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Introduction

Cross-section Dependence (CSD)

CSD’s are pervasive in panels, though it was usual to assume
the absence of CSD.

Consequences of ignoring CSD can be serious: pooling may
introduce severe biases (Phillips and Sul, 2003).

In spatial econometrics a natural way to characterise
dependence in terms of distance, but for most economic
problems no obvious distance measure.

Trade between countries reflects not just geographical
distance, but transport costs, policy and historical factors as
well as the multilateral barriers (Anderson and van Wincoop,
2003).

For large T straightforward to test for CSD (Pesaran, 2015).
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We consider the generic panel data model (Serlenga and Shin,
2007):

yit = β′xit +λ′zi +π′ist + εit, i = 1, ..., N, t = 1, ..., T, (1)

xit = (x1,it, ..., xk,it)
′ is a k × 1 vector of variables that vary

over individuals and time periods β = (β1, ..., βk)
′;

zi = (z1,i, ..., zg,i)
′ is a g × 1 vector of individual-specific

variables with λ = (λ1, ..., λg)
′ ;

st = (s1,t, ..., ss,t)
′ is an s× 1 vector of observed factors with

πi = (π1i, ..., πsi)
′.
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To address heterogeneous individual and time effects, consider
one- and two-way error components specifications:

εit = αi + uit (2)

εit = αi + θt + uit (3)

αi is an individual effect correlated with xit and zi;

θt is the common time effects;

uit is a zero mean idiosyncratic disturbance.
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Representation of CSD via Unobserved Factors

The most popular approach is to add heterogeneous factors:

εit = αi + γ ′if t + uit, (4)

where f t is the c× 1 vector of unobserved factors with
heterogeneous parameter vector γi = (γ1i, ..., γci)

′, and uit is
a zero mean idiosyncratic disturbance.

Factors expected to provide good proxy for any remaining
complex time-varying patterns associated with multilateral
resistance and globalisation trends.

CSD explicitly allowed through heterogeneous loadings γi.

If f t is correlated with xit, then not allowing for CSD by
omitting f t causes the conventional FE estimates of βi to be
biased (Pesaran, 2006; Bai, 2009).
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Representations of CSD via Spatial Effects

Spatial models allow the N × 1 vector of errors,
εt = (ε1t, ..., εNt)

′ to follow:

εt = Wεt + ut

where ut = (u1t, ..., uNt)
′ is cross-sectionally independent and

W is a known (possibly time-varying) spatial weights matrix.

The structure of CSD is related to the location and the
distance on the basis of a pre-specified weight matrix, W .

Hence, cross section correlation is represented by means of a
spatial process, which relates each unit to its neighbours.
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Consider a spatial gravity (SARAR) model (MSS, 2015):

yit = ρy∗it + β′xit + λ′zi + αi + vit, i = 1, ..., N, t = 1, ..., T,
(5)

vit = λv∗it + uit (6)

where y∗it =
∑N

j 6=iwijyjt is the spatial lagged variable and

v∗it =
∑N

j 6=iwijvjt is the spatial autoregressive error term,
wij’s are the spatial weight with the row-sum normalisation,∑

iwij = 1, and uit is a zero mean idiosyncratic disturbance.

ρ is the spatial lag coeffi cient and λ the spatial error
coeffi cient.

These capture spatial spillover effects and measure the
influence of the weighted average of neighboring observations.
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Weak and Strong CSD

With weak CSD, dependence is local and decline with N ;
each unit is spatially correlated only with near neighbors.
With strong CSD, the dependence influences all units (e.g.
common or dominant factors).
For weak dependence, all the eigenvalues of the covariance
matrix of the errors are bounded as N →∞.
For strong dependence, the largest eigenvalue → ∞ with N .
Bailey et al. (2016) characterise strength of dependence as
α = ln(n)/ ln(N), where n is the number of units with
nonzero factor loadings.
For strong factor, α = 1.
α < 1/2 indicates the weak factor.
1
2 ≤ α ≤

3
4 represent a moderate degree of CSD.

The implications are different depending on whether f t’s are
nuisance parameters or they are the parameters of interest.
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Cross-section Dependence (CD) Test by Pesaran (2015)

CSD captured by non-zero covariance between εit and εjt,

which relates to rate at which 1
N

N∑
i=1

σijt declines with N .

We compute the pair-wise residual correlations by

ρ̂ij =
ε̂′iε̂j√(

ε̂′iε̂i
) (
ε̂′j ε̂j

) , i, j = 1, ..., N and i 6= j,

where ε̂i = (ε̂i1, ..., ε̂iT )′ .
We construct the CD statistic by

CD =

√
2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

√
T ρ̂ij (7)

CD test has the limiting N(0, 1) distribution under the null of
residual cross-section independence, H0 : ρ̂ij = 0.
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The Factor-based Models of Cross Sectionally Correlated Panels

The Factor-based Models

A large number of estimators suggested to deal with CSD.

The market leader appears to be CCE type estimators.

There are a number of issues of interpretation.

It is common in a lot of time-series applications of PCs to
transform the data to make it stationary by differencing.
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The Factor-based Models of Cross Sectionally Correlated Panels

The correlated common effect estimator

If one treats factors as nuisance parameters and removes CSD,
a simple procedure is the CCE estimator (Pesaran, 2006).

Consider the panel data model:

yit = δ′idt + β′ixit + εit with εit = γ ′if t + uit (8)

where yit is a dependent variable, dt is a kd × 1 vector of
variables that do not differ over units (intercept and trend),
xit is a kx × 1 vector of regressors which differ over units, f t
is an r × 1 vector of unobserved factors, which may influence
each unit differently and are correlated with xit, and uit is an
unobserved disturbance with E (uit) = 0 and E

(
u2
it

)
= σ2

i ,
which is independently distributed across i and t.
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The Factor-based Models of Cross Sectionally Correlated Panels

Pesaran suggests to include the cross-section means of yit and
xit as additional regressors, to remove the effect of the
factors.

The consistency holds for any linear combination of the
dependent variable and the regressors subject to the
assumptions that weights wi satisfy:

(i) : wi = O

(
1

N

)
; (ii) :

N∑
i=1

|wi| < K; (iii) :
N∑
i=1

wiγi 6= 0

These clearly hold for the mean:

wi =
1

N
;

N∑
i=1

|wi| = 1;

N∑
i=1

wiγi = N−1
N∑
i=1

γi 6= 0.
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The Factor-based Models of Cross Sectionally Correlated Panels

This involves adding CS means of the dependent and
independent variables:

yit = δ′idt + β′ixit + πyiȳt + π′xix̄t + uit (9)

Assume a single factor and average (8) across units:

ȳt = δ̄
′
zt + β̄

′
ix̄t + γ̄ft + ūt +N−1

∑(
βi − β̄

)′
xit (10)

and thus

ft =
1

γ̄

{
ȳt − δ̄

′
zt − β̄

′
ix̄t − ūt −N−1

∑(
βi − β̄

)′
xit

}
(11)

so ȳt and x̄t provide a proxy for the unobserved factor.
For large N there is no endogeneity problem as the covariance
between ȳt and uit goes to zero.
CCE generalises to many factors and lagged dependent
variables, but requires that γ̄ is non-zero.
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The Factor-based Models of Cross Sectionally Correlated Panels

Pesaran (2006) shows that βi can be consistently estimated by

β̂i =
(
X ′iMDXi

)−1
X ′iMDyi

where yi is a T × 1 vector of the dependent variable for the
ith unit, Xi is a T × kx vector of regressors, and
MD = IT −D (D′D)

−1
D with D consisting of observed

common factor and CS averages, ȳt and x̄t.
For the mean of βi we can use the mean group estimator:

β̂MG =
1

n

n∑
i=1

β̂i.

Also the pooled version:

β̂P =

(
n∑
i=1

X ′iMDXi

)−1 n∑
i=1

X ′iMDyi
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The Factor-based Models of Cross Sectionally Correlated Panels

The CCE is valid with a single or multiple unobserved factors
and does not require the number of factors to be smaller than
the number of observed CS averages.

CCE is easy to compute as OLS and no iteration is needed.
Desirable small sample properties of CCE are demonstrated.

Estimating factors by CS means seems to work better than
estimating them by the PC estimator.

CCE determines the weights a priori rather than estimating
them by PCs. Not estimating the weights seems to improve
the performance of the procedure (Kapetanios et al. 2011).

Remark: Westerlund and Urbain (2013) show that CCE
becomes inconsistent when the factor loadings in y equation
are correlated with the factor loadings in x equation.
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The Factor-based Models of Cross Sectionally Correlated Panels

Panel Data Models with Interactive Fixed Effects

Bai (2009) considers the large N large T panel data model
with interactive fixed effects:

yit = X ′itβ + uit with uit = λ′iF t + εit (12)

where Xit is a k × 1 vector of regressors and f t is an r × 1
vector of unobserved factors.
This model assumes homogeneous parameters.
It is a generalisation of the additive model, nesting FE model:

yit = X ′itβ + αi + ξt + εit = X ′itβ + λ′iF t + εit

where λi = (1, αi)
′ and F t = (t, 1)′.

It allows a richer form of unobserved heterogeneity: e.g. Ft
can represent a vector of macroeconomic common shocks and
λi individual i’s heterogeneous responses.
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The Factor-based Models of Cross Sectionally Correlated Panels

We estimate the model by minimizing:

SSR (β, F,Λ) =

N∑
i=1

(Y i −Xiβ − Fλi)′ (Y i −Xiβ − Fλi)

st
F ′F

T
= Ir, Λ′Λ is diagonal

No closed-form solution, but consistent estimators obtained by
iterations.

Obtain some initial values β(0), such as LS estimators from
regressing Y i on Xi.

Perform PC analysis for Y i−Xiβ
(0) to obtain F (1) and Λ(1).

Next, regress Y i − F (1)λ
(1)
i on Xi to obtain β(1).

Iterate such steps until convergence.
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The Factor-based Models of Cross Sectionally Correlated Panels

The limiting distribution for β̂ depends on assumptions on εit
as well as on the ratio T/N .

If T/N → 0, the limiting distribution of β̂ will be centered
around zero, given that E (εitεjs) = 0 for t 6= s, and
E (εitεjs) = σij for all i, j, t.

If T/N → K > 0, the limiting distribution will not be
centered around zero, a challenge for inference.

Bai (2009) provided a bias-corrected estimator, β̃, whose
limiting distribution is centered around zero.

Assume that T/N2 → 0 and N/T 2 → 0, E
(
ε2
it

)
= σ2

it, and
E (εitεjs) = 0 for i 6= j and t 6= s, then

√
NT

(
β̃ − β

)
→d N (0,Σβ)

The issue of choosing r remains.
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The Factor-based Models of Cross Sectionally Correlated Panels

Extensions

Moon and Weidner (2014) consider the model with lagged
dependent variable as regressors.

Moon and Weidner (2015) show that the limiting distribution
of the LS estimator is not affected by the number of factors,
as long as it is no smaller than the true number.

Lu and Su (2015) propose the adaptive group LASSO (least
absolute shrinkage and selection operator), which can
simultaneously select the regressors and the number of factors.

Westerlund and Urbain (2015) provide a comparison of the
cross-sectional average and principal component estimators.
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The Factor-based Models of Cross Sectionally Correlated Panels

Chudik and Pesaran (2015) propose CCE estimation of
heterogeneous dynamic panel data models with weakly
exogenous regressors.

De Vos and Everaert (2016) extend the CCEP to
homogeneous dynamic panels, and develop a bias-corrected
estimator that is consistent as N tends to infinity, both for T
fixed or large.

Karabiyik Reese and Westerlund (2017) point to a problem
with the CCE approach when the number of factors is strictly
less than the number of observables. The use of too many
observables causes the second moment matrix of the
estimated factors to become asymptotically singular.

More...
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A Nonlinear Panel Data Model of Cross-Sectional Dependence

Nonlinear Panel Data Model of CSD

Kapetanios, Mitchell and Shin (2014) propose a nonlinear
panel data model which can endogenously generate both
‘weak’and ‘strong’CSD.

A given agent’s behaviour is influenced by an aggregation of
the views or actions of those around them.

The model allows for considerable flexibility in terms of the
genesis of herding or clustering type behaviour.

At an econometric level, the model nests various extant
dynamic panel data models. These include panel AR models,
spatial models, and panel-factor models.
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A Nonlinear Panel Data Model of Cross-Sectional Dependence

We propose dynamic nonlinear panel data models:

xi,t = ρ

N∑
j=1

wij (x−i,t−1, xi,t−1; γ)xj,t−1+εi,t, i = 1, ...N, t = 1, ...T,

(13)
where x−i,t = (x1,t, x2,t, ..., xi−1,t, xi+1,t, ..., xNt)

′ and∑N
j=1wij (x−i,t−1, xi,t−1; γ) = 1.

xi,t depends in a nonlinear fashion depending on how wij is
parameterised, on weighted averages of past values of
xt = (x1,t, ..., xNt)

′, where the weights depend on xt−1.

It mimics social interactions between economic units.

This model can accommodate generic forms of CSD.

We place particular emphasis on specifications where weights
depend on xt−1 only through distances, |xj,t−1 − xi,t−1|.
This is easy to analyse, based on a threshold mechanism.
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A Nonlinear Panel Data Model of Cross-Sectional Dependence

Our models provide an intuitive means by which many forms
of CSD can arise in a large panel comprised of variables of a
‘similar’nature that relate to different agents/units.

These variables might be the disaggregates underlying often
studied macroeconomic or financial aggregates, such as
economy-wide inflation or the S&P500 index.

The model allows different economic units to cluster and for
these clusters (and their number) to evolve over time.

The degree of CSD can vary, from a case where it is similar to
factor models to the case of very weak structure.

Our model constitutes the first attempt to introduce
endogenous CSD.
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A Nonlinear Panel Data Model of Cross-Sectional Dependence

Let xi,t denote the agent’s income or the agent’s view of the
future value of some macroeconomic variable, at time t.

Then, we specify:

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + εi,t, (14)

where

mi,t =

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r) ,

{εi,t}Tt=1 is an error process, I (.) is the indicator function and
−1 < ρ < 1.

xi,t is influenced by CS average of a selection of xj,t−1 and
the relevant xj,t−1 are those closest to xi,t−1.
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A Nonlinear Panel Data Model of Cross-Sectional Dependence

A deterministic form of the above model has been analysed in
the mathematical and system engineering literature.

They analyse a continuous form of the restricted version:

xi,t =
1

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ 1)xj,t−1, (15)

where mi,t =
∑N

j=1 I (|xi,t−1 − xj,t−1| ≤ 1).



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

Introduction

A Nonlinear Panel Data Model of Cross-Sectional Dependence

By setting r = 0, we obtain a simple panel autoregressive
model:

xi,t = ρxi,t−1 + εi,t. (16)

Letting r →∞, we obtain the following model

xi,t =
ρ

N

N∑
j=1

xj,t−1 + εi,t, (17)

where past cross-sectional averages of opinions inform, in
similar fashions, current opinions.

The use of such cross-sectional averages has been advocated
by Pesaran (2006) as a means of modelling CSD in the form
of unobserved factors.

In our case, the use of cross-sectional averages is a limiting
case of a ‘structural’nonlinear model.
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A Nonlinear Panel Data Model of Cross-Sectional Dependence

Factor models have the property that both the maximum
eigenvalue and the row/column sum norm of the covariance
matrix of xt tend to infinity as N →∞.
For spatial models, these quantities are bounded.

We show that the column sum norm of the variance
covariance matrix of xt is O(N). The model is more similar to
factor models.

Interestingly, there are versions of (14) that resemble spatial
models.

Our model has a clear parametric structure, which is a feature
shared by dynamic spatial model and more general than spatial
models, as the weighting schemes are estimated endogenously.

The nonlinear model can lie between the two extremes
characterised by weak spatial- and strong factor models.
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A Nonlinear Panel Data Model of Cross-Sectional Dependence

We allow different weights to the selected neighbors as follows:

xi,t = νi +
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)wijxj,t−1 + εi,t

(18)
where we may consider the following weights

wij =
d−2
ij∑N

j=1 d
−2
ij

, dij = |xi,t−1 − xj,t−1| (19)

The estimation can be done in two steps:

First, the consistent estimate of r is obtained;

Then, construct the weights by (271) and estimate the model,
(270).
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MSS (2015) Approach to Modelling Technical Effi ciency in Cross Sectionally Dependent Stochastic Frontier Panels

Mastromarco, Serlenga and Shin (2015) propose a framework
for accommodating both time- and cross-section dependence
in modelling technical effi ciency in stochastic frontier.

The approach enables us to deal with both weak and strong
forms of CSD by introducing exogenously driven common
factors and an endogenous threshold selection mechanism.

Using the dataset of 26 OECD countries over 1970-2010, we
provide the satisfactory estimation results for the production
technology parameters and the effi ciency ranking of individual
countries.

We find positive spillover effect on effi ciency, supporting the
hypothesis that knowledge spillover is more likely to be
induced by technological proximity.

