General Information	
Academic subject	Bachelor degree
Degree course	Agricultural Genetics
Curriculum	Agricultural and Technologies Sciences
ECTS credits	6
Compulsory attendance	No
Language	Italian

Subject teacher	Name Surname	Mail address	SSD
	Luigi Ricciardi	luigi.ricciardi@uniba.it	AGR07

ECTS credits details		
Basic teaching activities		

Class schedule	
Period	Il semester
Year	2019-20
Type of class	Lecture- workshops and laboratory

Time management	
Hours	150
In-class study hours	60
Out-of-class study hours	90

Academic calendar	
Class begins	03/03/2020
Class ends	10/06/2020

Syllabus		
Prerequisites/requirements		
Expected learning outcomes	 Knowledge and understanding Knowledge on : Structure and function of nucleic acids Mendelian hereditability; Gene association DNA replication, transcription and translation Quantitative and population genetics Applying knowledge and understanding The student to apply have to be able to understand heredit of the most interesting bio-agronomical traits	
	Making informed judgements and choices The student have to be able to perform genetic analysis to understand heredity of the most interesting bio-agronomical traits	
	<i>Communicating knowledge and understanding</i> The student will spur communications by means of interaction with teacher and of oral and written exam	
	<i>Capacities to continue learning</i> It will be evaluate by means of discussions during the lecture among teacher and students	

Contents	•	Heredity and variability. Genotype and phenotype. DNA,
		genes, organism and environment. Causes of genetic
		variation. Reproduction and transmission of characters
		(chromosomes, cariotype, genetic aspects of mitosis and
		meiosis, life cycles). The role of inter- and intra-species
		crosses in genetics and agriculture.
	•	Mendelian inheritance. Mendel's experiments and
		principles. Selfing and backcrossing. Heterozygosity
		reduction and consequences for breeding. Statistical
		analyses of gene segregation: the \Box ^{\Box} test. Chromosome
		theory of heredity. Sex linked characters. Multiple alleles
		and plant incompatibility. Interactions between alleles and
		between genes. Environment and gene expression.
		Elements of non-mendelian inheritance: extranuclear
		inheritance
	•	Genetic linkage and mapping in eukaryotes. Gene
		linkage. Crossing over and recombination. Testing for
		linkage among two or three genes. Genetic maps.
	•	Structure and function of genes. DNA and RNA.
		Chromosome organisation. DNA replication. Gene-trait
		relationships. Classic theory of gene function.
	٠	Transcription and translation of genetic
		information The surgest of transmistion and surgestion DNA
	•	The process of transcription and gene expression. RNA molecules and processing. Elongation and termination of
		RNA transcripts. The characteristics of the genetic code.
		Translation of genetic information.
	•	Recombinant DNA and agriculture. Restriction
		enzymes. Cloning vectors and DNA cloning. Gene
		libraries. Clone identification. Polymerase Chain Reaction
		(PCR). Identification of DNA polymorphism and applications. Genetic transformation and approaches to
		gene transfer.
	•	Gene mutations. Types and origins of mutations. Gene
		mutations, chromosome mutations, genome mutations.
		Auto- and allo-polyploidy.
	•	Genetics of population. Natural variation in
		autogamous and allogamous plant species and in animals.
		Hardy-Weinberg equilibrium. Elements of: changes from Hardy-Weinberg equilibrium, inbreeding depression,
		heterosis.
	•	Quantitative genetics. Qualitative vs quantitative
		traits. Genetic causes of continuous variation. The
		rationale for the analysis of continuous variation. The
		concept of heritability.
	•	Applications of genetics. Genetics and plant and
		animal breeding. The concept of cultivated variety.
		Categories of cultivar types in autogamous and allogamous crops.
Course program		

Bibliography	RUSSEL P.J., 2010. Genetica. Un approccio molecolare (terza edizione), Pearson Italia – Milano,Torino.
	RUSSELL P.J., 2004. iGenetica Fondamenti. EdiSES, Napoli.
	RUSSELL P.J., 1997. Fondamenti di genetica. EdiSES, Napoli.
	LORENZETTI F., S. CECCARELLI, D. ROSSELLINI, F. VERONESI, 2011. Genetica agraria. Genetica e biotecnologie per l'agricoltura (quarta edizione), Pàtron Editore, Bologna.
	BARCACCIA G., FALCINELLI M., 2005. Genetica e genomica. Vol. I: "Genetica generale". Liguori Editore, Napoli.
	SANDERS M.K., BOWMAN J.L., 2013. Genetica. Un approccio integrato. Pearson Italia – Milano, Torino
	GRIFFITH A.J.F., W.M.GELBART, J.H. MILLER, R.C. LEWONTIN, 2000. Genetica moderna. Zanichelli, Bologna.
Notes	
Teaching methods	Power point
Assessment methods	The exam consists of an intermediate written test and a final oral test or only of a final oral test with questions related to the programme, discussion sessions, exercises. The professor might ask to solve in written form a genetic quiz on Mendelian inheritance prior to the oral exam.
Evaluation criteria	Knowledge and understanding
	The student have to be able to reach a sufficient knowledge on: 1) heredity; 2) DNA replication, transcription and translation; 3) gene association; 4) quantitative and population genetics
	Applying knowledge and understanding
	The student have to be able to understand topics acquired during classes
	Making informed judgements and choices The student have to be able to speculate the mechanism of genetic control of the most important bio-agronomic traits
	Making informed judgements and choices The student have to be able to speculate the mechanism of