Corso di Laurea di I livello in Scienze Animali e Produzioni Alimentari Anno Accademico 2017-18

Programma dell'insegnamento di **Biochimica delle Macromolecole** dell'esame integrato di **Biochimica Generale**

Anno di corso	Ι	
Semestre	II	
N° CFU	4	
Ore complessive	32	

Programma di studio ed argomenti di lezione dell'insegnamento

Principi di chimica organica.

Composizione chimica degli organismi viventi: Caratteristiche generali delle macromolecole biologiche. Carboidrati. Lipidi. Nucleotidi. Amminoacidi.

Proteine: Legame peptidico e peptidi, proprietà e funzioni. Struttura primaria, secondaria, terziaria e quaternaria delle proteine. Emoglobina e Mioglobina.

Gli enzimi e la catalisi enzimatica. Natura degli enzimi. Concetti generali della catalisi enzimatica. Meccanismo della catalisi enzimatica. Classificazione enzimi. Effettori e inibitori dell'attività enzimatica. Regolazione dell'attività enzimatica.

Bioenergetica e metabolismo: La termodinamica della materia vivente. Composti ad alto livello energetico. Carica energetica cellulare e reazioni dell'ATP. Reazioni di ossido-riduzione di interesse biologico.

Fosforilazione ossidativa: La catena respiratoria. Teoria chemiosmotica della fosforilazione ossidativa. Metabolismo dei carboidrati nelle specie di interesse veterinario: Glicolisi. Glicogenolisi e glicogenosintesi. Gluconeogenesi. Ciclo di Cori. Ciclo dei pentoso-fosfati. Regolazione del metabolismo dei carboidrati.

Ciclo dell'acido citrico: Le reazioni del ciclo e loro regolazione. Reazioni anaplerotiche del ciclo.

Metabolismo dei lipidi nelle specie di interesse veterinario: Beta-ossidazione degli acidi grassi. Biosintesi degli acidi grassi. Sintesi dei corpi chetonici

Metabolismo delle proteine nelle specie di interesse veterinario: Turnover delle proteine. Degradazione degli amminoacidi. Eliminazione dell'azoto proteico. Ciclo dell'urea

Modalità di erogazione della didattica

Lezioni frontali: CFU 3 Ore 24 Esercitazioni pratiche: CFU 1 Ore 8

Frequenza

Obbligatoria NO

Prerequisiti

Propedeuticità: CHIMICA

Lo studente deve aver inoltre acquisito conoscenze e competenze relative ai concetti generali di fisica, con particolare riguardo alla termodinamica, e di citologia, con particolare riguardo alla conoscenza della struttura e funzionalità della cellula eucariotica.

Obiettivi formativi specifici dell'insegnamento

Il corso ha l'obiettivo di fornire agli studenti le conoscenze di base relative alle componenti molecolari e alle principali vie metaboliche della cellula, correlate con la produzione di energia e il suo utilizzo, che concorrono alla funzionalità metabolica cellulare e dell'intero organismo.

Risultati d'apprendimento attesi

Al termine del corso lo studente deve avere acquisito:

Conoscenze: Lo studente dovrà conoscere le caratteristiche strutturali e funzionali delle macromolecole biologiche, nonché i concetti fondamentali della biochimica cellulare, con particolare riferimento alle conoscenze ed alle tecniche più strettamente attinenti il campo veterinario e nutrizionale, nonchè le buone prassi di laboratorio.

Competenze: Al termine del corso lo studente dovrà essere in grado di inserire le conoscenze acquisite in un contesto interdisciplinare per poter operare nell'ambito dell'alimentazione veterinaria e, in senso più ampio, nel campo nutrizionale umano e animale.

Abilità: lo studente dovrà essere in grado di svolgere le attività di laboratorio di base ed eseguire le più comuni tecniche analitiche

Metodi didattici

La parte teorica del corso si effettua in aule dotate di pc, proiettore e connessione internet, avvalendosi di diapositive in power point. Le lezioni pratiche si effettuano nel laboratorio opportunamente attrezzato della sezione di biochimica. Gli studenti, suddivisi in piccoli gruppi di massimo 8 persone e assistiti dal docente, si approcceranno, individualmente o in piccoli gruppi, alle tecniche di laboratorio oggetto dell'esercitazione

Accertamento dell'acquisizione delle conoscenze/competenze

Prove in itinere: SI Esame di profitto finale: Orale

Modalità di svolgimento dell'esame e criteri di valutazione dell'apprendimento :

L'esame si svolge attraverso una prova orale che, congiuntamente alla prova di verifica per la disciplina "Biochimica dei residui" concorre alla definizione dell'esame di Biochimica Generale. Lo studente dovrà essere in grado, utilizzando l'appropriata terminologia scientifica, di correlare il ruolo delle macromolecole nelle vie metaboliche cellulari in relazione allo stato dell'organismo in toto

Libri di Testo e materiale didattico di riferimento

- D.R. Ferrier Le basi della biochimica Zanichelli Editore
- Appunti dalle lezioni
- Slides proiettate a lezione (reperibili su piattaforma google drive)

Sedi delle attività didattiche:

Aula: n. 9 "Minoia" - Dipartimento di Medicina Veterinaria, strada provinciale 62 per Casamassima, km. 3, 70010 Valenzano (BA)

Laboratori: Laboratorio della sezione di Biochimica - Dipartimento di Medicina Veterinaria di Bari, strada provinciale 62 per Casamassima, km. 3, 70010 Valenzano (BA)