Our approach enables us to identify effi ciency clubs
endogenously.
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MSS (2015) Approach to Modelling Technical Effi ciency in Cross Sectionally Dependent Stochastic Frontier Panels

We begin with the Cobb-Douglas production function:

yit = β′xit + εit, i = 1, ..., N, t = 1, ..., T, (20)

where yit is a logarithm of output of country i at time t, xit a
k × 1 vector of (logged) production inputs, β a k × 1 vector
of structural parameters, and εit is the errors including the
idiosyncratic disturbance (vit) and time varying (logged)
technical ineffi ciency (uit):

εit = vit − uit. (21)

Mastromarco et al. (2013) propose the stochastic frontier
model with unobserved factors for modelling uit:

uit = αi + λ′ift, i = 1, ..., N, t = 1, ..., T, (22)

where αi is (unobserved) individual effects, and ft is an r × 1
vector of unobserved factors that provide a proxy for complex
trending patterns.
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MSS (2015) Approach to Modelling Technical Effi ciency in Cross Sectionally Dependent Stochastic Frontier Panels

Individual country’s total factor productivity (TFP) is likely to
be significantly affected by economic performance of
neighboring or frontier countries.

The productivity shocks are assumed to be spatially correlated:

εt = ρWεt + et, t = 1, ..., T, (23)

where εt = (ε1t, ..., εNt)
′, W = {wij}Ni,j=1 is the N ×N

spatial weight matrix, ρ is a spatial AR parameter, and
et = (e1t, ..., eNt)

′ idiosyncratic disturbances.

The spatial-based approach is likely to produce biased
estimates in the presence of strong CSD.

Factor-based models impose an assumption that the strong
CSD is driven by an exogenously given unobserved factors.

KMS propose an approach that allows the CSD to be
determined endogenously.



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

Introduction

MSS (2015) Approach to Modelling Technical Effi ciency in Cross Sectionally Dependent Stochastic Frontier Panels

Suppose that the product of a country i at time t, Yit, is
determined by labor input and private capital, Lit and Kit. It
is also affected by the Hicks-neutral multi-factor productivity:

Yit = TFPitF (Lit,Kit), (24)

TFPit can be decomposed into the level of technology Ait, a
measurement error wit, and the effi ciency measure τ it:

TFPit = Aitτ itwit. (25)

By writing (24) in log form:

yit = α+ β1kit + β2lit − uit + vit, (26)

with the two-way error components structure given by

εit = vit − uit, (27)

where vit = lnwit and uit = − ln(τ it) is the (time-varying)
technical ineffi ciency.
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MSS (2015) Approach to Modelling Technical Effi ciency in Cross Sectionally Dependent Stochastic Frontier Panels

Innovators consider the behaviour of other agents as:

uit = αi + ρũit(r) + λ′ift. (28)

ũit(r) =
1

mit

N∑
j=1

I
(∣∣u∗t−1 − ujt−1

∣∣ ≤ r)ujt−1, (29)

and r is the threshold parameter that is determined
endogenously and u∗t−1 is the effi ciency of the best performing

country and mit =
N∑
j=1

I
(∣∣u∗t−1 − ujt−1

∣∣ ≤ r).
ũit(r) is a spatial interaction term capturing CS local average
of the best technology.
Such externalities can be captured by a negative ρ.
We measure individual ineffi ciency (Schmidt and Sickles,
1984)

eit = max
i

(uit)−(uit) = max
i

(
αi + ρũit(r) + λ′ift

)
−
(
αi + ρũit(r) + λ′ift

)
(30)
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MSS (2015) Approach to Modelling Technical Effi ciency in Cross Sectionally Dependent Stochastic Frontier Panels

Rewrite the models:

yit = β′xit + εit, i = 1, ..., N, t = 1, ..., T, (31)

εit = vit − uit, (32)

uit = αi + ρũit(r) + λ′ift, (33)

ũit(r) =
1

mit

N∑
j=1

I
(∣∣u∗t−1 − ujt−1

∣∣ ≤ r)ujt−1, (34)

where αi is (unobserved) individual-specific effect, ft is an
r× 1 vector of unobserved factors and λi is an r× 1 vector of
the heterogeneous loading, ũit(r) represents a cluster effect
which is equal to the average effi ciency of countries which are
close to the frontier where u∗t−1 = minj (ujt−1).
The distinguishing feature is the use of unit-specific
aggregates, which summaries past values of effi ciency, and
connects the units that are close to the technology frontier.
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MSS (2015) Approach to Modelling Technical Effi ciency in Cross Sectionally Dependent Stochastic Frontier Panels

We estimate β̂ in (31) by PCCE or IPC, and derive

ε̂it = yit − xitβ̂ with v̂it = vit −
(
β̂ − β

)
xit = vit + op (1).

We get a first proxy of ineffi ciency as êit = maxi (ε̂it)− (ε̂it).
We consider the threshold estimation, where a grid for r is
constructed. We estimate r̂ and ρ̂ jointly by minimising:

V (r, ρ) = min
r,ρ

N∑
i=1

T∑
t=1

êit − ρ 1

mit

N∑
j=1

I
(∣∣ê∗t−1 − êjt−1

∣∣ ≤ r) êjt−1

2

.

(35)
The time-varying individual technical ineffi ciencies can be
consistently estimated by

êit = max
i

(ûit)−(ûit) = max
i

(
α̂i + ρ̂ũit(r̂) + λ̂

′
ift

)
−
(
α̂i + ρ̂ũit(r̂) + λ̂

′
ift

)
(36)

Convert êit to time-varying individual technical effi ciency:

τ̂ it = exp(−êit). (37)
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MSS (2015) Approach to Modelling Technical Effi ciency in Cross Sectionally Dependent Stochastic Frontier Panels

For empirical implementations, we follow Bailey et al. (2016) who
propose a multi-step procedure to deal with both strong and weak
forms of CSD as follows:

1 Test for the existence of CSD by applying the Pesaran (2015)
CD test;

2 If the null of CSD is rejected, we apply the factor-based model
to control for strong CSD.

3 We apply the CD test again to the (de-factored) residuals.
4 If the null of no CSD is rejected, we also apply spatial or
network modelling to the residuals (see (33)).
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The Spatial Autoregressive (SAR) Process

Consider the first-order spatial autoregressive (SAR) process:

yi = λwinY n + εi, i = 1, ..., n, (38)

where Y n = (y1, ..., yn)′ is an n× 1 vector of dependent
variable, win is a 1× n vector of weights, and εi ∼ iid(0, σ2).

We write the model in the matrix form:

Y n = λW nY n +En. (39)

W nY n is called ‘the spatial lag’.

Assuming that Sn (λ) = In − λW n is nonsingular, we have:

Y n = Sn (λ)−1En.
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Consider the regression with SAR disturbance:

Y n = Xnβ +Un, Un = ρW nUn +En (40)

where En has zero mean and variance σ2In.

Un are spatially-correlated across units.

The variance of Un is σ2Sn (ρ)−1 Sn (ρ)−1′.

The off-diagonal elements of Sn (ρ)−1 Sn (ρ)−1′ may be
nonzero, and ui’s are cross-sectionally correlated.
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Spatial autoregressive model with covariates

We generalise SAR process by incorporating exogenous
variables xi. In matrix form,

Y n = λW nY n +Xnβ +En (41)

where En ∼ iid(0, σ2In).

Its reduced form is:

Y n = Sn (λ)−1Xnβ + Sn (λ)−1En.
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Some Intuitions on Spatial Weights Matrix

The jth element of win, wn,ij , represents the link between
the neighbor j and the spatial unit i.

The diagonal of W n is set to zero (wn,ii = 0) because λwin

represents the effect of other spatial units on the spatial unit i.

It is common to make W n row-normalised (the sum of each
row is unity): e.g. the ith row win constructed as
win = (di1, di2, ..., din)/

∑n
j=1 dij , where dij ≥ 0 is a function

of the distance.

When neighbors are adjacent ones, the correlation is local in
the sense that correlations will be stronger for neighbors but
weak for units far away.
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Suppose that ‖ρW n‖ ≤ 1 for matrix norm ‖.‖. Then

Sn (ρ)−1 = In +

∞∑
i=1

ρiW i
n

Notice that ∥∥∥∥∥
∞∑
i=m

ρiW i
n

∥∥∥∥∥ ≤ |ρW n|i
∥∥∥Sn (ρ)−1

∥∥∥
If W n is row-normalized, then∥∥∥∥∥

∞∑
i=m

ρiW i
n

∥∥∥∥∥
∞

≤
∞∑
i=m

∣∣ρi∣∣ =
|ρ|m

1− |ρ|

will become small as m gets larger.
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Un can be represented as

Un = En + ρW nEn + ρ2W 2
nEn + ...,

where ρW n may represent the influence of neighbors, ρ2W 2
n

represents the second layer neighborhood influence, etc.

W nSn (ρ)−1 is a vector of measures of centrality, which
summaries the position of each spatial unit in a network.
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Other generalizations

We may combine SAR with SAR disturbances:

Y n = λW nY n +Xnβ +Un, Un = ρMnUn +En (42)

where W n andMn are spatial weights matrices, which may
not be identical.

Further extension may allow high-order spatial lags:

Y n =

p∑
j=1

λjW jnY n +Xnβ +En (43)

where W jn’s are p distinct spatial weights matrices.
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Estimation Methods

We consider the QML, the 2SLS, and the GMM.

QML has usually good finite sample properties.

MLE is not computationally attractive for higher spatial lags
model, in which case IV and GMM may be feasible (Lee,
2007).
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MLE

For the SAR process, we have the log-likelihood function:

lnLn
(
λ, σ2

)
= −n

2
ln(2π)− n

2
lnσ2 + ln |Sn (λ)| (44)

− 1

2σ2
Y ′nSn (λ)′ Sn (λ)Y n

For the model with SAR disturbances:

lnLn
(
ρ, β, σ2

)
= −n

2
ln(2π)− n

2
lnσ2 + ln |Sn (ρ)| (45)

− 1

2σ2
(Y n −Xnβ)′ Sn (ρ)′ Sn (ρ) (Y n −Xnβ)



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

The Spatial-based Models

The LLF for the SAR model with covariates is

lnLn
(
λ, β, σ2

)
= −n

2
ln(2π)− n

2
lnσ2 + ln |Sn (λ)| (46)

− 1

2σ2
(Y nSn (λ)−Xnβ)′ (Y nSn (λ)−Xnβ)

The LF involves computation of the determinant of
Sn (λ) = In − λW n, which is a function of the unknown
parameter λ, and may have a large dimension n.

Anselin suggest an iterative algorithm between λ and β.

A computationally tractable alternative method is due to Ord
(1975).
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2SLS estimation

The spatial lag W nY n can be correlated with the
disturbance, En. OLS may not be a consistent estimator.

Rewrite (41) as
Y n = Znθ +En (47)

where Zn = (W nY n,Xn) and θ =
(
λ,β′

)′.
Kelejian and Prucha (1998) suggest the 2SLS estimator of θ
using IVs, Qn:

θ̂2SLS =
[
Z ′nQn

(
Q′nQn

)−1
Q′nZn

] [
Z ′nQn

(
Q′nQn

)−1
Q′nY n

]
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The asymptotic distribution of θ̂2SLS follows:

√
n
(
θ̂2SLS − θ

)
→d

N
(

0, σ2 (GnXnβ,Xn)′Qn

(
Q′nQn

)−1
Q′n (GnXnβ,Xn)

)
where Gn = W nS

−1
n .

Kelejian and Prucha suggest the use of linearly independent
variables in (Xn,W nXn) for the construction of Qn.

The optimum IV matrix is (GnXnβ,Xn).

This 2SLS cannot be used for the estimation of the (pure)
SAR process with β = 0.
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GMM

Kelejian and Prucha (1999) suggest GMM estimation:

min
θ
g′n (θ) gn (θ) .

based on three moment equations:

E
(
E′nEn

)
= nσ2;E

(
E′nW

′
nW nEn

)
= σ2tr

(
W ′

nW n

)
;

E
(
E′nW nEn

)
= 0

In this case we have:

gn (θ) =

 Y ′nSn (λ)′ Sn (λ)Y n − nσ2

Y ′nSn (λ)′W ′
nW nSn (λ)Y n − σ2tr (W ′

nW n) ,
Y ′nSn (λ)′W nSn (λ)Y n


The orthogonality conditions, Q′nεn (θ) = 0 provide the
kx × 1 vector of moment conditions, where

εn (θ) = Sn (λ)Y n −Xnβ
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For SAR with covariates, we can obtain other moment
equations.
Consider a finite number of n× n constant matrices,
P 1n, ...,Pmn, each of which has a zero diagonal. Then,
(P jnεn (θ))′ εn (θ) can be used as the moment functions.
We have the following moment conditions vector:

gn (θ) = (P 1nεn (θ) , ...,Pmnεn (θ) ,Qn)′ εn (θ)

Intuitively, as

W nY n = GnXnβ0 +Gnεn, Gn = W nS
−1
n ,Sn = Sn (λ0) ,

and Gnεn is correlated with the disturbance εn in

Y n = λW nY n +Xnβ + εn

Any P jnεn, uncorrelated with εn, can be used as IV for
W nY n as long as P jnεn and Gnεn are correlated.
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The Spatial Dynamic Panel Data (SDPD) Model

The SDPD Models

The dynamic panel data with spatial effect is called the SDPD
model (Yu et al., 2008):

Y nt = λ0W nY nt + γ0Y n,t−1 + ρ0W nY n,t−1 (48)

+Xntβ0 + cn0 +αt0ln + V nt,

where cn0 is n× 1 column vector of fixed effects and αt0’s are
time effects.

γ0 captures pure dynamic effect and ρ0 the spatial-time or
diffusion effect.
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The Spatial Dynamic Panel Data (SDPD) Model

Define

Sn (λ) = In − λW n and Sn ≡ Sn (λ0) = In − λ0W n.

(48) can be rewritten as

Y nt = AnY n,t−1+S−1
n (Xntβ0 + cn0 +αt0ln + V nt) (49)

where An = S−1
n (γ0In + ρ0W n) .

Let $n = diag{$n1, ..., $nn} be the n× n diagonal
eigenvalues matrix of W n such that W n = Γn$nΓn where
Γn is the eigenvector matrix.
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The Spatial Dynamic Panel Data (SDPD) Model

The eigenvalues matrix of An is

Dn = (In − λ0W n)−1 (γ0In + ρ0W n)

such that An = ΓnDnΓn.

As W n is row-normalized, all the eigenvalues are less than or
equal to 1 in absolute value.

Let the first mn eigenvalues of W n be the unity.

Dn decomposed into two parts, one corresponding to unit
eigenvalues ofW n and the other corresponding to eigenvalues
smaller than 1.
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The Spatial Dynamic Panel Data (SDPD) Model

Define Jn = diag{l′mn , 0, ..., 0} with lmn being an mn × 1
vector of ones and Dn = diag{0, ..., 0, dn,mn+1, ..., dnn},
where |dni| < 1 for i = mn + 1, ..., n.

We have

An =

(
γ0 + ρ0

1− λ0

)h
ΓnJnΓn +Bh

n with Bn = ΓnDnΓn

Four cases:

Stable case: γ0 + ρ0 + λ0 < 1 (with some other restrictions).

Spatial cointegration case: γ0 + ρ0 + λ0 = 1 but γ0 < 1.

Unit roots case: γ0 + ρ0 + λ0 = 1 and γ0 = 1.

Explosive case: γ0 + ρ0 + λ0 > 1.
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The Spatial Dynamic Panel Data (SDPD) Model

The direct and indirect impacts

A space-time multiplier in (49) specifies how the joint
determination of the dependent variables is a function of both
spatial and time lags of explanatory variables.

LeSage and Pace (2009) introduce the concept of direct
impact, total impact, and indirect impact.

In a SAR model:

Y n = α0ln + λ0W nY n +

kx∑
k=1

βk0Xnk + εn

The impact of Xnk on Yn is:

∂Y n

∂X ′nk
= (In − λ0W n)−1

k0 βk0 for the kth regressor.
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The Spatial Dynamic Panel Data (SDPD) Model

The average direct impact, average total impact and average
indirect impact are defined as

fk,direct (θ0) ≡ 1

n
tr
(

(In − λ0W n)−1 βk0

)
,

fk,total (θ0) ≡ 1

n
l′n

(
(In − λ0W n)−1 βk0

)
ln,

fk,indirect (θ0) ≡ fk,total (θ0)− fk,direct (θ0) ,

with ln being an n-dimensional column of ones.

Debarsy, Ertur and LeSage (2012) extend to spatial dynamic
panel models.

LeSage and Chin (2016) extend to heterogenous spatial
models.
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The Spatial Durbin Model

The Spatial Durbin Model

Elhorst (2012) propose the general spatial Durbin model:

Y t = τY t−1 + δWY t + ηWY t−1 +Xtβ1 (50)

+WXtβ2 +Xt−1β3 +WXt−1β4 +Ztθ + vt

vt = γvt−1 + ρW vt + µ+ λtiN + εt with µ = κWµ+ ξ

where Y t is an N × 1 vector of the dependent variable, Xt is
an N ×K matrix of exogenous regressors, and Zt is an
N × L matrix of endogenous regressors.
τ , δ and η are scalar parameters on Y t−1, WY t and
WY t−1.
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The Spatial Durbin Model

β1, β2, β3, and β4 are the vectors of the parameters on
exogenous regressors and θ is the L× 1 vector of the
parameters on endogenous regressors.

vt is the N × 1 vector of error term, which may be serially
and spatially correlated.

γ and ρ are the serial and spatial autocorrelation coeffi cient.

µ = (µ1, ..., µN )′ is the N × 1 vector of the spatial-specific
effects, and λt (t = 1, . . . T ) is time effects.

εt = (ε1t, ..., εNt)
′ and ξ are vectors of iid disturbance terms,

with zero mean and finite variance σ2 and σ2
ξ .

