Main course information		
Academic subject	Genetic Methodologies (MetBio18)	
Degree course	Biological sciences	
Degree class	L-13	
ECTS credits (CFU)	5	
Compulsory attendance	Yes	
Teaching language	Italian	
Accademic Year	2019/2020	

Professor/Lecturer	
Name & SURNAME	Maria Francesca Berloco
email	mariafrancesca.berloco@uniba.it
Tel.	080-5443391(laboratorio) - 080-5443393 (ufficio)
Tutorial time/day	Wednesday 11.00-13.00 or on appointment by e-mail

Course details	Pass-fail exam/Exam with mark out of 30	SSD code	Type of class
Course details	Exam with mark out of 30		Lecture/workshop

Teaching schedule	Year	Semester
reaching schedule		II

Lesson type	CFU/ECTS	Lessons (hours)	CFU/ECTS lab	Lab hours	CFU/ECTS tutorial/workshop	Tutorial/workshop hours	CFU/ECTS field trip	Field trip Hours	
	3	24	2	24	-	-	-	-	

Time	Total hours	Teaching hours	Self-study hours
management	125	48	77

Academic	First lesson	Final lesson
Calendar	March 2020	June 2020

Syllabus	
Course entry requirements	Genetics and Molecula Biology
Expected learning outcomes (ac	cording to Dublin Descriptors) (it is recommended that they are congruent with the
learning outcomes contained in	A4a, A4b, A4c tables of the SUA-CdS)
Knowledge and understanding	Acquisition of knowledge of the fundamentals of Molecular Genetics, operational tools for understanding genetic methodologies applied to yhe study of genomes, heredity and genetic engineering.
Applying knowledge and understanding	Ability in the application of biomolecular broad spectrum methodologies in genetics and genetic engineering.
Making informed judgements and choices	Students must demonstrate to have acquired ability to choose and apply the most appropriate molecular-genetic methodologies in an autonomous way.
Communicating knowledge and understanding	Acquisition of the correct terminology in the genetics field; students must exhibit skills for communication through the use of correct formal genetics language.
Capacities to continue learning	Acquisition of the ability to investigate issues and topics related to the teaching and follow the evolution of the discipline with a critical spirit, through the consultation of texts, scientific papers and databases.

Syllabus

	Г
	Methods of genetic analysis
	Polymorphism
	High-resolution chromosome Maps
	Genetic Maps, Physical Maps, Cytogenetic Maps
	Using Genome Maps in Genetic analysis.
	Forward and Reverse Genetics
	Mechanisms of Spontaneous Mutation
	Mutation induction and mutants selection
	Transposable Elements and molecular consequences of transposition
	Rearrangements mediated by transposable elements
	P element in Drosophila and Hybrid dysgenesis
	Genotype-phenotype relationships
	Cloning a Specific Gene
Course content	Positional cloning
	Cloning a gene by transposon tagging
	Gene targeting in mouse
	Genome editing CRISPR-cas mediated and potential applications
	Expressing Eukaryotic genes in Bacteria
	Choosing an expression Vector
	Recombinant DNA Technology in Eukaryotes
	Genetic Engineering in animals
	Transgenic Eukaryotes
	Laboratory experiences
	Laboratory experiences are conducted in parallel with frontal lessons.
	Use of drosophila as model organism to genetically map a gene
	Recognize wild type and mutants phenotypes
L	

	Mapping genes : white, yellow and forked
	Crosses setting up
	F1 and F2 progeny analysis
	Calculation of map distances
	Cytogenetic analysis of chromosomes
	Dissection and preparation of polytene chromosomes
	Microscope analysis
	Fish
	Recognize a human karyotype
	Transgenic Eukaryotes
	Drosophila embryos microinjection
	Database as Flybase, NCBI: Consultation of database and tools; The OMIM –NCBI database.
	Protein purifications and analysis by acrylamide gel electophoresis.
Course books/Bibliography	Analisi genetica avanzata. Philip Meneely; McGraw-Hill
	Integration with other books of Genetics and Molecular Genetic available in
Notes	library and Lecture Power Points (no lecture notes) are available as support to
	the study.
Teaching methods	Lectures with the use of PowerPoint; workshops at the blackboard, lab experiences.
Assessment methods (indicate	· ·
at least the type written, oral,	Oral exam.
other)	
Evaluation criteria (Explain for	
each expected learning	In the evaluation of the exam and in the assignment of the final grade, will be taken
outcome what a student has to	into consideration the acquired level of knowledge of the course contents, the ability
know, or is able to do, and how	to choose the appropriate methodological approach for a given genetics problem, the
many levels of achievement	ability to make connections with other disciplines.
there are	
Further information	