Main course information		
Academic subject	Organic Chemistry I.C.	
Degree course	Biological Sciences	
Classe di laurea	LI3	
ECTS credits (CFU)	7	
Compulsory attendance	Yes	
Teaching language	Italian	
Accademic Year	2019/2020	

Docente responsabile	
Name & SURNAME	Angelo NACCI
email	angelo.nacci@uniba.it
Tel.	+39.080.544.2499
Tutorial time/day	Tuesday – Wednesday h 10.00 - 12.00

Course details	Study area	SSD code	Type of class
		CHIM/06	Lecture/workshop

Teaching schedule	Year	Semester
reaching schedule	I	II

Modalità erogazione	CFU/ECTS	Lessons (hours)	CFU/ECTS lab	Lab hours	CFU/ECTS tutorial/workshop	Tutorial/workshop hours	CFU/ECTS field trip	Field trip Hours
	5	40	-	-	2	30	-	-

Time	Total hours	Teaching hours	Self-study hours
management	175	70	105

Academic	First lesson	Final lesson
Calendar	<mark>02.03.2020</mark>	12.06.2020

Syllabus	
Course entry requirements	-
Expected learning outcomes (ac	cording to Dublin Descriptors) (it is recommended that they are congruent with the
learning outcomes contained in	A4a, A4b, A4c tables of the SUA-CdS)
Knowledge and understanding	Basic knowledge of Chemistry
Applying knowledge and understanding	Knowing how to interpret the fundamental laws of organic chemistry. Acquisition of wide-ranging methodological and instrumental procedures for biological research
Making informed judgements and choices	Acquisition of conscious autonomy in areas related to the recognition of organic functional groups, to the synthesis and reactivity of organic molecules and to their bioactivity
Communicating knowledge and understanding	Acquisition of vocabulary and terminology related to organic chemistry in order to understand the concepts of related disciplines such as biochemistry and molecular biology and to deepen the topics through specific bibliography
Capacities to continue learning	Acquisition of the ability to investigate and read the evolution of the discipline with a critical spirit, through the consultation of texts and databases

Syllabus	
Course content	Review of the structure of the atom. Electronic configuration and chemical bonding. Carbon hybridization. Alkanes : Nomenclature. Position and conformational isomerism. Origin: oil. Halogenation and combustion reactions. Cycloalkanes. Bayer theory. Cyclohexane. Conformational and geometric isomerism in cycloalkanes. The
	concept of chemical reaction. Activation energy. Reaction mechanisms. The concept

	of electrophile and nucleophile. Carbocations and carbanions. Acids and bases
	according to Brønsted and according to Lewis. pKa scale. Alkenes and alkynes :
	Nomenclature. Geometric isomerism. Electrophilic addition reactions to alkenes:
	general mechanism. Addition reactions: hydracids, water, halogens, hydroboration.
	Regiochemistry of addition reactions: Markovnikov's rule. Oxidation reactions with
	peracids, permanganate and ozone.
	Stereochemistry of oxidation reactions. Notes on the polymerization reactions of
	alkenes. Aromatic hydrocarbons. Benzene: structure, aromaticity and stabilization
	energy. Naphthalene and anthracene. Mechanism of aromatic electrophilic substitution
	reactions. Friedel-Crafts halogenation, nitration, alkylations and acylations.
	Disubstitution: directing effect on aromatic ring. Optical isomerism : Chirality and
	symmetry elements. Optical activity, polarized light and rotating optical power.
	Enantiomers, racemes and diastereoisomers. Meso compounds and epimers. Absolute
	configuration of chiral carbons. Alkyl Halides : Nomenclature. Aliphatic nucleophilic
	substitution reactions SNI and SN2: Stereochemistry. Elimination reactions.
	Competition between substitution and elimination mechanisms. Alcohols and
	Glycols : Nomenclature. Acidity of alcohols. Alkoxides. Dehydration of alcohols to
	alkenes. Williamson synthesis of ethers. Alkyl halides from alcohols. Oxidation of
	alcohols to carbonyl compounds. Glycols and glycerol: synthesis and properties.
	Ethers, epoxides and phenols: nomenclature and synthesis. Aldehydes and
	Ketones: Nomenclature. Carbonyl structure. Nucleophilic additions to carbonyl:
	Acetals and hemiacetals, Aldimine. Stereochemistry of nucleophilic additions to the
	carbonyl. Reduction and oxidation. Enols and enolates: keto-enol tautomerism and its
	importance in metabolic processes. Carboxylic Acids : Nomenclature. Carboxyl
	structure. Acidity. Synthesis methods. Derivatives of carboxylic acids. Acyl halides,
	nitriles and anydrides. Fatty acids and their salts. Soaps. Esters : Nomenclature. Fisher
	esterification. Saponification. Lipids, phospholipids and their biological importance.
	Amides: Structure and Synthesis. Biological importance of amides. Carbon-carbon
	bond formation reactions: Aldol condensations. Claisen reactions. Similarity
	between Claisen condensation and that of thiolesters such as coenzyme A in the
	biosynthesis of fatty acids. Amines: Nomenclature. Basicity of amines. Synthesis of
	amines: aminolysis of alkyl halides. Reductive amination and reduction of nitriles.
	Biogenic amines. Carbohydrides : Aldoesosi: Glucose, mannose and galactose.
	Fructose. Anomers. Epimers. Glucosides and their biological importance. Pentoses:
	ribose, 2-deoxyribose, xylose, arabinose and ribulose, N-ribosidi, Glucosamine,
	Disaccharides: maltose, cellobiose, lactose, sucrose, Polysaccharides: starch, cellulose,
	glycogen and their structure. Aminoacids : types of amino acids. Chemical-physical
	characteristics: solubility, acidity and basicity, Isoelectric point. Stereochemistry.
	Synthesis of amino acids. Volhard method and transamination. Peptide bond.
	Proteins : primary, secondary, tertiary and guaternary structure. Denaturation. ATP
	and notes on metabolism and biochemical energy. Aromatic heterocycles : pyrrole.
	furan, thiophene, imidazole, tiazole, pyridine, pyrimidine and purine. Purine and
	pyrimidine bases. Keto-enol tautomerism in purine and pyrimidine bases.
	Nucleotides and summary of nucleic acids.
Course has by /Diblig and has	I) "Chimica Organica" Brown – Foote – Iverson – Anslyn – EdiSES.
Course books/Bibliography	2) "Chimica Organica" Un approccio biologico - I. McMurry – Zanichelli
Notes	PDF file to complete the study
Teaching methods	Frontal lessons using a traditional blackboard
Assessment methods (indicate	<u> </u>
at least the type written oral	Oral interview and use of traditional blackboard
other)	
Evaluation critoria (Evalain for	
	Students must demonstrate: - full mastery in writing and nomenclature of the main
each expected learning	classes of organic compounds: - ability to orientate in the reaction mechanisms and
outcome what a student has to	predict the products of a single organic reaction: - mastery of storeochomistry - good
know, or is able to do, and how	knowledge of the main classes of biomolecules: - ability to make connections with the
many levels of achievement	contents of other courses
there are	
Further information	