Elhorst (2012) acknowledges the estimation complexity due to
numerous identification issues.
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The Spatial Durbin Model

Stationarity conditions

The characteristic roots of the matrix
(I − δW )−1 (τI + ηW ) should lie within the unit circle:

τ < 1− (δ + η)ωmax, if δ + η ≥ 0 (51)

τ < 1− (δ + η)ωmin, if δ + η < 0

−1 + (δ − η)ωmax < τ, if δ − η ≥ 0

−1 + (δ − η)ωmin < τ, if δ − η < 0

where ωmin denotes the smallest (most negative) and ωmax

the largest real characteristic root of W .

Stationarity conditions on the spatial and temporal parameters
in (51) are considerably more diffi cult.
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The Spatial Durbin Model

Estimation methods

The spatial model estimated mainly by the iterative ML
estimation by Anselin (1988).

Three estimation methods follow:

1 the bias-corrected QML estimator
2 the IV or GMM estimator
3 the Bayesian Markov Chain Monte Carlo (MCMC) approach.

Yu et al. (2008) construct a bias-corrected estimator for a
dynamic model with (Y t−1,WY t,WY t−1) and fixed effects.

Lee and Yu (2010d) include time effects, and provide the
bias-corrected LSDV estimator when (N,T ) tend to infinity,
but T cannot be too small relative to N .
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The Spatial Durbin Model

Elhorst (2010d) proposes the FD-GMM to accommodate
endogenous interaction effects; severely biased.

Lee and Yu (2010c) show that a 2SLS estimator is
inconsistent due to too many moments; the dominant bias
caused by endogeneity of WY t. They propose an optimal
GMM estimator.

Kukenova and Monteiro (2009) and Jacobs et al. (2009)
consider a dynamic panel data model with (Y t−1,WY t) and
extend the system GMM to account for endogenous
interaction effects (WY t).

GMM can be used to instrument endogenous regressors.
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The Spatial Durbin Model

The Dynamic Spatial Durbin model

Burridge (1981) recommends the first-order spatial
autoregressive distributed lag model, known as the spatial
Durbin model: Y is regressed on WY , X and WX.

The cost of ignoring spatial dependence in the
dependent/independent variables is relatively high (biased)
whilst ignoring spatial dependence in the disturbances will
only cause a loss of effi ciency (LeSage and Pace, 2009).

The spatial Durbin model produces unbiased estimates, even
if the DGP contains a spatial error.
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The Spatial Durbin Model

Elhorst et al. (2010b) propose a dynamic spatial Durbin
model:

Y t = τY t−1 + δWY t + ηWY t−1 +Xtβ1 +WXtβ2 + vt
(52)

Rewriting (52) as

Y = (IN − δW )−1 (τIN + ηW )Y t−1 (53)

+ (IN − δW )−1 (Xtβ1 +WXtβ2) + (IN − δW )−1 vt,

we can derive the partial derivatives of Y with respect to the
kth explanatory variable of X by[

∂Y
∂x1k

· · · ∂Y
∂xNk

]
t

= (IN − δW )−1 (β1kIN + β2kW )

(54)
The long-term effects can be:

[(1− τ) IN − (δ + η)W ]−1 (β1kIN + β2kW ) (55)
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The Spatial Durbin Model

By continuous substitution of Y t−1 up to Y 1 in (53),

Y = (I − δW )−T (τI + ηW )T Y t−T (56)

+

T∑
p=1

(I − δW )−p (τI + ηW )p−1

×
(
Xt−(p−1)β1 +WXt−(p−1)β2 + vt−(p−1)

)
.

Two global spatial multiplier matrices, (I − δW )−p and
(τI + ηW )p−1, are at work in conjunction with one process
that produces local spatial spillover effects, WXt−(p−1)β2.

Elhorst (2001) suggests to regress Y t on Y t−1, WY t,
WY t−1, Xt, WXt, Xt−1 and WXt−1. This extension
worsens the identification problem.
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The Spatial Durbin Model

The following four restrictions are imposed:

1 β2 = 0: the local indirect effects (spatial spillover) set to 0.
The indirect effects over the direct effects become the same
for all X both in the short- and the long-term.

2 δ = 0 such that (IN − δW )−1 = IN . The global short-term
indirect effect is zero.

η = −τδ (Parent and LeSage, 2011). The impact of the
explanatory variables can be decomposed into a spatial effect
and a time effect; the impact over space falls by δW for every
higher-order neighbor and over time by the factor τ for every
period. The disadvantage is that the indirect effects remain
constant over time.

η = 0. Although this limits the flexibility of the ratio between
indirect and direct effects, it seems to be the least restrictive.
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Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coeffi cients

HSAR model

Aquaro, Bailey and Pesaran (2015) extend the SAR panel
data model to the case where the spatial coeffi cients differ
across the spatial units.

QML estimators are consistent and asymptotically normally
distributed when both T and N are large.

QML estimators have satisfactory small sample properties
with moderate time dimensions and irrespective of the
number of cross section units, under certain sparsity
conditions on the spatial weight matrix.
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Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coeffi cients

Heterogeneous spatial autoregressive (HSAR) model

Consider the HSAR model:

yit = ψi

N∑
j=1

wijyjt + εit, i = 1, ..., N ; t = 1, ..., T (57)

where w′iyt =
∑N

j=1wijyjt with yt = (y1t, ..., yNt)
′.

wi = (wi1, ..., wiN )′ with wii = 0 denotes an N × 1
non-stochastic vector.

Stacking the observations on individual units for each t:

(IN −ΨW )yt = εt, t = 1, ..., T

where Ψ = diag(ψ) with ψ = (ψ1, ..., ψN )′.
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Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coeffi cients

Define: S (ψ) = (IN −ΨW ) and S0 = (IN −Ψ0W ) .

Under the condition that S (ψ) = (IN −ΨW ) is
non-singular, (57) can be expressed as

yt = S−1 (ψ) εt; t = 1, ..., T (58)

The (quasi) log-likelihood function can be written as

` (θ) = −NT
2

ln 2π − NT

2
lnσ2 + T ln |S (ψ)| (59)

− T

2σ2

[
S (ψ)′ S (ψ) Σ̂T

]
where θ =

(
ψ′, σ2

)′.
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Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coeffi cients

Proposition 2 Consider the HSAR model (57) and suppose
that (a) Assumptions 1 to 5 hold, (b) the invertibility
condition (58) is met, (c) the N ×N information matrix

H11,2 =
(
G0 �G′0

)
+diag

(
G0G

′
0

)
− 2

N
diag (G0) τ ′NτNdiag

(
G′0
)

is full rank, where G0 = W(IN −ΨW)−1, Ψ0 = diag(ψ0),
ψ0 = (ψ10, ..., ψN0)′, and (d) εit ∼ IIDN(0, σ2

0). The MLE
of ψ0 has the following asymptotic distribution:

√
T
(
ψ̂T −ψ0

)
→d N

(
0, AsyV ar

(
ψ̂T

))
AsyV ar

(
ψ̂T

)
=

[
(G0 �G′0) + diag (G0G

′
0)

− 2
N diag (G0) τ ′NτNdiag (G′0)

]−1
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Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coeffi cients

HSAR extended to include exogenous regressors and
heteroskedastic errors:

yit = ψi

N∑
j=1

wijyjt + β′ixit + εit (60)

xit = (xi1,t, ..., xik,t)
′ is a k× 1 vector of exogenous regressors

with βi = (βi1, ..., βik)
′.

We allow εit to be cross-sectionally heteroskedastic,
V ar(εit) = σ2

i for i = 1, ..., N .
Stacking by individual units for each t, (60) becomes

yt = ΨWyt +Bxt + εt (61)

where Ψ = diag(ψ), ψ = (ψ1, ..., ψN )′,
B = diag

(
β′1, ...,β

′
N

)′, and εt = (ε1t, ..., εNt)
′.

(61) can be written as

yt = (IN −ΨW )−1 (Bxt + εt)
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Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coeffi cients

The log-likelihood function can be written as

` (θ) = −NT
2

ln 2π − T

2

N∑
i=1

lnσ2
i + T ln |IN −ΨW |

−1

2

T∑
t=1

[(IN −ΨW )yt −Bxt]′Σε [(IN −ΨW )yt −Bxt]

It is convenient to write the LF as

` (θ) = −NT
2

ln 2π − T

2

N∑
i=1

lnσ2
i + T ln |IN −ΨW |

−1

2

T∑
t=1

(yi − ψiy∗i −Xiβi)
′ (yi − ψiy∗i −Xiβi)

σ2
i

where θ =
(
ψ,β′1, ...,β

′
N , σ

2
1, ..., σ

2
N

)′
, βi = (βi1, ..., βiN )′,

Xi = (xi1, ...,xiT )′ is the T × k matrix of regressors with
xit = (xi1,t, ..., xik,t)

′, yi = (yi1, ..., yiT )′, y∗i = (y∗i1, ..., y
∗
iT )′.
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Proposition 3 Consider the HSAR model (60) and suppose
that (a) Assumptions 1, 4, 5, and 6, 7, and 8 hold, (b) the

invertibility condition (58) is met, (c) λmin
(
H̃11,2

)
> ε > 0

for all N , where H̃11,2 is the N ×N matrix

H̃11,2 =
(
G0 �G′0

)
+ diag

−g0,ii +

N∑
s=1,s 6=i

σ2
s

σ2
i

g2
0,is


+diag

[
1

σ2
i

N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r

(
Σrs − ΣriΣ

−1
ii Σit

)
βs

]
G0 = W(IN −ΨW)−1, Ψ0 = diag(ψ0);
ψ0 = (ψ10, ..., ψN0)′, and (d) εit ∼ IIDN(0, σ2

i ). Then,
√
T
(
ψ̂T −ψ0

)
→d N

(
0, AsyV ar

(
ψ̂T

))
as T →∞,

where AsyV ar
(
ψ̂T

)
= H̃−1

11,2.
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BHP (2016) application to US housing prices

Consider the heterogeneous equation:

xit = ψix
∗
it + uit, i = 1, ..., N, t = 1, ..., T

where x∗it = w′ix◦t.

In the spatial econometrics literature it is assumed that all
units have at least one neighbour, which ensures that w′iτ = 1
for all i.

It is possible for some units not to have any connection.
Then, x∗it = 0 and ψi is unidentified, and thus we set ψi = 0.
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In matrix notation we have

x◦t = ΨWx◦t + u◦t; for t = 1, ..., T ;

where Ψ = diag (ψ), ψ = (ψ1, ..., ψN )′, and σ2
ui = var (uit).

An extension that incorporates richer temporal and spatial
dynamics and accommodates negative and positive
connections is:

x◦t =

hλ∑
j=1

Λjx◦t−j+

h+ψ∑
j=1

Ψ+
j W+x◦t−j+

h−ψ∑
j=1

Ψ−j W−x◦t−j+u◦t

where hλ = max (hλ1, ..., hλN )′; h+
ψ =

(
h+
ψ1, ..., h

+
ψN

)′
;

h−ψ =
(
h−ψ1, ..., h

−
ψN

)′
; Λj , Ψ+

j , Ψ−j are N ×N diagonal

matrices with λij , ψ+
ij and ψ

−
ij .

W+ and W− are N ×N network matrices for positive and
negative connections such that W = W+ + W−.



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

The Spatial-based Models

Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coeffi cients

We set hλ = h+
ψ = h−ψ = 1 for simplicity.

The concentrated log-likelihood function can be used:

`
(
ψ+

0 ,ψ
−
0

)
∝ T ln

∣∣IN −Ψ+
0 W+ −Ψ−0 W−∣∣−T

2

N∑
i=1

(
1

T
x̃′iMix̃i

)

x̃i = xi −ψ+
i0x

+
i −ψ

−
i0x
−
i

Mi = IT − Zi
(
Z′iZi

)−1
Zi,Zi =

(
xi,−1,x

+
i,−1,x

−
i,−1

)
ψ+

0 =
(
ψ+

10, ..., ψ
+
N0

)′
,ψ−0 =

(
ψ−10, ..., ψ

−
N0

)′
,

λ1, ψ+
1 and ψ

−
1 , can be estimated by least squares applied to

the individual equations conditional on ψ+
i0 and ψ

−
i0.
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For inference the analysis must be carried out with respect to
the unconcentrated LLF in terms of θ =

(
θ′1, ...,θ

′
N

)′, where
θi =

(
ψ+
i0, ψ

−
i0, ψ

+
i1, ψ

−
i1, λi1, σ

2
ui

)′.
The covariance matrix of θ̂ML is computed as

Σ̂θ̂ML
=

− 1

T

∂2`
(
θ̂ML

)
∂θ̂ML∂θ̂

′
ML

−1
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The Spatiotemporal Autoregressive Distributed Lag Modelling (STARDL)

Motivations for STARDL

How best to model spatial heterogeneity and diffusion/network
dependence, possibly with observed or unobserved factors.

In the literature dynamic spatial Durbin models are most
general, but with homogeneous parameters; e.g. Elhorst
(2012).

Given the availability of large spatial datasets with a large
time dimension it is important to explore spatial heterogeneity
and diffusion dynamics in details.

To date, the spatial parameters assumed to be homogeneous;
ABP only considering heterogeneous parameters and
proposing the QML but without any diffusion dynamics.
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The Spatiotemporal Autoregressive Distributed Lag Modelling (STARDL)

We propose to generalise the spatial panel data model
through the spatio-temporal autoregressive distributed lag
(STARDL) model.

We aim to:

(a) develop the STARDL model and derive the QML and CF
estimator;

(b) provide the asymptotic theory;

(c) develop the spatio-temporal dynamic and diffusion
multipliers and apply network analyses.
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The STARDL Model

Consider the STARDL model with heterogeneous parameters:

yit = φiyit−1 + π′i0xit + π′i1xi,t−1 (62)

+φ∗i0y
∗
it + φ∗i1y

∗
it−1 + π∗′i0x

∗
it + π∗′i1x

∗
i,t−1 + uit

yit is the dependent variable of the ith spatial unit at time t;

xit = (x1
it, ..., x

K
it )′ is a K × 1 vector of exogenous regressors

with πi0 = (π1
i0, ..., π

K
i0)′.
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The spatial variables, y∗it and x
∗
it, are defined by

y∗it =

N∑
j=1

wijyjt = wiyt with yt
N×1

= (y1t, ..., yNt)
′ ,

x∗it
K×1

= (x1∗
it , ..., x

k∗
it )′=

 N∑
j=1

wijx
1
jt, ...,

N∑
j=1

wijx
K
jt

′
= (wi ⊗ ιK)xt with xt

NK×1
=
(
x′1t, ...,x

′
Nt

)′
where wi = (wi1, ..., wiN ) is a 1×N row vector of spatial
weights and ιK is a K × 1 vector of unity.
y∗t = (y∗1t, ..., y

∗
Nt)
′ and x∗t = (x∗′1t, ...,x

∗′
Nt)
′ can be expressed

as
y∗t
N×1

= Wyt and x∗t
NK×1

= (W ⊗ IK)xt (63)

where W is the N ×N matrix of the spatial weights.
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The STARDL (p,q) model

It is straightforward to develop the STARDL(p, q) model:

yit =

p∑
h=1

φihyi,t−h +

q∑
h=0

π′ihxi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h (64)

+

q∑
h=0

π′∗ihx
∗
i,t−h + uit

If the lag orders p and q are selected suffi ciently large, uit’s
are free from serial correlations.
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Stacking the individual regressions, (64), we have:

yt =

p∑
h=1

Φhyt−h +

q∑
h=0

Πhxt−h +

p∑
h=0

Φ∗hWyt−h (65)

+

q∑
h=0

Π∗h (W ⊗ Ik)xt−h + ut

where for h = 0, 1, ..., q,

Φh
N×N

=

 φ1h · · · 0
...

. . .
...

0 · · · φNh

 Φ∗h
N×N

=

 φ∗1h · · · 0
...

. . .
...

0 · · · φ∗Nh



Πh
N×NK

=

 π
′
1h · · · 0
...

. . .
...

0 · · · π′Nh

 , Π∗h
N×NK

=

 π
′∗
1h · · · 0
...

. . .
...

0 · · · π′∗Nh
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Stability conditions and assumptions

We rewrite (64) compactly as

yit = φ∗i0y
∗
it + θ′iχit + uit (66)

where χit =(
yi,t−1, ..., yi,t−p, y∗i,t−1, ..., y

∗
i,t−p,x

′
it, ...,x

′
i,t−q,x

∗′
it , ...,x

∗′
i,t−q, 1

)′
and θi =

(
φ′i,φ

∗′
i ,π

′
i,π
′∗
i , αi

)′ with φi =
(
φi1, ..., φip

)′,
φ∗i =

(
φ∗i1, ..., φ

∗
ip

)′, πi =
(
π′i0, ...,π

′
iq

)′
,

π∗i =
(
π∗′i0, ...,π

∗′
iq

)′
.

