Main course information		
Academic subject	Biologia Molecolare	
Degree course	Scienze Biologiche	
Degree class	L-13	
ECTS credits (CFU)	10	
Compulsory attendance	YES	
Teaching language	Italian	
Accademic Year	2019/2020	

Professor/Lecturer	
Name & SURNAME	Palmiro Cantatore
email	palmiro.cantatore@uniba.it
Tel.	080-5443378
Tutorial time/day	Monday, Wednsday: h 11-13

Course details	Pass-fail exam/Exam with mark out of 30	SSD code	Type of class
Course decails		BIO/II	Lecture/workshop

Teaching schedule	Year	Semester
		lst

Lesson type	CFU/ECTS	Lessons (hours)	CFU/ECTS lab	Lab hours	CFU/ECTS tutorial/workshop	Tutorial/workshop hours	CFU/ECTS field trip	Field trip Hours
	9	72	1	12	0	0	0	0

Time	Total hours	Teaching hours	Self-study hours
management	250	84	166

Academic	First lesson	Final lesson
Calendar	01.10.2019	19.01.2020

Syllabus	
Course entry requirements	Knowledges of OrganicChemistry and Biological Chemistry
Expected learning outcomes (ac	cording to Dublin Descriptors) (it is recommended that they are congruent with the
learning outcomes contained in	A4a, A4b, A4c tables of the SUA-CdS)
Knowledge and understanding	Learn the structural characteristics of genes and mechanisms of replication transcription, translation and regulation of gene expression
Applying knowledge and	Acquisition of: biomolecular and biotechnological concepts and of methodologies for
understanding	biological research
Making informed judgements	Acquisition of conscious autonomy in areas related to evaluation e
and choices	interpretation of experimental data
	Acquisition of adequate skills and tools for communication in Italian and foreign
	language (English), in written and oral form, and through the use of graphic and formal
	languages.
Communicating knowledge and	The verification will take place by means of different examination tests. The ability to
understanding	communicate in English will be acquired through a specific course focused on the use of
	scientific language in the field of biological themes.
	Acquisition of computer skills related to data processing and presentation both through
	frontal teaching and through e-learning.
	Acquisition of skills that favor the development and deepening of the
Capacities to continue learning	skills, with particular reference to the consultation of bibliographic material, to the

consultation of databases and other information on the net, to the use of basic
cognitive tools for continuous updating

Sylabus	
Sylabus Course content	 I. STRUCTURE OF NUCLEIC ACIDS: The molecular nature of genes: role of DNA as a genetic material. Nucleotides. The components of DNA. The RNA. The double helix structure of DNA. Major groove and minor groove. Alternative forms of the double helix: the helix A and the helix Z. Plasticity of the DNA structure. Unusual DNA structures. DNA supercoiling. Topoisomerase and gyrase. Genes and genomes: general features of prokaryotic and eukaryotic genomes. The human genome. Nucleosomes and chromatin. DNA packaging 2. DNA REPLICATION AND REPAIR: Semi-conservative DNA replication. Meselson and Sthal experiment. Unidirectional and bidirectional replication in prelication fork. DNA synthesis at the level of the replication fork: DNA polymerase III. Beginning of replication. Selection of origins and regulation of prelication in prokaryotes and eukaryotes. Termination of replication in prokaryotes and eukaryotes. DNA damage induced by physical, chemical and biological agents. Repaire systems in E. coli and eukaryotes: direct repair; repair of pairing errors; base excision repair; nucleotide excision repair; SOS response; repair by recombination. 3. GENe REARRANGEMENTS: Homologous recombination. Haliday model. Recombination with double helix cut. Enzymes involved in recombination and their mechanism of action. Site-specifict recombination. Effects of site-specific recombination. Integration of lambda phage. Transposition of DNA 4. SYNTHESIS AND MATURATION OF RNA. RNA: types and characteristics. RNA synthesis. RNA polymerase of E.coli. Initiation of the transcription Elongation. Intrinsic transcription termination and rine gravito in tho chromosomal DNA. 4. SYNTHESIS AND MATURATION OF RNA. RNA: types and characteristics. RNA synthesis. RNA polymerase of E.coli. Initiation of the transcription gotts: eukaryotic RNA polymerases. Eukaryote; ropmoters. Recognition of promoters and beginning of transcription termination and rho dependent termination. Antitermination Post- transcrip
	 prokaryotes and eukaryotes. Protein synthesis inhibitors. 6. REGULATION OF GENE EXPRESSION IN PROCARIOTS: The operon of lactose. Regulation by the repressor and the CAP protein. The Arabinose operon. Tryptophan operon: attenuation. Regulation of the life cycle of the lambda phage. Role of CI and the Cro protein in the transition between the lytic and lysogenic cycle of the lamda phage TECHNIQUES OF MOLECULAR BIOLOGY 1. CENTRIFUGAL TECHNIQUES 2. EXTRACTION OF NUCLEIC ACIDS

	3. QUANTITATIVE ANALYSIS OF NUCLEIC ACIDS
	4. ELECTROPHORESIS OF NUCLEIC ACIDS
	5. RESTRICTION ENDONUCLEASES
	6. LABELLING OF NUCLEIC ACIDS
	7. DENATURATION, RINATURATION AND HYBRIDATION
	8. PCR
	9. DNA SEQUENCING:, Sanger method, automatic sequencing. Introduction to NGS
	methods
	MOLECULAR CLONING TECHNIQUES: Introduction. Preparation of the DNA
	fragment (s) to be cloned. Covalent union of DNA segments. Cloning vectors.
	Transfer to a host cell. Recombinant DNA selection. Cloning vectors based on the
	phage genome. Insertion vectors. Replacement vectors. Gene library.
	WATSON J. et al Biologia molecolare del gene - Zanichelli
	AMALDIF., BENEDETTIP., PESOLE G., PLEVANIP Biologia Molecolare – CEA
	R.F. WEAVER - Biologia Molecolare- Ed. McGraw-Hill Seconda Edizione
Course books/Bibliography	G. PARISI - Estrazione, Purificazione e Caratterizzazione degli Acidi Nucleici - CLEUP
	Editrice Padova. Vol I, III
	T.A. BROWN - Biotecnologie Molecolari - Zanichelli
	J.W. DALE e M. VON SCHANTZ -Dai Geni ai Genomi – EdiSES
Notes	
	The teaching of the course includes both lectures and exercises of
	laboratory. The frontal lessons are carried out on the blackboard using teaching aids
Teaching methods	such as the video projection of summary slides. The practical exercises are carried
reaching methods	out in groups of about 20 students, taking care that the students personally carry out
	the various experiments. Students are required to carry out and deliver written
	reports of the exercises carried out at the end of the course.
Assessment methods (indicate	
at least the type written, oral,	Oral Examination and Laboratory Reports
other)	
Evaluation criteria (Explain for	
each expected learning	The student must demonstrate knowledge of the basic mechanisms related to the
outcome what a student has to	structure and function of nucleic acids. Furthermore the student must demonstrate
know, or is able to do, and how	knowledge of the basic techniques of Molecular Biology carried out during the
many levels of achievement	Course.
there are	
Further information	