Materiale ed abbigliamento di biosicurezza richiesti per la frequenza al corso

Camice bianco per le lezioni in laboratorio

Titolare del corso

Professore CASALINO Elisabetta Dipartimento di Medicina Veterinaria

Strada Prov. Casamassima km.3, 70010 Valenzano (BA)

tel. 0805443864 Fax 0805443864

e-mail elisabetta.casalino@uniba.it

Orario di ricevimento studenti

Tutti i giorni, previo appuntamento

Syllabus

Syllabus	T -		
Conoscenze (opzionale)	<u>argomenti</u>	descrizione	<u>ore</u>
Principi di chimica	La chimica del	Costituenti della materia vivente.	1
organica.	carbonio	Chimica del carbonio:	
Acquisizione di:		Caratteristiche chimiche, stati di	
- conoscenze della chimica		ossidazione del carbonio nelle	
del carbonio nelle		macromolecole di interesse	
molecole di interesse		biologico	
biologico.		Classificazione e nomenclatura	1
- capacità di riconoscere la		degli idrocarburi. Chiralità.	
natura delle biomolecole in		Isomeria: di posizione, ottica,	
funzione del gruppo	Generalità sui	sterica. Conseguenze funzionali	
funzionale	composti organici	dell'isomeria.	
- capacità di comprendere i		Gruppi funzionali: definizione,	1
meccanismi di reazione		struttura, caratteristiche chimiche	
che coinvolgono le		e reazioni.	
macromolecole nei			
processi biologici			
		Composti organici:Alcoli.aldeidi,	2
	Principali	chetoni, acidi carbossilici,	
	composti organici	ammine: struttura, nomenclatura e	
		reazioni.Composti aromatici.	
		Eterocicli	
Macromolecole		Carboidrati: Monosaccaridi.	2
biologiche: carboidrati,		Disaccaridi e oligosaccaridi.	
lipidi, amminoacidi e	Carboidrati	Derivati dei monosaccaridi.	
proteine		Polisaccaridi; di riserva e	
		strutturali. Struttura e funzione	
Acquisizione di:		Nucleotidi e polinucleotidi.	1
-Capacità di riconoscere le	Nucleotidi	Struttura e funzione come	
diverse classi di		componenti dei coenzimi e degli	
macromolecole		acidi nucleici	
		Acidi grassi, trigliceridi,	1
-Corretta terminologia per	Lipidi	fosfolipidi, sfingomieline.	
indicare le varie strutture		Struttura - caratteristiche chimiche	
		Amminoacidi: Struttura e funzione	2
-Capacità di riconoscere le	Amminoacidi e	amminoacidi. legame peptidico.	
possibili reazioni a cui	proteine	Proteine: struttura primaria,	
possono andare incontro in		secondaria e terziaria e quaternaria	
relazione alla loro struttura		delle proteine	
Engini	Cinatias	Definizione e classificazione.	1
Enzimi	Cinetica		1
A aquisizione di	enzimatica	Meccanismo d'azione. Cinetica di saturazione	
Acquisizione di: -conoscenze relative al	Inibizione e		
		Inibizione competitiva e non	
ruolo biologico degli enzimi	regolazione enzimatica	competitiva. Regolazione per	
-conoscenze relative alla	enzimatica	feed-back positivo e negativo,	2
		regolazione covalente e allosterica. Cenni sull'utilizzo	2
possibilità di utilizzo degli			
enzimi in campo		degli enzimi come marker	
veterinario, farmacologico e alimentare		diagnostici e nelle applicazioni biotecnologiche alimentari	
C anniemate		olotechologiche annientari	

Bioenergetica e fosforilazione ossidativa	Cenni di bioenergetica	Reazioni redox cellulari. Composti fosforilati ad alto livello		
		energetico		
Acquisizione di: -capacità di correlare i processi fisici ai meccanismi biochimici di	ESERCIT	AZIONI	1	
produzione e utilizzo energia				

	Fosforilazione ossidativa	Trasporto elettronico e accoppiamento energetico. Inibitori e disaccoppianti	
Metabolismo delle macromolecole	Metabolismo del glucosio	Glicolisi aerobica ed anaerobica. Fermentazione lattica, acetica, alcolica.	1
Acquisizione di: -conoscenze relative al metabolismo di glucidi,		Riossidazione aerobica di NADH Decarbossilazione ossidativa del piruvato. Ciclo di Krebs	1
lipidi e amminoacidi, e della capacità di		Glicogenolisi e glicogenosintesi. Shunt dei pentosi fosfati	1
riconoscere le principali differenze metaboliche che caratterizzano alcuni organi, descrivendo i		Gluconeogenesi: Substrati e reazioni della gluconeogenesi. Interrelazioni tra metabolismo glucidico e lipidico. Ciclo di cori	1
principali meccanismi di regolazione e integrazione dei segnali	Metabolismo dei lipidi	Idrolisi trigliceridi e beta ossidazione acidi grassi. Regolazione enzimatica e ormonale	1
		Sintesi dei corpi chetonici. Relazione con la gluconeogenesi. Biosintesi degli acidi grassi e regolazione	2
	Metabolismo delle proteine	Digestione endocellulare delle proteine; processi di decarbossilazione, deamminazione e transamminazione degli amminoacidi.	1
		Organicazione ammoniaca e sintesi urea; eliminazione azoto extraepatico; eliminazione dell'azoto nelle diverse specie animali	1

Acquisizione della capacità	Soluzioni	Preparazione soluzioni e controllo	2	
di eseguire le procedure	Tampone	pH		
analitiche di base del	Tecniche	Separazione eritrociti mediante	2	32
laboratorio di biochimica	separative	centrifugazione		
	Tecniche	Allestimento ed esecuzione del	2	
	spettroscopiche	dosaggio proteico con il metodo		
		del biureto		
	Tecniche	Separazione acidi nucleici	2	
	elettroforetiche	mediante elettroforesi su gel di		
		agarosio		