Stacking (66), we have

yt = Φ∗0Wyt + Θχt + ut (67)

where Φ∗0 = diag (φ∗10, ..., φ
∗
N0), Θ = diag

(
θ′1, ...,θ

′
N

)
, and

χt = (χ′1t, ...χ
′
Nt)
′.
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Assumption 1: {uit} are independent across i and t with zero
mean, heterogeneous variance σ2

i > 0. E |uit|4+ε <∞.
Assumption 2: The true parameter vector

(
φ∗′0 ,θ

′,σ′
)′ are in a

compact set.
Assumption 3: The spatial weights matrix W is non-stochastic
with zero diagonals and uniformly bounded for all N with absolute
row and column sums.
Assumption 4: (a) as N →∞, (IN −Φ∗0W )−1 exists for all N ;
or (b) for bounded N , the eigenvalues of Φ∗0W lie inside the unit
circle such that S (Φ∗0) = IN −Φ∗0W is invertible for all
Φ∗0 ∈ ΘΦ∗0

, where ΘΦ∗0
is the compact parameter space.
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As a result of Assumption 4, we rewrite (65) as

Φ̃ (L)yt = Π̃` (L)xt + ũt, (68)

where Φ̃ (z) = I −
∑p

`=1 Φ̃`z
`, and Π̃` (z) =

∑q
`=0 Π̃`z

` with
Φ̃` = (IN −Φ∗0W )−1 (Φ` + Φ∗`W ),
Π̃` = (IN −Φ∗0W )−1 [Π` + Π∗` (W ⊗ IK)], and
ũt = (IN −Φ∗0W )−1 ut.
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Assumption 5 (Time stability): The roots of the characteristic
equation

∣∣∣Φ̃ (z)
∣∣∣ =

∣∣∣IN −∑p
`=1 Φ̃`z

`
∣∣∣ lie outside the unit circle.

We rewrite (68) as an infinite order MA:

yt = Φ̃ (L)−1

(
q∑
`=0

Π̃`xt−` + ũt

)
≡
∞∑
`=0

B̃`xt−` +

∞∑
`=0

B`ũt−`,

(69)
where B̃ (L) = Φ̃ (L)−1 Π̃` (L).
Then,

∑∞
`=0 ‖B`‖1 and

∑∞
`=0 ‖B`‖∞ are bounded by C.
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Assumption 6: E(‖xit‖4) ≤ C for all i and t, and xit are
independent of idiosyncratic errors ujs for all (i, j, t, s).
Assumption 7: Identification condition:
p limN,T→∞

1
T

∑T
t=1E (χ′itχit) is strictly positive definite with the

largest eigenvalue bounded by C. At the true parameter values of
(φ∗0,θ,Σu) , the following matrix

lim
N,T→∞

 1

N(T − q)

 ∑T
t=q E (V ′tV t)

−
∑T

t=q E (V ′tχt)
(∑T

t=q E (χ′tχt)
)−1∑T

t=q E (χ′tV t)


is positive definite, where V t = Gχtθ with G = WS−1 (Φ∗0).
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The STARDL Estimation

The QML and CF Estimation

To deal with the endogeneity of y∗it, we apply the QML and
the control function approach.

The QML estimator constructed as the optimiser of

L (φ∗0,θ,Σu) = −nT
2

ln (2π)−T
2

ln |Σu|+T ln |S(Φ∗0)|−1

2
u′tΣ

−1
u ut

(70)
where φ∗0 = (φ∗01, . . . , φ

∗
0N )′, θ =

(
θ′1, ...,θ

′
N

)′ and
Σu = diag

(
σ2

1, ..., σ
2
N

)
.

By extending ABP, it is straightforward to derive Theorem 1.
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The STARDL Estimation

Theorem 1 (The QML estimator) Consider the STARDL
model (66) and suppose that (i) Assumptions 1-7 hold, and

(ii) λmin
(
H̃11,2

)
> ε > 0 for all N , where H̃11,2 is the

N ×N matrix given by

H̃11,2 =
(
G�G′

)
+ diag

−gii +

N∑
s=1,s 6=i

σ2
s

σ2
i

g2
is, i = 1, ..., N


+diag

[
1

σ2
i

N∑
r=1

N∑
s=1

gisgirθ
′
r

(
Σrs −Σ−1

ri Σ−1
ii Σit

)
θs, i = 1, ..., N

]
G = W (IN −Φ∗0W )−1 = {gij}, and Σij = E (χitχ

′
it). As

T →∞,
√
T
(
φ̂
∗
0 − φ∗0

)
→d N

(
0, AV ar

(
φ̂
∗
0

))
where AV ar

(
φ̂
∗
0

)
= H̃

−1
11,2.
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The STARDL Estimation

Then, θi and σ2
i can be estimated by LSE applied to

individual equations conditional on φ̂
∗
i0 for i = 1, ..., N .

Let ξ =
(
φ∗′0 ,θ

′,σ2′)′.
As T →∞,

√
T
(
ξ̂ − ξ

)
→ dN

(
0, AV ar

(
ξ̂
))

AV ar
(
ξ̂
)

= H−1
T

(
ξ̂
)
JT

(
ξ̂
)
H−1

T

(
ξ̂
)

where

JT (ξ) =
−1

T

(
∂` (ξ)

∂ξ

)(
∂` (ξ)

∂ξ

)′
;HT (ξ) =

−1

T

∂2` (ξ)

∂ξ∂ξ′
.
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The STARDL Estimation

Maximimising (70) is equivalent to maximising:

LC (φ∗0) ∝ T ln |S(Φ∗0)|−1

2

N∑
i=1

(yi − φ∗i0y∗i )
′Mχi (yi − φ∗i0y∗i )

(71)
where yi = (yi1, ..., yiT )′, y∗i = (y∗i1, ..., y

∗
iT )′,

Mχi = IT − χi (χ′iχi)
−1χ′i, χi =(

yi,−1, ...,yi,−p,y
∗
i,−1, ...,y

∗
i,−p,Xi, ...,Xi,−q,X

∗
i , ...,X

∗
i,−q,1T

)
.

φ∗0 = (φ∗i0, ..., φ
∗
N0)′ can be estimated by

φ̂
∗
0 = arg max

φ∗0∈Θφ∗0

LC (φ∗0)

The repeated evaluation of the N ×N matrix, IN −Φ∗0W ,
can still make the maximisation of (71) numerically
burdensome for large N .
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The STARDL Estimation

The CF Estimation

Let zit be the L× 1 vector of exogenous variables:

zit =
(
z1′
it , z

2′
it

)
;

z1
it = χit the L1 × 1 vector of exogenous variables included
and z2

it the L2 × 1 vector of exogenous variables excluded.

We run the reduced form regression of y∗it on zit:

y∗it = ϕ′izit + vit with E
(
z′itvit

)
= 0 (72)

Apply the linear projection of uit on vit:

uit = ρivit + eit (73)

where ρi = E (vituit) /E
(
v2
it

)
.
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The STARDL Estimation

Replacing uit by (73), we obtain the transformation:

yit =

p∑
h=1

φihyi,t−h +

q∑
h=0

π′ihxi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h (74)

+

q∑
h=0

π′∗ihx
∗
i,t−h + ρivit + eit

where vit is the control variable, rendering eit uncorrelated
with y∗it as well as vit and other regressors.
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The STARDL Estimation

The two-step procedure

(i) Obtain the residuals, v̂it = y∗it − ϕ̂′izit from (72).

(ii) Run the following augmented regression:

yit =

p∑
h=1

φihyi,t−h +

q∑
h=0

π′ihxi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h (75)

+

q∑
h=0

π′∗ihx
∗
i,t−h + ρiv̂it + e∗it

where e∗it = e∗it + ρi (ϕ̂i −ϕi)′ zit depends on the sampling
error in ϕ̂i unless ρi = 0.
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The STARDL Estimation

We rewrite (74) compactly as

yit = β′iqit + eit, t = 1, ..., T, (76)

where qit =
(
y∗it, z

1′
it , 1, vit

)′ denotes the tth row of the matrix of
the regressors, qi = (q′i1, ..., q

′
iT )′, and βi =

(
φ∗i0,θ

′
i, ρi
)′
.

Assumption 8: There exist a set of instruments such that
E (zituit) = 0, T−1

∑T
t=1 zitz

′
it →p Qzz, and

T−1
∑T

t=1 zit
(
y∗it, z

1′
it

)
→ Qz∗.

Assumption 9 eit in (74) is iid across all i, t with zero mean and
heterogeneous variance, σ2

ei. vit is iid control variable with zero
mean and variance, σ2

vi. qiteit and zitvit, are stationary and
ergodic mixingales of size -1.
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The STARDL Estimation

Theorem 2 Under Assumptions 1-9, as T →∞, the OLS
estimator from (75) is consistent and asymptotically normally
distributed as

√
T
(
β̂i − βi

)
)→d N

(
0, AV ar

(
β̂i

))
,

where
AV ar

(
β̂i

)
→p σ̂

2
i

(
X̃i
′
X̃i

)−1
,

where X̃
′
it =

(
y∗i,t − v̂it, z1′

it

)
denotes the t’th row of the

matrix X̃i =
(
X̃
′
i1, ..., X̃

′
iT

)′
, and σ̂2

i = T−1
∑T

t=1 û
2
it, where

ûit = êit + v̂itρ̂.
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The STARDL Estimation

The selection of internal IVs

By modelling the spatial and dynamic effects jointly, we can
obtain the valid IVs internally as follows: Under Assumption 4,

y∗t = G

[ ∑p
`=1 Φ`yt−` +

∑p
`=1 Φ∗`Wyt−` +

∑q
`=0 Π`xt−`

+
∑q

`=0 Π∗` (W ⊗ IK)xt−` +α+ ut

]
(77)

where G = WS(Φ∗0)−1. This suggests:[
p∑
`=1

W 2yt−`,

p∑
`=1

W 3yt−`, ...,

q∑
`=0

W 2xt−`,

q∑
`=0

W 3xt−`, ...

]
(78)

can be used as the IV for y∗t .
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The STARDL Estimation

Next, we can derive the additional IVs from the higher time
lags as[
W 2yt−p−1,W

2yt−p−2, ...,Wxt−p−1,Wxt−p−2, ...
]
(79)

We employ the following set of IVs for y∗it in the individual
STARDL regression, (64):

zit =

(
p∑
`=1

y∗∗i,t−`,

p∑
`=1

y∗∗∗i,t−`, ...,

q∑
`=0

x∗∗i,t−`,

q∑
`=0

x∗∗∗i,t−`, ...

)

where y∗∗i,t−` =
∑N

j=1w
(2)
ij yj,t−`, y

∗∗∗
i,t−` =

∑N
j=1w

(3)
ij yj,t−`,

x∗∗i,t−` =
∑N

j=1w
(2)
ij xj,t−` and x

∗∗∗
i,t−` =

∑N
j=1w

(3)
ij xj,t−` with

w
(2)
ij and w(3)

ij being the (i, j)th element of W 2 and W 3.
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The STARDL Estimation

General Remarks on the STARDL approach

The STARDL is more general and its system representation
encompasses the (homogeneous) dynamic spatial Durbin
model:

yt = φyt−1 + π0xt + π1xt−1 + φ∗0Wyt + φ∗1Wyt−1

+π∗0 (W ⊗ ιK)xt + π∗1 (W ⊗ ιK)xt−1 + ut

In practice diffi cult to provide meaningful interpretation on the
homogeneous spatial parameter.

Our proposed approach can deliver much more flexible and
sensible interpretations.
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The STARDL Estimation

Requires large T , but no bias correction even for large N .

We can accommodate the time-varying weight matrix.

When we apply different weight matrices to y and x, we can
also use Wxt as an Internal IV.

Estimation seems less sensitive to the sparsity condition
usually imposed on the weight matrix, see MC results below.
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The Spatio-temporal Cumulative Diffusion Multipliers

The spatio-temporal dynamic multipliers

Due to the large number of estimation results, it is important
to provide the succinct summary outputs.

First, straightforward to derive dynamic multipliers associated
with unit changes in y∗t , xit and x

∗
it on yit.

Rewrite the STARDL(p, q) model, (64) as

φi (L) yit = φ∗i (L) y∗it + πi (L)xit + π∗i (L)x∗it + uit (80)

φi (L) = 1−
p∑

h=1

φihL
h; φ∗i (L) = 1−

p∑
h=0

φ∗ihL
h;

πi (L) =

q∑
h=0

π′ihL
h; π∗i (L) =

q∑
h=0

π∗′ihL
h.
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The Spatio-temporal Cumulative Diffusion Multipliers

Premultiplying (80) by the inverse of φi (L), we obtain:

yit = φ̃
∗
i (L) y∗it + π̃i (L)xit + π̃∗i (L)x∗it + ũit (81)

where ũit = [φi (L)]−1 uit,

φ̃
∗
i (L)

(
=

∞∑
h=0

φ̃
∗
ihL

h

)
= [φi (L)]−1 φ̃

∗
i (L)

π̃i (L)

(
=

∞∑
h=0

π̃′ihL
h

)
= [φi (L)]−1 πi (L)

π̃∗i (L)

(
=

∞∑
h=0

π̃∗′ihL
h

)
= [φi (L)]−1 π∗i (L)
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The Spatio-temporal Cumulative Diffusion Multipliers

φ̃
∗
ij , π̃

′
ij and π̃

∗′
ij can be evaluated using the following

recursive relationships for j = 0, 1, ...:

φ̃
∗
ij = φi1φ̃

∗
i,j−1 + φi2φ̃

∗
i,j−2 + · · ·+ φi,j−1φ̃

∗
i1 + φijφ̃

∗
i0 + φ∗ij

where φij = 0 for j < 1 and φ̃
∗
i0 = φ∗i0, φ̃

∗
ij = 0 for j < 0;

π̃′ij = φi1π̃
′
i,j−1 + φi2π̃

′
i,j−2 + · · ·+ φi,j−1π̃

′
i,1 + φijπ̃

′
i0 + π′ij

where π̃′i0 = π′i0, π̃
′
ij = 0 for j < 0, and

π̃∗′ij = φi1π̃
∗′
i,j−1 + φi2π̃

∗′
i,j−2 + · · ·+ φi,j−1π̃

∗′
i,1 + φijπ̃

∗′
i0 + π′ij

where π̃∗′i0 = π∗′i0, π̃
∗′
ij = 0 for j < 0.
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The Spatio-temporal Cumulative Diffusion Multipliers

The cumulative dynamic multiplier effects of y∗it, xit and xit
on yi,t+h evaluated as

myi (y∗i , H) =

H∑
h=0

∂yi,t+h
∂y∗it

=

H∑
h=0

φ̃
∗
ih, H = 0, 1, ...

myi (xi, H) =

H∑
h=0

∂yi,t+h
∂xit

=

H∑
h=0

π̃′ih, H = 0, 1, ...

myi (x∗i , H) =
H∑
h=0

∂yi,t+h
∂x∗it

=

H∑
h=0

π̃∗′ih, H = 0, 1, ...
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The Spatio-temporal Cumulative Diffusion Multipliers

As H →∞,

myi (y∗i , H)→ βyi; myi (xi, H)→ β′xi; myi (x∗i , H)→ β∗′xi

where βyi, βxi and β
∗
xi are the long-run multipliers.

Suppose that yit is the domestic policy variable. An important
feature is to capture three different dynamic adjustments from
initial to the new equilibrium following an economic
perturbation wrt domestic conditions (xit), overseas
conditions (x∗it) and overseas policy decisions (y∗it).

We may apply the MGE of the dynamic multipliers to
investigate the overall average pattern provided with the
bootstrap-based confidence intervals.
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The Spatio-temporal Cumulative Diffusion Multipliers

The system diffusion multipliers

We develop the spatial-temporal diffusion multipliers in terms
of the spatial system (65), which can be rewritten as

Φ̃ (L)yt = Π̃ (L)xt + ũt, (82)

where ũt = (IN −Φ∗0W )−1 ut,

Φ̃ (L) = IN−
p∑
j=1

Φ̃jL
j , Φ̃j = (IN −Φ∗0W )−1 (Φj + Φ∗jW

)

Π̃ (L) =

q∑
j=0

Π̃jL
j , Π̃j = (IN −Φ∗0W )−1 [Πh+Π∗h (W ⊗ ιK)]
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The Spatio-temporal Cumulative Diffusion Multipliers

Premultiplying (82) by
[
Φ̃ (L)

]−1
, we obtain:

yt = B (L)xt +
[
Φ̃ (L)

]−1
ũt, (83)

where B (L)
(

=
∑∞

j=0BjL
j
)

=
[
Φ̃ (L)

]−1
Π̃ (L).

Bj can be evaluated recursively as

Bj = Φ̃1Bj−1+Φ̃2Bj−2+· · ·+Φ̃j−1B1+Φ̃jB0+Π̃j , j = 1, 2, ...
(84)

where B0 = Π̃0 and Bj = 0 for j < 0.
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The Spatio-temporal Cumulative Diffusion Multipliers

Cumulative diffusion multipliers can be evaluated as:

mx (H) =

H∑
h=0

∂yt+h
∂x′t

=

H∑
h=0

Bh, H = 0, 1, 2, ...

For homogeneous spatial panels, LeSage and Pace (2009)
propose average diagonal elements as own-partial derivatives.
This includes some feedback effects that arise as a result of
impacts passing through neighboring regions. They propose an
average of off diagonal elements as a summary indirect effect.

See also Debarsy et al. (2012) for dynamic space-time panel
data, and LeSage and Chin (2016) for the case with
heterogeneous spatial coeffi cients.

It is not possible to separate out time and spillover
dependence from diffusion effects.
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Network Analysis

We follow Greenwood-Nimmo, Nguyen and Shin (2015, GNS)
and apply the generalised connectedness measures.

At horizon, h, one cross-tabulates the impacts of xkjt on the
N × 1 vector of yt in the N ×N connectedness matrix:

C =


φ1←1 φ1←2 · · · φ1←N
φ2←1 φ2←2 · · · φ21←N
...

...
. . .

...
φN←1 φN←2 · · · φN←N

 (85)

The main diagonal elements represent own-region impacts
that arise from both time and spatial dependence.

