
e.g., by appointment, on line,	requested by phone or e-mail
etc.)	

Work schedule			
Hours			
Total	Lectures	Hands-on (laboratory, workshops, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
75	16	14	45
CFU/ETCS			
3	2	1	

Learning Objectives	The course aims to provide in-depth knowledge about Plant resistance to
	diseases; variability of plant response to diseases and variability of pathogens;
	types and sources of resistance; formae specialis and races, and resistance
	managements; exogenous and endogenous factors affecting resistance
	expression; resistance transfer to susceptible cultivars through classical and bio-
	technological techniques; screening and evaluation of resistance; resistance in
	the most important Mediterranean crops.
Course prerequisites	Knowledge of plant pathology requests for admission to the Master Course in
	Plant Medicine

Teaching strategies	The topics of the course will be treated with:
	 Lectures presented through PowerPoint and other supports.
	Class or laboratory exercises.
	Working groups and class discussion.
	• Lab, field, and greenhouse training.
	Case studies.
	• Bibliographic research on specialized databases (Scopus, Agricola,).

	 Comparison with the experiences of stakeholders.
	Public platforms (e.g., Teams) and dedicated platforms (Agripodcast) will be used
	in E-learning mode, especially at the request of students with disabilities,
	working students, student athletes and students with new-borns.
	The topics of the course presented as case studies and in frontal teaching, will be
	discussed in the classroom and will be the subject of exercises and lab
	experiences. The results of the exercises and lab experiences will be also
	discussed jointly and in group work.
Expected learning outcomes in	At the end of the training course, the student will be able to:
terms of	o Know the physiological and genetic basis of plant resistance to disease.
	o Apply methods of identifying sources of resistance.
	o Know and apply traditional and biotechnological techniques for
	resistance transfer.
	o Apply resistance management strategies.
Knowledge and understanding	The student will be able to:
on:	 understand the potential and limits of plants with different resistance.
	 define breeding programs for resistance.
	 manage cultivars with genetic resistance.
	 apply the knowledge acquired during the course to specific problems on
	plant disease resistance.
Applying knowledge and	The student will be able to:
understanding on:	 Select suitable cultivars according to useful resistance.
	 Identify and select sources of genetic resistance.
Soft skills	Making informed judgments and choices
	At the end of the course, through lectures, laboratory tests, case studies, group
	work and classroom discussion and comparison with the experiences of
	stakeholders, the student will be able to:
	 critically assimilate the course contents.
	 evaluate the acquired knowledge.
	 evaluate the usefulness of genetic resistance as a defence opportunity
	for crops.
	 choose the cultivars appropriate for a specific area.
	Communicating knowledge and understanding
	At the end of the course, through lectures, laboratory tests, case studies, group
	work and classroom discussion and comparison with the experiences of
	stakeholders, the student will be able to:
	 critically discuss the topics presented during the course with specialist
	and non-specialist interlocutors.
	use the specific disciplinary lexicon.
	Capacities to continue learning
	At the end of the course, through lectures, laboratory tests, case studies, group
	work and classroom discussion and comparison with the experiences of
	stakeholders, the student will be able to:
	\circ Search in the bibliographic databases references useful for the
	knowledge and updating of information relevant to the topics of the
	course.
	 Reading and understanding scientific literature.
	 Upgrade new knowledge on plant resistance.
Syllabus	
Content knowledge	Refer to: disease, pathogens, pathogenesis, disease cycle and defence reactions
	of plants. Disease management strategies. Plants resistance to pathogens.
	Plant resistance variability. variability of pathogens. Types and sources of
	resistance. Genetic basis of resistance. The gene-for-gene theory and the plant-