Off-diagonal elements reflect spillovers measuring
contemporaneous cross-partial derivatives and diffusion
measuring cross-partial derivatives that involve different
periods.
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Network Analysis

We start with the (cumulative) own-region impacts that arise
from both time and spatial dependence:

Hj←j = φj←j (86)

We write the cross-from or spill-in contribution as

Fj←• =

N∑
i=1,i 6=j

φj←i (87)

Similarly, define the total contributions to all other countries
(or spill-out contributions) as

T•←j =

N∑
i=1,i 6=j

φi←j (88)

The net directional connectedness is defined as

N•←j = T•←j − Fj←•. (89)
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Network Analysis

It is straightforward to develop the aggregate (non-directional)
connectedness measures:

H =

N∑
j=1

Hj←j ; S =

N∑
j=1

Fj←• =

N∑
j=1

T•←j ,
N∑
j=1

N•←j = 0

(90)

H + S = TOT•←• =

N∑
j=1

TOTj←• (91)

H and S are the aggregate direct own-region impacts and the
aggregate cross-spillover contribution.

The sum of the aggregate heatwave and spillover measures,
TOT•←• accounts for all of the impacts in the entire system.
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Network Analysis

We define a pair of indices to address 2 questions of interest:
(i) ‘how dependent is the j-th country on external conditions?’
and (ii) ‘to what extent does the j-th country influence/is the
j-th country influenced by the system as a whole?’.

We first propose the dependence index :

Oj =
Fj←•

Wj←• + Fj←•
, j = 1, ..., N, 0 ≤ Oj ≤ 1

As Oj → 1, conditions in j dominated by external shocks.
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Network Analysis

We develop the influence index:

Ij =
Nj←•

Tj←• + Fj←•
, j = 1, ..., N, −1 ≤ Ij ≤ 1

The j-th group is a net shock recipient if −1 ≤ Ij ≤ 0, a net
shock transmitter if 0 ≤ Ij ≤ 1.

The coordinate pair (Oj , Ij) provides a representation of
country i’s role in the global system.

A classic small open economy located close to (1,−1) while
an overwhelmingly dominant economy would exist in the
locale of (0, 1).
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Monte Carlo Simulations

Monte Carlo Design

The Monte Carlo exercise is based on the heterogeneous
parameter STARDL(1,1) model:

yit = φiyi,t−1 + πi0xit + πi1xi,t−1 + φ∗i0y
∗
it + φ∗i1y

∗
i,t−1

+π∗i0x
∗
it + π∗i1x

∗
i,t−1 + uit

where y∗it =
∑N

j=1wijyjt and x
∗
it =

∑N
j=1wijxjt with wii = 0.

W is a row-normalised b-nearest neighbours weighting matrix,
with b = (2, 4, 10), with null elements apart from the b/2
either side of the principle diagonal.

φi, φ
∗
i0, φ

∗
i1 are independent draws from U(0, 0.4) while πi0,

πi1, π∗i0, π
∗
i1 are independent draws from U(0, 1).
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Monte Carlo Simulations

We consider two experiments.

In experiment 1 both regressors and exogenous variables are
draws from N (0, 1).

Experiment 2 uses a set of serially correlated exogenous
variables:

xi,t = ρixi,t−1 + vi,t, vi,t ∼ N
(
0, 1− ρ2

i

)
, (92)

where ρi ∼ U [0.4, 0.6], and heteroskedastic errors
uit ∼ N(0, σ2

i ), where σ
2
i = 0.5 + 0.25× ηi and ηi ∼ χ2

2.
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Monte Carlo Simulations

We report the following statistics:

Average bias = N−1
∑N

i=1R
−1
∑R

j=1 (α̂ij − αi0);

Average RMSE = N−1
∑N

i=1

√
R−1

∑R
j=1 (α̂ij − αi0)2.

Average Size = N−1
∑N

i=1R
−1
∑R

j=1 I
(∣∣∣ α̂ij−αi0σα

∣∣∣ > t0.975

)
,

where I(.) is the indicator function and σα is the standard
error.

We consider N = (25, 50, 75, 100) over T = (50, 100, 200)
with R = 1, 000 replications.
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Monte Carlo Simulations

CF estimates based on the instrument set of y∗∗i,t−1 and x
∗∗
it ,

where y∗∗i,t−1 = wiWyt−1 and x
∗∗
it = wiWxt are the second

spatial lags.

The price for including extra instruments is potential
multi-collinearity and we find that two instruments was often
the best choice.

QML initial values were provided by (inconsistent) OLS
estimates.

The exogenous variables were concentrated out and leaving an
iteration over the N vector φ∗, with estimates of other
parameters recovered by least squares regression conditional
on φ̂∗.
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Monte Carlo Simulations

Both CF and QML estimates perform reasonably well in terms
of bias.

Bias falls as T increases and is not greatly affected by N ,
supporting our theoretical prediction.

For small T the QMLE has a slightly lower bias, but as T
becomes large the results of the two estimators are
comparable with the CF estimator having a strong
computational advantage.

The estimates of all parameters have biases of similar
magnitude with φ∗, π and π∗, exhibiting the lower biases than
their equivalents on lagged terms and φ1. This is not too
surprising as the time dynamics open more channels through
which a time lagged variable may potentially impact on a yit.

Both methods robust to serial dependence in exogenous
variables - slightly improves some control function estimates
because instrument set closer to optimum.
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Monte Carlo Simulations

RMSE

The QMLE is the more effi cient estimator.

This is not too surprising: it should be.
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Monte Carlo Simulations

Size

CF estimates tend to be under-sized, particularly for φ∗ and
φ∗1.

The size for the QMLE is much closer to 5 per cent but the
others are slightly over-sized.

Performance deteriorates with the number of connections, b,
with the CF becoming more under-sized while QML becomes
over-sized.

For biases and RMSE there is no noticeable deterioration in
the performance of either estimator as b rises.

The QMLE recovers more successfully as T rises and is always
within a percentage point for T = 200.
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Empirical Illustrations

Civilian Casualties in Iraqi War during 2004-2010

The 2003 Iraq War is rarely considered as a success in terms
of its prolonged duration and the considerable human cost.

The U.S. Department of Defense compiled civilian deaths but
also insurgents and Iraqi security forces killed by armed
violence with exact location and time.

This Pentagon’s archive (Iraq War Logs) would provide a rare
opportunity to infer the intensity of armed violence and its
spatio-temporal diffusion during the war period.
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Empirical Illustrations

Thomas Schelling’s noncooperative game framework (The
Strategy of Conflict, 1960) and Ivan Arreguin-Toft’s strategic
interaction thesis (2001) suggest that warring groups choose
between killing civilians and battling with armed opponents.

Weaker actors (commonly being rebels) tend to target
civilians to increase the probability of winning in asymmetric
war, and to build up local support.

The spatio-temporal analysis of civilian victimisation would
shed lights on the effects of US forces’methods in
acknowledging civilian loss upon the ensuing development of
war.
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Empirical Illustrations

Major findings of STARDL estimation

It is based on governorate level STARDL(1,1) estimation with
y = civilian casualties and x = enemy casualties and with
N = 18 and T = 70.
A row standardised inverse distance W matrix has been
employed. The results appear to be qualitatively similar when
using different W matrices.
The system is stable with the largest eigenvalue of time
stability matrix being 0.866.
LR spill-over effects (i.e. y∗ on y) are positive for all 18
provinces; a rise in civilian casualties in neighbours leads to a
cumulative increase in civilian deaths in any province.
The LR effects of x on y are more diverse, but positive for 13
provinces and negative for 5, partially due to the strategic
decision to target other provinces with a lower level of security
infrastructure.



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

The Spatiotemporal Autoregressive Distributed Lag Modelling (STARDL)

Empirical Illustrations

Those of x∗ on y are positive for 10 provinces only.

The most striking is Basrah, which appears the most open to
the impact of insurgent deaths outside its locality, implying
that armed violence against civilians in the neighbouring
provinces lead to an increase in civilian casualties in Basrah.

Our model highlights an interesting comparison between
Basrah and Baghdad.

Baghdad shows strong temporal diffusion (i.e., yt−1 on yt).

Baghdad, the major military post for the US forces, was
heavily armoured due to severe insurgency against military
personnel, civilians and foreign contractors.
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Empirical Illustrations

Cumulative dynamic and diffusion multipliers

CDMs for Basrah and Baghdad show strong opposite patterns.

CDMs of y∗ in Basrah are strongly positive and reach the
long-run elasticity of 2.5 within 2-3 months, reflecting an
openness to the effects of casualties elsewhere.

Those of Baghdad are initially negative, converging to the
small positive value gradually, reflecting the tighter security.

CDMs with respect to x show a similar pattern: insurgent
deaths in other provinces making Baghdad relatively safer.

MGE CDMs tend to the intermediate figures.
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Empirical Illustrations

Again direct, spill_in and spill_out CDMs of Basrah and
Baghdad show strong opposite patterns.

Direct CDMs of y to x in Basrah are negative and reach the
long-run value quickly while those of Baghdad are positive,
converging to the long-run value gradually.

Spill_in CDMs of y in Basrah are substantially positive while
those of Baghdad are slightly negative.

Spill_out CDMs in Basrah are slightly negative while those of
Baghdad are large and positive.

Net effects show a mirror image, displaying that net effects of
Baghdad are large and positive while those of Basrah are large
and negative.
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Empirical Illustrations

The UK and US had been the major political stakeholders
which invaded Iraq in spite of strong disagreement with the
UN.

The military forces of the two countries appear to have faced
substantially different challenges, with the UK forces being
tested by spatial diffusion of armed violence, and the US forces
challenged by self-generated temporal persistency in violence.

Our analysis indicates that much of the climate for the
insurgency was made in Baghdad but that its greatest effects
were felt, with relatively little delay, in Basrah.
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Extensions

Joint Modelling of Spatial Dependence and Unobserved
Factors

Recently, a few studies attempted to develop a combined
approach that can accommodate both weak and strong CSD,
e.g. Bailey et al. (2016) and Mastromarco et al. (2015).

Shi and Lee (2017), Bai and Li (2015) and Kuersteiner and
Prucha (2015) have also developed the framework for jointly
modelling spatial effects and interactive effects.
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Extensions

STARDL models with observed common factors

Consider the STARDL(p, q) model with the G× 1 vector of
observed global factors, gt =

(
g1
t , ..., g

G
t

)′ (e.g. oil prices):
yit =

p∑
h=1

φihyi,t−h +

q∑
h=0

π′ihxi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h (93)

+

q∑
h=0

π′∗ihx
∗
i,t−h +

q∑
h=0

ψ′ihgt−h + uit

Straightforward to derive the QML and CF estimators and
develop the individual dynamic multipliers, mH

g and the
system diffusion multipliers, dHg esp. with respect to gt.

The difference between dHg and m
H
g may indicate the

additional spatial impacts of gt at each forecast horizon.
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Extensions

STARDL models with unobserved factors

Consider the STARDL(p, q) model with an r × 1 vector of
unobserved common factors, f t = (f1t, ..., frt)

′:

yit =

p∑
`=1

φi`yi,t−` +

p∑
`=0

φ∗i`y
∗
i,t−` +

q∑
`=0

π′i`xi,t−` (94)

+

q∑
`=0

π′∗i`x
∗
i,t−` + αi + λ′if t + uit,

where λi = (λ1,i, ..., λr,i)
′is the heterogenous loadings.

We develop the two estimation procedures.
In the first approach we allow xit’s to be correlated arbitrarily
with the common factors and/or the factor loadings.
In the second approach, we assume that xit’s follow the VAR
processes but also share the unobserved common factors.
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Extensions

We write (94) compactly as

yit = φ∗i0y
∗
it + θ′iχit + λ′if t + uit (95)

where θi =
(
φ′i,φ

∗′
i ,π

′
i,π
′∗
i

)′ and
χit =

(
y′i,−`,y

∗′
i,−`,x

′
i,−`,x

∗′
i,−`, 1

)′
with φi =

(
φi1, ..., φip

)′,
φ∗i =

(
φ∗i1, ..., φ

∗
ip

)′, πi =
(
π′i0, ...,π

′
iq

)′
,

π∗i =
(
π∗′i0, ...,π

∗′
iq

)′
, and yi,−p = (yi,t−1, ..., yi,t−p)

′,

y∗i,−p =
(
y∗i,t−1, ..., y

∗
i,t−p

)′
, xi,−q =

(
x′it, ...,x

′
i,t−q

)′
,

x∗i,−q =
(
x∗′it , ...,x

∗′
i,t−q

)′
.

Stacking (95), we have

yt = Φ∗0Wyt + Θχt + Λf t + ut (96)

where Φ∗0 = diag (φ∗10, ..., φ
∗
N0), Θ = diag

(
θ′1, ...,θ

′
N

)
,

χt = (χ′1t, ...χ
′
Nt)
′ and Λ = [λ1, ...,λN ]′.
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Extensions

The IPC-QML estimator

We allow xit to be arbitrarily correlated with λi and f t, and
estimate both λi and f t as parameters.

Assumption F1: f t are random and independent of uis for
all t and s.

Assumption F2: The factor loadings λi are random such that
E
(
‖Γi‖4

)
≤ C for all i and N−1Λ′Σu uΛ→p Ωr, where

Σu = diag
(
σ2
u1, ..., σ

2
uN

)
, and Ωr is positive definite. λis are

independent of the idiosyncratic errors ujt for all i and j.
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Extensions

The (quasi) log-likelihood function of (96) can be derived as

L (Φ∗0,Θ,F ) = −NT
2

ln 2π− T
2

N∑
i=1

lnσ2
i +T ln |IN −Φ∗0W |

(97)

−1

2

T∑
t=1

[(IN −Φ∗0W )yt −Θχt −Λf t]
′Σ−1

uu [(IN −Φ∗0W )yt −Θχt −Λf t]

Given Φ∗0, Θ, Λ, f t maximize L (Φ∗0,Θ,F ) at

f t =
(
Λ′Σ−1

uuΛ
)−1

Λ′Σ−1
uu [(IN −Φ∗0W )yt −Θχt] . (98)
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Extensions

Substituting (98) in (97), we obtain:

L (Φ∗0,Θ) = −NT
2

ln 2π − T

2

N∑
i=1

lnσ2
i + T ln |IN −Φ∗0W |

(99)

−1

2

T∑
t=1

[(IN −Φ∗0W )yt −Θχt]
′Muu [(IN −Φ∗0W )yt −Θχt]

where

Muu = Σ−1
uu−Σ−1

uuΛ
(
Λ′Σ−1

uuΛ
)−1

Λ′Σ−1
uu = Σ−1

uu−
1

N
Σ−1
uuΛΛ′Σ−1

uu

with 1
NΛ′Σ−1

uuΛ = Ir.

The QML estimator of (Φ∗0,Θ) is defined by

θ̂ = arg max
θ∈Θ
L (Φ∗0,Θ)
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Extensions

The IPC-QML algorithm

Step 1: Given Φ̂
∗(s)
0 , Θ̂

(s)
and Σ̂

(s)
uu , we estimate Λ̂

(s+1)
as

the first r eigenvectors associated with the first r largest
eigenvalues of the N ×N matrix, Ĝ =[

1

NT

T∑
t=1

(
yt − Φ̂

∗(s)
0 Wyt − Θ̂

(s)
χt

)(
yt − Φ̂

∗(s)
0 Wyt − Θ̂

(s)
χt

)′](
Σ̂

(s)
uu

)−1

and f̂
(s+1)
t by

f̂
(s+1)
t =

1

N
Λ̂

(s+1)′ (
Σ̂

(s)
uu

)−1 (
yt − Φ̂

∗(s)
0 Wyt − Θ̂

(s)
χt

)
We construct

Ĉ
(s+1)
it = λ̂

(s+1)′
i f̂

(s+1)
t and Ĉ

(s+1)
i =

(
Ĉ

(s+1)
i1 , ..., Ĉ

(s+1)
iT

)′
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Step 2: Given Ĉ(s+1)
it and Ĉ

(s+1)
i , update Σ̂

(s+1)
uu and θ̂

(s+1)
i :

(
σ̂

2)
i

)(s+1)
=

1

T

T∑
t=1

((
yit − Ĉ(s+1)

it

)
− φ̂∗(s)i0 y∗it − θ̂

(s)′
i χit

)2

θ̂
(s+1)
i =

(
χ′iχi

)−1 (
χ′iχi

){(
yi − Ĉ

(s+1)
i

)
− φ̂∗(s)i0 y∗i

}
, i = 1, ..., N.

Finally, update Φ̂
∗(s+1)
0 by maximizing L (Φ∗0,Θ) in (99)

directly with respect to Φ∗0 at Λ = Λ̂
(s+1)

,Σuu = Σ̂
(s+1)
uu ,

and Θ = Θ̂
(s+1)

.

We repeat Steps 1 and 2 until convergence.

There may be a bias term of order Op
(
N−1

)
as IPC-QML

estimator is not consistent under fixed N , e.g. Lu (2017).
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The QML-EM estimator

We assume that xit follows the VAR(p) process and shares
the same unobserved factors, f t:

xit =

p∑
`=1

Ψixi,t−` + bi + γ ′if t + vit (100)

(94) and (100) can be written as[
yit−

∑p
`=1 φi`yi,t−`−

∑p
`=0 φ

∗
i`y
∗
i,t−`−

∑p
`=0 π

′
i`xi,t−`−

∑p
`=0 π

′∗
i`x
∗
i,t−`

xit−
∑p

`=1 Ψixi,t−`

]
(101)

= µi + Φ′if t + εit

where

µi =

[
αi
vi

]
; Φ′i =

[
λ′i
γ ′i

]
; εit =

[
uit
vit

]
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Let zt = (z′1t, z
′
2t, ...,z

′
Nt)
′ with zit = (yit, x

′
it)
′.

We can write (101) compactly as

D (L) zt
N(k+1)×1

= µ+ Φ
N(k+1)×r

f t
r×1

+ εt (102)

where µ = (µ′1, ...,µ
′
N )′ , Φ = (Φ1, ...,ΦN )′,

εt = (ε′1t, ..., ε
′
Nt)
′, and D (L) = D0 −

p∑̀
=1

D`L
` with (i, j)

sub-blocks of D0 and D` given by

D0,ij
(k+1)×(k+1)

=


[

1 −π′i0
0 Ik

]
, if i = j[

φ∗i0wij π∗′i0wij
0 0

]
, if i 6= j


D`,ij

(k+1)×(k+1)

=


[
φi` π′i`
0 Ψi`

]
, if i = j[

φ∗i`wij π∗′i`wij
0 0

]
, if i 6= j

 , ` = 1, ..., p
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Extensions

Assumption Q1: εit = (uit,v
′
it)
′ are such that (i) uit is iid

distributed over t and uncorrelated over i with E(uit) = 0 and
E(u4

it) ≤ ∞. (ii) vit is iid distributed over t and uncorrelated
over i with E(vit) = 0 and E(‖vit‖4) ≤ ∞. (iii) uit is
independent of vjs for all (i, j, t, s). Let Σii = diag

(
σ2
i ,Σiiv

)
denote the variance matrix of εit, where σ2

i is the variance of
eit and Σiiv the variance matrix of vit.

Assumption Q2: There exists a C > 0 such that (i)
‖Φi‖ ≤ C; (ii) C−1 ≤ τmin (Σjj) ≤ τmax (Σjj) ≤ C, where
τmin (Σjj) and τmax (Σjj) denote the smallest and largest
eigenvalues of Σjj ; (iii) There exists an r × r positive matrix
Q such that Q = limN→∞N

−1Φ′Σ−1
εε Φ, and

Σεε = diag (Σ11, ...,ΣNN ).
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Extensions

Assumption Q3: The variances Σii for all i andM ff are
estimated in a compact set, i.e. all the eigenvalues of Σ̂ii and
M̂ ff are in an interval [C−1, C].

Assumption Q4: Identification conditions. We impose the
normalization restrictions: (i) f̄ = T−1

∑T
t=1 f t = 0; (ii)

M ff = T−1
∑T

t=1

(
f t − f̄

) (
f t − f̄

)′
= Ir; and (iii)

N−1Φ′ΣεεΦ is diagonal with the diagonal elements being
distinct and arranged in descending order.
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Extensions

The objective function for the model (102) is:

L (ξ) = − 1

2N
ln |Σzz|+

1

N
ln |IN −Φ∗0W | (103)

− 1

2NT

T∑
t=1

(
D0zt −

p∑
`=1

D`zt−`

)′
Σ−1
zz

(
D0zt −

p∑
`=1

D`zt−`

)
where ξ = (φ∗0,θ,Φ,Σεε) with φ∗0 = (φ∗10, ..., φ

∗
N0)′,

θ =
(
θ′1, ...,θ

′
N

)′ and Σzz = ΦΦ′ + Σεε.
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Extensions

The QML-EM algorithms

Step 1: Update Φ(s),Σ
(s)
εε , θ(s) according to EM algorithm:

Φ(s+1) =

[
1

T

T∑
t=1

E

((
D

(s)
0 zt −

p∑
`=1

D
(s)
` zt−`

)
f ′t|θs

)]

×
[

1

T

T∑
t=1

E
(
f tf

′
t|θs
)]−1

Σ(s+1)
εε = Dg


1
T

∑T
t=1

(
D

(s)
0 zt −

p∑̀
=1

D
(s)
` zt−`

)(
D

(s)
0 zt −

p∑̀
=1

D
(s)
` zt−`

)′
−Φ(s+1)Φ(s)′

(
Σ

(s)
zz

)−1
1
T

∑T
t=1

(
D

(s)
0 zt −

p∑̀
=1

D
(s)
` zt−`

)(
D

(s)
0 zt −

p∑̀
=1

D
(s)
` zt−`

)′


(104)
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and

θ
(s+1)
i =

 T∑
t=1

1(
σ

(s+1)
i

)2χitχ
′
it


−1

×

 T∑
t=1

1(
σ

(s+1)
i

)2χit

(
yit − φ∗(s)i0 y∗it − λ

(s+1)′
i f

(s)
t

)
=

[
T∑
t=1

χitχ
′
it

]−1 [ T∑
t=1

χit

(
yit − φ∗(s)i0 y∗it − λ

(s+1)′
i f

(s)
t

)]
where Dg is the operator which sets the entries of its
argument to zeros if the counterparts of E (εtε

′
t) are zeros;(

σ
(s+1)
i

)2
is the [(i− 1)(k + 1) + 1]th diagonal element of

Σ
(s+1)
εε . λ(s+1)′

i is the transpose of the [(i− 1)(k + 1) + 1]th
row of Φ(s+1).
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In addition,

1

T

T∑
t=1

E

((
D0zt −

p∑
`=1

D`zt−`

)
f ′t|θs

)

=
1

T

T∑
t=1

(
D0zt −

p∑
`=1

D`zt−`

)(
D0zt −

p∑
`=1

D`zt−`

)′ (
Σ(s)
zz

)−1
Φ(s)

1

T

T∑
t=1

E
(
f tf

′
t|θs
)

= Ir −Φ(s)′
(
Σ(s)
zz

)−1
Φ(s)

+Φ(s)′
(
Σ(s)
zz

)−1 1

T

T∑
t=1

(
D0zt −

p∑
`=1

D`zt−`

)(
D0zt −

p∑
`=1

D`zt−`

)′ (
Σ(s)
zz

)−1
Φ(s)

f
(s)
t = Φ(s)′

(
Σ(s)
zz

)−1
(
D0zt −

p∑
`=1

D`zt−`

)
.
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Step 2: We update φ∗0 by maximising (103) with respect to
φ∗0 at θi = θ̂

(s+1)
i , Φ = Φ̂

(s+1)
and Σεε = Σ̂

(s+1)
εε with an

initial value of φ∗0 at φ̂
∗(s)
0 .

Alternatively, we may combine the STARDL-CF estimator
with the EM algorithm.
Given Ĉit, we update all other parameters including φ∗i0 by
running the following augmented regression:(
yit − Ĉit

)
=

p∑
`=1

φi`yi,t−` +

p∑
`=0

φ∗i`y
∗
i,t−` +

q∑
`=0

π′i`xi,t−`

+

q∑
`=0

π′∗i`x
∗
i,t−` + αi + ρv̂it + e∗it,

where v̂it = y∗it − ϕ̂′izit and
e∗it = eit + ρ (ϕ̂i −ϕi)′ zit +

(
Cit − Ĉit

)
.
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Special Case: STAR models with factors

Consider the STAR model with the heterogeneous parameters:

yit = φiyit−1 + φ∗i0y
∗
it + φ∗i1y

∗
it−1 + uit (105)

Stacking the individual STAR(1) regressions, we have:

yt = Φyt−1 + Φ∗0Wyt + Φ∗1Wyt−1 + ut (106)

Φ
N×N

=

 φ1 · · · 0
...

. . .
...

0 · · · φN

 , Φ∗h
N×N

=

 φ∗1h · · · 0
...

. . .
...

0 · · · φ∗Nh

 h = 0, 1
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Special Case: The STAR model with factors

It is straightforward to develop the general STAR(p) model
with the heterogeneous parameters:

yit =

p∑
h=1

φihyi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h + uit (107)

Stacking the individual STAR(p) regressions:

yt =

p∑
h=1

Φhyt−h +

p∑
h=0

Φ∗hWyt−h + ut (108)

Φh
N×N

=

 φ1h · · · 0
...

. . .
...

0 · · · φNh

 , Φ∗h
N×N

=

 φ∗1h · · · 0
...

. . .
...

0 · · · φ∗Nh
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Special Case: The STAR model with factors

Remark: Spatial stability: The eigenvalues of Φ∗0W lie
inside the unit circle.

Remark: Time stability: We rewrite the STAR(p) regression
as

yt =

p∑
h=1

Φ̃hyt−h + ũt, (109)

where Φ̃h = (IN −Φ∗0W )−1 (Φh + Φ∗hW ), and
ũt = (IN −Φ∗0W )−1 ut.
The roots of the N ×N matrix polynomial
Φ̃ (z) = IN −

∑p
h=1 Φ̃hz lie outside the unit circle.
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To deal with endogeneity of y∗it we apply the CF approach by
considering the following CF DGP:

y∗it = ϕ′izit + vit with E
(
z′itvit

)
= 0 (110)

where zit are the L× 1 vector of exogenous variables.

The two-step procedure: (i) obtain the reduced form residuals,
v̂it = y∗it − ϕ̂′izit and (ii) run the following regression:

yit =

p∑
h=1

φihyi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h + ρv̂it + e∗it (111)

where e∗it = e∗it + ρ (ϕ̂i −ϕi)′ zit depends on the sampling
error in ϕ̂i unless ρ = 0 (exogeneity test).

The OLS estimator will be consistent.
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Rewrite the STAR(p) model as

φi (L) yit = φ∗i (L) y∗it + uit (112)

φi (L) = 1−
p∑

h=1

φihL
h; φ∗i (L) = 1−

p∑
h=0

φ∗ihL
h.

Premultiplying by the inverse of φi (L):

yit = φ̃
∗
i (L) y∗it + ũit (113)

where φ̃
∗
i (L)

(
=
∑∞

j=0 φ̃
∗
ijL

j
)

= [φi (L)]−1 φ∗i (L), and

ũit = [φi (L)]−1 uit.
Dynamic multipliers can be evaluated as

φ̃
∗
ij = φi1φ̃

∗
i,j−1+φi2φ̃

∗
i,j−2+· · ·+φi,j−1φ̃

∗
i1+φijφ̃

∗
i0+φ∗ij , j = 1, 2, ...

(114)
where φij = 0 for j < 1 and φ̃

∗
i0 = φ∗i0, φ̃

∗
ij = 0 for j < 0.
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The cumulative dynamic multiplier effects of y∗it on yi,t+h can
be evaluated as

myi (y∗i , H) =

H∑
h=0

φ̃
∗
ih, H = 0, 1, ...

As H →∞, myi (y∗i , H)→ β∗yi (the long-run coeffi cient).

Define the dynamic multiplier effects as

∂yt+h
∂y∗′t

=


∂y1,t+h
∂y∗1t

0 · · · 0

0
∂y2,t+h
∂y∗2t

· · · 0
...

...
. . .

...
0 0 · · · ∂yN,t+h

∂y∗Nt


N×N
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What’s ∂yi,t+h
∂yjt

? Say,

∂yi,t+h
∂yjt

=
∂yi,t+h
∂y∗it

× wij for i 6= j

Then, what about ∂yi,t+h∂yit
? Simply set to zero?
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Diffusion IRF and FEVD

We rewrite the STAR(p) model as

Φ̃ (L)yt = ũt, (115)

where ũt = (IN −Φ∗0W )−1 ut,

Φ̃ (L) = IN−
p∑
j=1

Φ̃jL
j with Φ̃j = (IN −Φ∗0W )−1 (Φj + Φ∗jW

)
Premultiplying by the inverse of Φ̃ (L):

yt =
[
Φ̃ (L)

]−1
ũt =

[
Φ̃ (L)

]−1
(IN −Φ∗0W )−1 ut (116)

from which we can construct (diffusion) IRF and FEVD.
{Q} with respect to ũt or ut, probably ut (can we assume ut
as structural?) More to follow:
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With Factors

In the spatial modelling it is implicitly assumed that uit is iid
across spatial units or spatially correlated:

uit = λWut + εit.

Now we introduce the common factor structure such that

ut = Λf t + vt.

Then, the STAR model can be extended as

yit = φiyit−1 + φ∗i0y
∗
it + φ∗i1y

∗
it−1 + λ′if t + vit (117)

where vit contains the idiosyncratic components which are
mutually uncorrelated across (i, j).
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Generally, we have STAR(p) with (observed) factors:

yit =

p∑
h=1

φihyi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h + λ′if t + vit (118)

To deal with the endogeneity of y∗it we apply the CF approach.

Then, (118) can be expressed as

Φ̃ (L)yt = (IN −Φ∗0W )−1 (Λf t + vt) (119)

from which we can construct IRF and FEVD.

Remark: This is a parsimonious specification, implying that
we can include the large N spatial units, so another way of
circumventing the curse of input dimensionality.
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GVAR-SPVAR Model

Consider a global economy consisting of N economies and
denote the country-specific variables by an mi × 1 vector yit,
and the country-specific foreign variables by an m∗i × 1 vector
y∗it =

∑N
j=1wijyjt where wij ≥ 0 is the set of granular

weights with
∑N

j=1wij = 1, and wii = 0 for all i.

The country-specific VARX∗ (2, 2) model can be written as

yit = hi0 + hi1t+ Φi1yi,t−1 + Φi2yi,t−2 (120)

+Ψi0y
∗
it + Ψi1y

∗
i,t−1 + Ψi2y

∗
i,t−2 + uit

where the dimension of hij and δij is mi × 1 while those of
Φij and Ψij are mi ×mi and mi ×m∗i .
uit ∼ iid (0,Σii) where Σii is an mi ×mi PD matrix.
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The GVAR-SPVAR Model

The spatial representation of GVAR

Define the m× 1 vector of the global variables:

yt
m×1

=
(
y′1t, ...,y

′
Nt

)′ with yit
k×1

= (y1,it, ..., yk,it)
′

Define the N ×N weight matrix:

W =


w11 w12 w1N

w21 w22 w2N

. . .
wN1 wN2 wNN

 =


w1

w2
...

wN


Then, we have:

y∗it
k×1

=
(
y∗1,it, ..., y

∗
k,it

)′
= (wi ⊗ Ik)yt, y

∗
t

m×1
= (W ⊗ Ik)yt
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The Spatiotemporal Autoregressive Distributed Lag Modelling (STARDL)

The GVAR-SPVAR Model

Thus, (120) can be written as

yit = Φi1yi,t−1 + Φi2yi,t−2 + Ψi0 (wi ⊗ Imi)yit (121)

+Ψi1 (wi ⊗ Imi)yit−1 + Ψi2 (wi ⊗ Imi)yit−2 + uit

Stacking these results, we have:

yt = Φ1yt−1 + Φ2yt−2 + Ψ0y
∗
t + Ψ1y

∗
t−1 + Ψ2y

∗
t−2 + ut(122)

= Φ1yt−1 + Φ2yt−2 + Ψ0 (W ⊗ Ik)yt + Ψ1 (W ⊗ Ik)yt−1

+Ψ2 (W ⊗ Ik)yt−2 + ut



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

The Spatiotemporal Autoregressive Distributed Lag Modelling (STARDL)

The GVAR-SPVAR Model

Alternatively, (122) can be written as

(Im −Ψ0 (W ⊗ Ik))yt (123)

= (Φ1 + Ψ1 (W ⊗ Ik))yt−1 + (Φ2 + Ψ2 (W ⊗ Ik))yt−2 + ut

or{(
Im −Φ1L−Φ2L

2
)
−
(
Ψ0 + Ψ1L+ Ψ2L

2
)

(W ⊗ Ik)
}
yt = ut

(124)
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The GVAR-SPVAR Model

Remark: This shows that SPVAR is the special case of
GVAR. We are interested in IRFs in terms of ∂yt+h∂ut

, which are
the combination of spatial and dynamic ones. So it would be
an important issue how to decompose overall IRFs into the
spatial and dynamic components.

Remark: We may be interested in evaluating the dynamic
multipliers in terms of

∂y1,t+h
∂y2t

or vice versa where

yt = (y′1ty
′
2t)
′, but this is not quite straightforward.

When we add the global factors, f t, such as the oil or
commodity prices, it is straightforward to derive the dynamic
multipliers in terms of ∂yt+h∂f t

.
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Multi-dimensional Panel Data Modelling with CSD

Given the growing availability of the big dataset, the recent
literature attempted to extend the error components models
to the multidimensional setting.
Balazsi, Matyas and Wansbeek (2015) develop the 3D within
estimator; Balazsi, Baltagi, Matyas and Pus (2016) the 3D
random effects approach.
This multi-dimensional approach becomes an essential tool for
the analysis of complex interconnectedness of the big dataset;

the bilateral flows such as trade, FDI, capital or migration
flows (e.g. Feenstra, 2004; Bertoli and Fernandez-Huertas
Moraga, 2013; Gunnella et al., 2015);
matched dataset that link the employer-employee and
pupils-teachers (Abowd et al., 1999; Kramarz et al., 2008).

No study to address an issue of controlling CSD in 3D or
higher-dimensional data, despite strong CSD evidence in 2D
panels (Pesaran, 2015).
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2 main approaches in modelling CSD in 2D panels;

the factor-based approach (Pesaran, 2006; Bai, 2009)
the spatial econometrics techniques (Baltagi, 2005; Behrens et
al., 2012).
the factor-based models exhibit strong CSD while the spatial
models weak CSD only (Chudik et al., 2011).

See also Bailey et al. (2016), Le Gallo and Pirotte (2017),
Baltagi, Egger and Erhardt (2017).
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Multi-dimensional Panel Data Modelling in the Presence of Cross Sectional Error Dependence

Following this research trend, we generalise the
multi-dimensional error components by incorporating
unobserved heterogeneous global factors.

The country-time fixed (CTFE) and random effects (CTRE)
estimators fail to remove heterogenous global factors;
inconsistent in the presence of nonzero correlation between
the regressors and unobserved factors.