	pathogen co-evolution. Formae speciales and physiological race and resistance
	managing strategies. Factors affecting the expression of resistance. Production
	of resistant varieties by breeding for resistance and bio-technological methods.
	Disease resistance of some important crops (wheat, barley, and other cereals;
	tomato, potato, pepper and eggplant; melon, watermelon and cucumber;
	lettuce; peas; apple: plum; olive; cypress). Screening and selecting for resistance.
	Case studies of resistance breeding of greenhouse and field crops.
Texts and readings	 Notes on lectures distributed during the course.
	• Crinò P. et al., 1993. Miglioramento genetico delle piante per resistenza a
	patogeni e parassiti. Edagricole.
	• Crute E.B. et al., 1997. The gene-for-gene relationship in plant-parasite
	interactions. CAB International.
	• Slusarenko A.J. et al., 2001. Mechanisms of resistance to plant diseases.
	Kluwer Academic Publishers.
	• Agrios G.N., fifth edition. Plant Pathology. Elsevier Academic Press.
Notes, additional materials	The texts are available at the Di.S.S.P.A. Plant Pathology section library and the
	office of the teacher.
Repository	Microsoft Teams class: qrvrkal

Assessment	
Assessment methods	The exam, unique, and collegial for the IC Biodiversity and Ecosystem services is
	an oral test on the topics developed during lectures, Class, or laboratory
	exercises, working groups, Lab, field, and greenhouse training as reported in the
	Didactic regulation of the Master Course in Plant Medicine (article 9) and in the
	syllabus (Annex A).
	The evaluation of the student's preparation is based on established criteria, as
	detailed in Annex A of the study regulations of the master's degree program.
	For students enrolled in the academic year in which the module is taught, there is
	an intermediate exemption written test. This exemption regards the subjects of
	lectures and laboratory classes held in the period before the test itself (about half
	of the program). The exemption test for the "Genetic resistance" module consists
	at least of three oral questions about lectures and laboratory classes held in the
	period before the test itself. The positive result of the exemption test is valid for
	one academic year.
	For students who fit the exemption test, the final oral exam will point to topics of
	lectures and laboratory classes held in the subsequent period of the test itself.
	For the "Genetic resistance" module, at least three oral questions will be given.
	For these students, the assessment of the exam is expressed as an average
	between the exemption test and the final exam. For students who have NOT
	passed/supported the exemption test, the exam for the "Genetic resistance"
	module consists of at least six questions.
	For foreign students, the exam can be done in English.
Assessment criteria	Knowledge and understanding
	• Reach sufficient knowledge on genetic resistance to plant diseases.
	 Describe the variability of resistance in plants.
	 Describe the variability of pathogens.
	 Describe types and sources of resistance and the genetic basis of resistance.
	 Describe the influence of exogenous and endogenous factors on the expression of resistance
	 Describe methods and strategies to transfer resistance into new cultivars.

	 Describe examples of resistance in crops.
	 Applying knowledge and understanding
	 Describe traditional and innovative techniques for the use of genetic resistance
	in disease management.
	Autonomy of judgment
	 Express reasonable assumptions of programs for the exploitation of resistance to biotic stress.
	Communicating knowledge and understanding
	• The students have to be able to explain topics acquired during classes.
	Communication skills
	\circ Describe with appropriate language the traditional and innovative
	techniques for the use of genetic resistance in the management of plant
	diseases.
	Capacities to continue learning
	The learning of the knowledge of this module is verified in the lessons, in the
	class and laboratory exercises, in the exemption, in the exam and through self-
	assessment tests of individual learning that the ATutor platform and/or
	Agripodcast asynchronous teaching allows. A parameter to be used is also the
	time elapsed between attending the course and passing the exam.
Final exam and grading criteria	The learning outcomes related to the individual indicators will be verified during
	the lessons laboratories ongoing tests and final exam It is expected that the
	student correctly understands the question nosed and provides it in a synthetic
	way but with adequate grauments, the details necessary to formulate the correct
	answer, also through links to similar tonics covered in the teaching program
	The evaluation of the engeing test and the evam is evaluated in thirtiethe
	The evaluation of the origonity test and the examits expressed in thirtleths.
Funther information	
Further Information	