We develop the 2-step estimation procedure.

1 We augment the 3D model with cross-section averages of
dependent variable and regressors, as proxies for unobserved
global factors.

2 We apply the 3D-within transformation to the augmented
specification and obtain consistent estimators (the 3D-PCCE
estimator).

Our approach is the first attempt to accommodate strong
CSD in multi-dimensional panels.
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Multi-dimensional Panel Data Modelling in the Presence of Cross Sectional Error Dependence

We discuss the extent of CSD under 3 different error
components with CTFE, with 2-way heterogeneous factor,
and with both.

We develop a diagnostic test for the null of (pairwise) residual
cross-section independence or weak dependence; a modified
CD test in 2D panels by Pesaran (2015)

We provide extensions into unbalanced panels and 4D models.

Monte Carlo studies confirm that the 3D-PCCE estimators
perform well.

On the contrary CTFE displays severe biases and size
distortions.
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Multi-dimensional Panel Data Modelling in the Presence of Cross Sectional Error Dependence

We apply the 3D PCCE estimation to the dataset over
1960-2008 for 91 country-pairs amongst 14 EU countries.

Based on the CD test results, and the predicted signs and
statistical significance of the coeffi cients, we find that the 3D
PCCE estimation results are most reliable.

The trade effect of currency union is rather modest.

This suggests that the trade increase within the Euro area
may reflect a continuation of a long-run historical trend linked
to the broader set of EU’s economic integration policies.
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Notations

IN is an N ×N identity matrix, JN the N ×N identity
matrix of ones, and ιN the N × 1 vector of ones.

MA projects the N ×N matrix A into its null-space, i.e.,
MA = IN −A(A′A)−1A′.

y.jt = N−1
1

∑N1
i=1 yijt, yi.t = N−1

2

∑N2
j=1 yijt and

yij. = T−1
∑T

t=1 yijt denote the average of y over the index i,
j and t, respectively, with the definition extending to other
quantities such as y..t, y.j., yi.. and y....
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The 3D Models with CSD

Consider the 3D country-time fixed effects panel data model:

yijt = β′xijt + γ ′sit + δ′djt + κ′qt +ϕ′zij + uijt, (125)

for i = 1, ..., N1, j = 1, ..., N2, t = 1, ..., T , with errors:

uijt = µij + vit + ζjt + εijt (126)

yijt is the dependent variable across 3 indices (e.g. the import
of country j from country i at period t);

xijt, sit, djt, qt, zij are the kx × 1, ks × 1, kd × 1, kq × 1,
kz × 1 vectors of covariates covering all measurements across
3 indices;

The multi-error components contain pair-fixed effects
(
µij
)
as

well as origin and destination CTFEs, vit and ζjt.
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The 3D Models with CSD

To remove all unobserved FEs, BMW derive the 3D within
transformation:

ỹijt = yijt − ȳij. − y.jt − ȳi.t + ȳ..t + ȳ.j. + ȳi.. − ȳ... (127)

Estimate consistently β from the transformed regression:

ỹijt = β′x̃ijt + ε̃ijt, (128)

where x̃ijt = xijt − x̄ij. − x̄.jt − x̄i.t + x̄..t + x̄.j. + x̄i.. − x̄....

We write (128) compactly as

Ỹij = X̃ijβ + Ẽij (129)

Ỹij
T×1

=

 ỹij1
...

ỹijT

 , X̃ij
T×kx

=

 x̃′ij1
...

x̃′ijT

 , Ẽij
T×1

=

 ε̃ij1
...

ε̃ijT

 .
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Multi-dimensional Panel Data Modelling in the Presence of Cross Sectional Error Dependence

The 3D Models with CSD

The 3D-within estimator of β is obtained by

β̂W =

(
N1∑
i=1

N2∑
j=1

X̃′ijX̃ij

)−1(
N1∑
i=1

N2∑
j=1

X̃′ijỸij

)
. (130)

As (N1, N2, T )→∞,√
N1N2T

(
β̂W − β

)
(131)

a∼ N

0, σ2
ε lim

(N1,N2,T )→∞

(
1

N1N2T

N1∑
i=1

N2∑
j=1

X̃′ijX̃ij

)−1
 .
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Multi-dimensional Panel Data Modelling in the Presence of Cross Sectional Error Dependence

The 3D Models with CSD

The 3D within transformation wipes out all other covariates,
xit, xjt, xt, and xij .

It would be worthwhile to develop an extension of the
Hausman-Taylor (1981) estimation, popular in the two-way
panels in the presence of CSD (e.g. Serlenga and Shin, 2007).

Balazsi, Bun, Chan and Harris (2017) develop an extended
HT estimator for multi-dimensional panels.
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The 3D Models with CSD

We consider a couple of 3D error components that can
accommodate CSD.

vit and ζjt are supposed to measure the (local) origin and
destination CTFEs, so natural to add the global factor λt:

uijt = µij + vit + ζjt + λt + εijt (132)

The 3D-within transformation, (127) also removes λt, because

λt is proportional to
N1∑
i=1
vit or

N2∑
j=1

ζjt.
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The 3D Models with CSD

First, consider the following error components specification:

uijt = µij + πijλt + εijt. (133)

Similar to the 2-way heterogeneous factor model by Serlenga
and Shin (2007).
We apply the cross-section averages of (125) over i and j:

ȳ..t = β′x̄..t+γ
′s̄.t+δ

′d̄.t+κ
′qt+ϕ

′z̄..+µ̄..+π̄..λt+ε̄..t (134)

where ȳ..t = (N1N2)−1∑N1
i=1

∑N2
j=1 yijt, s̄.t = N−1

1

∑N1
i=1 sit,

d̄.t = N−1
2

∑N2
j=1 djt, z̄.. = (N1N2)−1∑N1

i=1

∑N2
j=1 zij ,

µ̄.. = (N1N2)−1∑N1
i=1

∑N2
j=1 µij ,

π̄.. = (N1N2)−1∑N1
i=1

∑N2
j=1 πij .

Hence, we have:

λt =
1

π̄..

{
ȳ..t −

(
β′x̄..t + γ ′s̄.t + δ′d̄.t + κ′qt +ϕ′z̄.. + µ̄.. + ε̄..t

)}
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The 3D Models with CSD

We augment the model (125) with the cross-section averages:

yijt = β′xijt + γ ′sit + δ′djt +ψ′ijft + τ ij + µ∗ij + ε∗ijt, (135)

where

ψ′ij =

(
πij
π̄..
,
−πijβ′

π̄..
,
−πijγ ′
π̄..

,
−πijδ′

π̄..
,

(
1− πij

π̄..

)
κ′
)

ft =
(
ȳ..t, x̄

′
..t, s̄

′
.t, d̄

′
.t,q

′
t

)′ (136)

τ ij = ϕ′zij−
−πij
π̄..

ϕ′z.., µ
∗
ij = µij−

πijµ..
π̄..

, ε∗ijt = εijt−
πij
π̄..
ε̄..t.
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The 3D Models with CSD

We write (267) compactly as

Yij = Wijθ+Hψ∗ij +E∗ij , i = 1, ..., N1, j = 1, ..., N2 (137)

Yij
T×1

=

 yij1
...

yijT

 , Xij
T×kx

=

 x′ij1
...

x′ijT

 , Si
T×ks

=

 s′i1
...

s′iT

 ,

Dj
T×kd

=

 d′j1
...

d′jT

 , F
T×kf

=

 f ′1
...

f ′T

 , E∗ij
T×1

=

 ε∗ij1
...

ε∗ijT

 ,
Wij =

(
Xij ,Si,Dj

)
, θ =

(
β′ γ ′ δ′

)′
,

ψ∗ij =
(
ψ′ij ,

(
τ ij + µ∗ij

))′
and H = [F, ιT ].
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The 3D Models with CSD

We derive the 3D-PCCE estimator of θ by

θ̂PCCE =

(
N1∑
i=1

N2∑
j=1

W′
ijMHWij

)−1(
N1∑
i=1

N2∑
j=1

W′
ijMHYij

)
(138)

where MH = IT −H (H′H)−1 H′.
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The 3D Models with CSD

Following Pesaran (2006), it is straightforward to show that as
(N1, N2, T )→∞,√

N1N2T
(
θ̂PCCE − θ

)
a∼ N (0,Σθ) , (139)

where the (robust) consistent estimator of Σθ is given by

Σ̂θ =
1

N1N2
S−1
θ RθS

−1
θ , (140)

Rθ =
1

N1N2 − 1

N1∑
i=1

N2∑
j=1

(
W′

ijMHWij

T

)(
θ̂ij − θ̂MG

)(
θ̂ij − θ̂MG

)′(W′
ijMHWij

T

)
,

Sθ =
1

N1N2

N1∑
i=1

N2∑
j=1

(
W′

ijMHWij

T

)
, θ̂MG =

1

N1N2

N1∑
i=1

N2∑
j=1
θ̂ij ,

where θ̂ij is the (ij) pairwise OLS estimator obtained from
the individual regression of Yij on (Wij ,H) in (137).
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Multi-dimensional Panel Data Modelling in the Presence of Cross Sectional Error Dependence

The 3D Models with CSD

Next, we consider the 3D model with more general errors:

uijt = µij + vit + ζjt + πijλt + εijt. (141)

The 3D-within transformation fails to remove πijλt, because

ũijt = π̃ij λ̃t + ε̃ijt

where λ̃t = λt − λ̄ with λ̄ = T−1
∑T

t=1 λt and
π̃ij = πij − π.j − πi. + π.. with π.j = N−1

1

∑N1
i=1 πij and

πi. = N−1
2

∑N2
j=1 πij .

1

In the presence of the nonzero correlation between xijt and
λt, the 3D-within estimator of β is biased.

1Unless π̃ij = 0,ũijt 6= ε̃ijt. This holds only if factor loadings, πij are
homogeneous.
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The 3D Models with CSD

We develop the two-step estimation procedure.

First, taking the cross-section averages of (125) over i and j,

ȳ..t = β′x̄..t+γ
′s̄.t+δ

′d̄.t+κ
′qt+ϕ

′z..+µ..+v̄.t+ζ̄ .t+π̄..λt+ε̄..t
(142)

where v̄.t = N−1
1

∑N1
i=1 vit, ζ̄ .t = N−1

2

∑N2
j=1 ζjt.

We augment the model (125) with the cross-section averages:

yijt = β′xijt+γ
′sit+δ

′djt+ψ
′
ijft+τ ij+µ

∗
ij+v

∗
ijt+ζ

∗
ijt+ε

∗
ijt,

(143)

where v∗ijt = vit − πij v̄.t
π̄..

, ζ∗ijt = ζjt −
πij ζ̄.t
π̄..

.
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The 3D Models with CSD

We rewrite (143) as

yijt = β′xijt+γ
′sit+δ

′djt+ψ
′
ijft+τ ij+µ∗ij+vit+ζjt+ε∗∗ijt,

(144)

where ε∗∗ijt = εijt − πij
π̄..
ε̄..t − πij v̄.t

π̄..
− πij ζ̄.t

π̄..
.

As N1, N2 →∞, ε∗∗ijt →p εijt.

We apply the 3D-within transformation (127) to (144):

ỹijt = β′x̃ijt + ψ̃
′
ij f̃t + ε̃∗∗ijt, (145)

where ψ̃ij = ψij −ψ.j −ψj. +ψ.., f̃t = ft − f̄ with
f̄ = T−1

∑T
t=1 ft.
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The 3D Models with CSD

Rewriting (145) compactly as

Ỹij = X̃ijβ+ F̃ψ̃ij + Ẽ∗∗ij , i = 1, ..., N1, j = 1, ..., N2 (146)

Ỹij
T×1

=

 ỹij1
...

ỹijT

 , X̃ij
T×kx

=

 x̃′ij1
...

x̃′ijT

 , F̃
T×kf

=

 f̃ ′1
...

f̃ ′T

 , Ẽ∗∗ij =

 ε̃∗∗ij1
...

ε̃∗∗ijT

 .
The 3D-PCCE estimator of β is obtained by

β̂PCCE =

(
N1∑
i=1

N2∑
j=1

X̃′ijMF̃ X̃ij

)−1(
N1∑
i=1

N2∑
j=1

X̃′ijMF̃ Ỹij

)
(147)

where MF̃ = IT − F̃
(
F̃′F̃

)−1
F̃′ is the T × T idempotent

matrix.
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The 3D Models with CSD

As (N1, N2, T )→∞,√
N1N2T

(
β̂PCCE − β

)
a∼ N (0,Σβ) , (148)

where the (robust) consistent estimator of Σβ is given by

Σ̂β =
1

N2
S−1
β RβS

−1
β , (149)

Rβ =
1

N1N2 − 1

N1∑
i=1

N2∑
j=1

(
X̃′ijMF̃ X̃ij

T

)(
β̂ij − β̂MG

)(
β̂ij − β̂MG

)′(X̃′ijMF̃ X̃ij

T

)
,

Sβ =
1

N1N2

N1∑
i=1

N2∑
j=1

(
X̃′ijMF̃ X̃ij

T

)
, β̂MG =

1

N1N2

N1∑
i=1

N2∑
j=1
β̂ij ,

where β̂ij is the (ij) pairwise OLS estimator from the

individual regression of Ỹij on
(
X̃ij , F̃

)
in (146).
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The 3D Models with CSD

Extend to 3D panels with heterogeneous parameters:

yijt = β′ijxijt + γ ′jsit + δ′idjt + κ′ijqt +ϕ′zij + uijt (150)

We develop the mean group estimators:

β̂W,MG =
1

N1N2

N1∑
i=1

N2∑
j=1

(
X̃′ijX̃ij

)−1 (
X̃′ijYij

)
(151)

θ̂MGCCE =
1

N1N2

N1∑
i=1

N2∑
j=1

(
W′

ijMHWij

)−1 (
W′

ijMHYij

)
(152)

β̂MGCCE =
1

N1N2

N1∑
i=1

N2∑
j=1

(
X̃′ijMF̃ X̃ij

)−1 (
X̃′ijMF̃ Ỹij

)
(153)
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Cross-section Dependence (CD) Test

The extent of CSD is captured by non-zero covariance
between uijt and ui′j′t, which relates to rate at which

1
N1N2

N1∑
i=1

N2∑
j=1

σijt,u declines with N1N2.

First, consider the 3D model (125) with CTFEs (126).

We make the random effects assumptions (BBMP):

µij ∼ iid
(
0, σ2

µ

)
, vit ∼ iid

(
0, σ2

v

)
, (154)

ζjt ∼ iid
(
0, σ2

ζ

)
, εijt ∼ iid

(
0, σ2

ε

)
where µij , vit, ζjt and εijt are pairwise uncorrelated.
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Cross-section Dependence (CD) Test

We rewrite (126) sequentially as

uij = µijιT + vi + ζj + εij , i = 1, ..., N1, j = 1, ..., N2,

ui = µi ⊗ ιT + ιN2 ⊗ vi + ζ + εi, i = 1, ..., N1,

u = µ⊗ ιT + V + ιN1 ⊗ ζ + ε (155)

uij
T×1

=

 uij1
...

uijT

 , vi
T×1

=

 vi1
...
viT

 , ζj
T×1

=

 ζj1
...
ζjT

 , εij
T×1

=

 εij1
...

εijT

 ,
ui

N2T×1
=

 ui1
...

uiN2

 , µi
N2×1

=

 µi1
...

µiN2

 , ζ
N2T×1

=

 ζ1
...
ζN2

 , εi
N2T×1

=

 εi1
...

εiN2

 ,
u

N1N2T×1
=

 u1
...

uN1

 , µ
N1N2×1

=

 µ1
...
µN1

 , V
N1N2T×1

=

 ιN2 ⊗ v1
...

ιN2 ⊗ vN1

 , ε
N1N2T×1

=

 ε1
...
εN1


(156)
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Cross-section Dependence (CD) Test

It is easily seen that

Cov (u) = IN1N2 ⊗
(
σ2
µJT

)
+ IN1 ⊗ JN2 ⊗

(
σ2
vIT
)
(157)

+JN1 ⊗
(
σ2
ζIN2T

)
+ σ2

εIN1N2T

CTRE imposes very limited structure of CSD, because for
i 6= i′ and j 6= j′, we have:

E[uijtuij′t] = σ2
v, E[uijtuij′t] = σ2

ζ and E[uijtui′j′t] = 0.
(158)
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Cross-section Dependence (CD) Test

Next, consider the 3D model with the 2-way heterogeneous
factor, (133). It is straightforward to derive:

u = µ⊗ ιT + π ⊗ λT + ε (159)

π
N1N2×1

=

 π1
...
πN1

 , πi
N2×1

=

 πi1
...

πiN2

 , λT
T×1

=

 λ1
...
λT


(160)

The covariance matrix for u in (159) is:

Cov (u) = IN1N2 ⊗
(
σ2
µJT

)
+
(
ππ′

)
⊗
(
σ2
λIT
)

+ σ2
εIN1N2T

(161)
It captures CSD by

E[uijtuij′t] = πijπij′σ
2
λ, E[uijtui′jt] = πijπi′jσ

2
λ,(162)

E[uijtui′j′t] = πijπi′j′σ
2
λ.
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Cross-section Dependence (CD) Test

Consider the 3D model with general error components, (141).
It is straightforward to derive:

u = µ⊗ ιT + V + ιN1 ⊗ ζ + π ⊗ λT + ε. (163)

The covariance matrix for u is given by

Cov (u) = IN1N2 ⊗
(
σ2
µJT

)
+ IN1 ⊗ JN2 ⊗

(
σ2
vIT
)

(164)

+JN1 ⊗
(
σ2
ζIN2T

)
+
(
ππ′

)
⊗
(
σ2
λIT
)

+ σ2
εIN1N2T

It captures CSD by

E[uijtuij′t] = πijπij′σ
2
λ + σ2

v, E[uijtui′jt] = πijπi′jσ
2
λ + σ2

ξ ,

E[uijtui′j′t] = πijπi′j′σ
2
λ.
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Cross-section Dependence (CD) Test

Remark: CTFE accommodates non-zero covariance locally,
but imposes the same covariance for all i = 1, ..., N1 and
j = 1, ..., N2. Such restrictions are too strong.

Our proposed error components (141) accommodates
non-zero covariances both locally and globally.

Consider the heterogeneous local factors specifications:

vit = viτ t and ζjt = ζjτ
∗
t (165)

where τ t and τ∗t are the importer and exporter-specific local
factors. Then,we replace (141) by

uijt = µij + viτ t + ζjτ
∗
t + εijt. (166)

Exporter i reacts heterogeneously to the common import
market condition τ t and importer j reacts heterogeneously to
the common export market condition τ∗t .
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Cross-section Dependence (CD) Test

KSS propose a hierarchical multi-factor error components
specification:

uijt = µij + viτ it + ζjτ
∗
jt + πijλt + εijt. (167)

We can distinguish between three types of CSD:

the strong global factor, λt influences the (ij) pairwise
interactions (of N1N2 dimension);
the semi-strong local factors, τ it and τ∗jt, influence exporters
or importers separately (each of N1 or N2 dimension);
the weak CSD idiosyncratic errors, εijt.



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

Multi-dimensional Panel Data Modelling in the Presence of Cross Sectional Error Dependence

Cross-section Dependence (CD) Test

We assume that

µij ∼ iid
(
0, σ2

µ

)
, τ it ∼ iid

(
0, σ2

τ

)
, τ∗jt ∼ iid

(
0, σ2

τ∗
)
,(168)

λt ∼ iid
(
0, σ2

λ

)
, εijt ∼ iid

(
0, σ2

ε

)
where µij , τ it, τ

∗
jt, λt and εijt are mutually independent.

The model (167) captures CSD by

E[uijtuij′t] = v2
i σ

2
τ+πijπij′σ

2
λ, E[uijtui′jt] = ζ2

jσ
2
τ∗+πijπi′jσ

2
λ

E[uijtui′j′t] = πijπi′j′σ
2
λ.

The covariance structure is more flexible than (??).
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Cross-section Dependence (CD) Test

The diagnostic test for the null hypothesis of residual
cross—section independence in the 3D panels using the
residuals, eij = (eij1, ..., eijT )′.

We have eij = Ỹij − X̃ijβ̂W for the model (129),
eij = MHYij −MHWij θ̂PCCE for (137), and
eij = MF̃ Ỹij −MF̃ X̃ijβ̂PCCE for (146).

The cross-section dependence (CD) test is a modified
counterpart of an existing CD test by Pesaran (2015).
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Cross-section Dependence (CD) Test

We represent eij as the (ij) pair using the single index
n = 1, ..., N1N2, and compute the pair-wise residual
correlations between n and n′ cross-section units by

ρ̂nn′ (= ρn′n) =
e′nen′√

(e′nen)
(
e′n′en′

) , n, n′ = 1, ..., N1N2 and n 6= n′.

We construct the CD statistic by

CD =

√
2

N1N2 (N1N2 − 1)

N1N2−1∑
n=1

N1N2∑
n′=n+1

√
T ρ̂nn′ (169)

CD test has the limiting N(0, 1) distribution under the null
H0 : ρ̂nn′ = 0 for all n, n′ = 1, ..., N1N2 and n 6= n′ (Pesaran,
2015).
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Unbalanced Panels

An issue of unbalanced panels has been almost neglected even
in the 2D panels with unobserved factors.

Kapetanios and Pesaran (2005) briefly deal with it in their
Monte Carlo studies.

Bai et al. (2015) investigate the unbalanced 2D panel data
model with interactive effects, and propose the functional
principal components analysis and the EM algorithm.
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Unbalanced Panels

BMW derive the complex within transformation, which is
computationally demanding as it involves an inversion of
NT ×NT matrices.
We introduce a vector of selection indicators for each pair
(i, j), sij = (sij,1, ..., sij,T )′, where sij,t = 1 if time period t
for pair (i, j) can be used in estimation.

Following Wooldridge (2010), we assume that selection is
ignorable conditional on

(
xijt, sit,djt,qt, zij , µij , λt

)
:

E
(
yit|xijt, sit,djt,qt, zij , µij , λt, si

)
= E

(
yit|xijt, sit,djt,qt, zij , µij , λt

)
.
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Unbalanced Panels

Let n =
∑N1

i=1

∑N2
j=1

∑T
t=1 sij,t be the total number of

observations.

Define nt =
∑N1

i=1

∑N2
j=1 sij,t and nij =

∑T
t=1 sij,t as the

number of cross-section pairs at period t and the number of
time periods for pair (i, j).

Define ni =
∑N2

j=1

∑T
t=1 sij,t, nj =

∑N1
i=1

∑T
t=1 sij,t,

nit =
∑N2

j=1 sij,t and njt =
∑N1

i=1 sij,t.

We maintain the assumption:(
mini ni,minj nj ,mint nt,min(ij) nij

)
→∞ or(

mint nt,min(ij) nij
)
→∞.
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Unbalanced Panels

We multiply the 3D model (125) with the error components
(133) by the selection indicator to get:

ysijt = β′xsijt+γ
′ssit+δ

′dsjt+κ
′qst +ϕ′zsij +µsij +πsijλt+εsijt,

(170)
where yijt = sij,tyijt, xsijt = sij,txijt, ssit = sij,tsit,
dsjt = sij,tdjt, qst = sij,tqt, zsij = sij,tzij , µsij = sij,tµij ,
πsij = sij,tπij , εsijt = sij,tεijt.
Applying the cross-section averages of (170) over i and j,

ȳs..t = β′x̄s..t + γ ′s̄s.t + δ′d̄s.t + κ′qt +ϕ′z̄s..t + µ̄s..t + π̄s..tλt + ε̄s..t
(171)

where ȳs..t = 1
nt

∑N1
i=1

∑N2
j=1 sij,tyijt =

∑N1
i=1witȳ

s
i.t is a

weighted average with wit = nit/nt and
ȳsi.t = n−1

it

∑N2
j=1 sij,tyijt.

Similarly for x̄s..t, z̄s..t, µ̄
s
..t, π̄

s
..t and ε̄

s
..t.

Further, s̄s.t =
∑N1

i=1witsit, d̄s.t =
∑N2

j=1wjtdjt with
wjt = njt/nt, and q̄st = qt.
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Unbalanced Panels

As nt →∞,

z̄s..t = z̄+op (1) , µ̄s..t = µ̄+op (1) , π̄s..t = π̄+op (1) , ε̄s..t = ε̄..t+op (1)
(172)

where z̄ = (N1N2)−1∑N1
i=1

∑N2
j=1 zij →p E (zij),

µ̄ = (N1N2)−1∑N1
i=1

∑N2
j=1 µij →p 0,

π̄ = (N1N2)−1∑N1
i=1

∑N2
j=1 πij →p E (πij) 6= 0,

ε̄..t = (N1N2)−1∑N1
i=1

∑N2
j=1 εijt →p 0.

Using (172), we rewrite (171) as

ȳs..t = β′x̄s..t+γ
′s̄s.t+δ

′d̄s.t+κ
′qt+ϕ

′z̄+ µ̄+ π̄λt+ ε̄..t+op (1)

Hence, λt can be approximated by

λt '
1

π̄

{
ȳs..t −

(
β′x̄s..t + γ ′s̄s.t + δ′d̄s.t + κ′qt +ϕ′z̄ + µ̄+ ε̄..t

)}
.
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Unbalanced Panels

We augment the model (170) with cross-section averages:

ysijt = β′xsijt +γ ′ssit + δ′dsjt +ψ′ij̊f
s
t + τ sij +µsij + ε∗sijt, (173)

where τ sij = sij,tτ ij , ε∗sijt = sij,tε
∗
ijt and

f̊ st = sij,tf
s
t with f st =

(
ȳs..t, x̄

s′
..t, s̄

s′
.t , d̄

s′
.t ,q

′
t

)′ (174)
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Unbalanced Panels

Collecting the nij observations with sij,t = 1 from (173),

Yij = Wijθ + Hijψ
∗
ij + E∗ij (175)

where Wij =
(
Xij ,Sij ,Dij

)
, θ =

(
β′ γ ′ δ′

)′
,

ψ∗ij =
(
ψ′ij ,

(
τ ij + µij

))′, Hij =
[
Fij , ιnij

]
and

Yij
nij×1

=

 yij(1)
...

yij(nij)

 , Xij
Tij×kx

=

 x′ij(1)
...

x′ij(nij)

 , Sij
Tij×ks

=

 s′i(1)
...

s′i(nij)



Dij
nij×kd

=

 d′j(1)
...

d′j(nij)

 , Fij
nij×kf

=

 f s′(1)
...

f s′(nij)

 , Eij
Tij×1

=

 ε∗ij(1)
...

ε∗ij(nij)

 .
We express the time index inside (.) to highlight different
initial and last periods for each pair (ij).
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Unbalanced Panels

The 3D-PCCE estimator of θ is obtained by

θ̂PCCE =

(
N1∑
i=1

N2∑
j=1

W′
ijMHijWij

)−1(
N1∑
i=1

N2∑
j=1

W′
ijMHijYij

)
(176)

where MHij = ITij −Hij

(
H′ijHij

)−1
H′ij .
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Unbalanced Panels

Next, we multiply the 3D model (125) with the general error
components (141) by sij,t = 1:

ysijt = β′xsijt+γ
′ssit+δ

′dsjt+κ
′qst+ϕ

′zsij+µ
s
ij+v

s
it+ζ

s
jt+πijλ

s
t+ε

s
ijt

(177)
where ysijt = sij,tyijt and similarly for others.

Taking the cross-section averages of (177) over i and j,

ȳs..t = β′x̄s..t+γ
′s̄s.t+δ

′d̄s.t+κ
′qt+ϕ

′z̄s..t+µ̄
s
..t+v̄

s
.t+ζ̄

s
.t+π̄

s
..tλt+ε̄

s
..t

(178)
where v̄s.t =

∑N1
i=1witvit with wit = nit/nt,

ζ̄
s
.t =

∑N2
j=1wjtζjt with wjt = njt/nt.
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Unbalanced Panels

As nt →∞,

v̄s.t = v̄ + op (1) and ζ̄s.t = ζ̄ + op (1) (179)

where v̄ = N−1
1

∑N1
i=1 vit →p 0 and ζ̄ = N−1

2

∑N2
j=1 ζjt →p 0.

Using (172) and (179), we can approximate ȳs..t and λt by

ȳs..t = β′x̄s..t+γ
′s̄s.t+δ

′d̄s.t+κ
′qt+ϕ

′z̄+µ̄+v̄+ζ̄+π̄λt+ε̄..t+op (1)

λt =
1

π̄

{
ȳs..t −

(
β′x̄s.t + γ ′s̄s.t + δ′d̄s.t + κ′qt +ϕ′z̄ + µ̄+ v̄ + ζ̄ + ε̄..t

)}
+op (1) .

We augment the model (177) with the cross-section averages:

ysijt = β′xsijt+γ
′ssit+δ

′dsjt+ψ
′
ijf

s
t +τ sij+µsij+vsit+ζ

s
jt+ε

∗s
ijt,

(180)
where ε∗sijt = sij,tε

∗
ijt with

ε∗ijt = εijt − πij
π̄

(
ε̄..t + µ̄+ v̄ + ζ̄

)
→p εijt.
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Unbalanced Panels

Consider the simpler specification:

ysijt = µsij + vsit + ξsjt + εsijt, (181)

and examine the transformed data:

ỹsijt = ysijt + sij,t
(
−ȳsij· − ȳs·jt − ȳsi·t + ȳs··t + ȳs·j· + ȳsi·· − ȳs···

)
(182)

It is straightforward to show:(
−ȳsij· − ȳs·jt − ȳsi·t + ȳs··t + ȳs·j· + ȳsi·· − ȳs···

)
= −

(
µij + vit + ξjt

)
+D1 +D2 +D3 +D4 +D5
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Unbalanced Panels

where

D1 = −

v̄sij. − N2∑
j=1

nij
ni
v̄sij.

+

 N1∑
i=1

nij
nj
v̄sij. −

N1∑
i=1

ni
n

N2∑
j=1

nij
ni
v̄sij.


D2 = −

(
ξ̄
s
ij. −

N1∑
i=1

nij
nj
ξ̄
s
ij.

)
+

 N2∑
j=1

nij
ni
ξ̄
s
ij. −

N2∑
j=1

nj
n

N1∑
i=1

nij
nj
ξ̄
s
ij.


D3 = −

(
µ̄.jt −

T∑
t=1

njt
nj
µ̄.jt

)
−
(
µ̄i.t −

T∑
t=1

nit
ni
µ̄i.t

)
+

(
µ̄..t −

T∑
t=1

nt
n
µ̄..t

)

D4 = −

v̄s.jt − N2∑
j=1

njt
nt
v̄s.jt

 , D5 = −
(
ξ̄i.t −

N1∑
i=1

nit
nt
ξ̄i.t

)
with v̄sij. = 1

nij

∑T
t=1 sij,tvit, ξ̄

s
ij. = 1

nij

∑T
t=1 sij,tξjt,

µ̄s.jt = 1
njt

∑N1
i=1 sij,tµij , µ̄

s
i.t = 1

nit

∑N2
j=1 sij,tµij ,

µ̄s..t = 1
nt

∑N1
i=1

∑N2
j=1 sij,tµij , v̄

s
.jt = 1

njt

∑N1
i=1 sij,tvit,

ξ̄
s
i.t = 1

nit

∑N2
j=1 ξjt.
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Unbalanced Panels

In the balanced panels D1 = D2 = D3 = D4 = D5 = 0.

As
(
mini ni,minj nj ,mint nt,min(ij) nij

)
→∞, Di →p 0 for

i = 1, ..., 5.

Therefore, (
−ȳsij· − ȳs·jt − ȳsi·t + ȳs··t + ȳs·j· + ȳsi·· − ȳs···

)
(183)

= −
(
µij + vit + ξjt

)
+ op (1)

Using (183) and applying (182) to (181), we obtain:

ỹsijt = ε̃sijt, (184)

where
ε̃sijt = εsijt − sij,t

(
ε̄sij· − ε̄s·jt − ε̄si·t + ε̄s··t + ε̄s·j· + ε̄si·· − ε̄s···

)
.
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Unbalanced Panels

We apply the 3D-within transformation (182) to (180):

ỹsijt = β′x̃sijt + ψ̃
′
ij̊f

s
ijt + ε̃∗sijt, (185)

where ψ̃ij = ψ′ij −
(

1
njt

∑N1
i=1ψ

′
ij

)
−
(

1
nit

∑N2
j=1ψ

′
ij

)
+(

1
nt

∑N1
i=1

∑N2
j=1ψ

′
ij

)
, f̊ sijt = sij,tf̃

s
ij with f̃ sij = f st − f̄ sij and

f̄ sij = n−1
ij

∑T
t=1 sij,tf

s
t .

Collecting only the nij observations with sij,t = 1 from (185),

Ỹij = X̃ijβ + F̃ijψ̃ij + Ẽ∗ij , (186)

where

Ỹij
nij×1

=

 ỹij(1)
...

ỹij(nij)

 , X̃ij
nij×kx

=

 x̃′ij(1)
...

x̃′ij(nij)

 , F̃ij
nij×kf

=


f̃ s′ij(1)
...

f̃ s′ij(nij)

 , Ẽ∗ij
nij×1

=

 ε̃∗ij(1)
...

ε̃∗ij(nij)

 .
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Unbalanced Panels

The 3D-PCCE estimators of β are obtained by

β̃PCCE =

(
N1∑
i=1

N2∑
j=1

X̃′ijMijX̃ij

)−1(
N1∑
i=1

N2∑
j=1

X̃′ijMijỸij

)
(187)

where Mij = IT − F̃ij

(
F̃′ijF̃ij

)−1
F̃′ij .

As
(
mint nt,min(ij) n(ij)

)
→∞, both PCCE estimators, (176)

and (187), will follow the asymptotic normal distribution.
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4D Model Extensions

BMW propose the following 4D model:

yijst = x′ijstβ + uijst, (188)

uijst = µijs + θijt + ζjst + vist + εijst (189)

for i = 1, ..., N1, j = 1, ..., N2, s = 1, ..., N3, t = 1, ..., T .
BMW derive the 4D within transformation to eliminate
pair-wise interaction effects, µijs, vist, ζjst, and λijt:

ỹijst = yijst − ȳ.jst − ȳi.st − ȳij.t − ȳijs. + ȳ..st + ȳ.j.t + ȳ.js.

+ȳi..t + ȳi.s. + ȳij.. − ȳ...t − ȳ..s. − ȳ.j.. − ȳi... − ȳ....(190)

and estimate β consistently from

ỹijst = x̃′ijstβ + ũijst. (191)

BBMP propose the feasible GLS estimator under the
assumption that error components are pairwise uncorrelated.
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To introduce CSD into (188), consider the following extension:

yijst = x′ijstβ+µijs + θijt + ζjst + vist +πijsλt + εijst (192)

The 4D-FE and 4D-RE estimators biased due to the
correlation between xijst and λt.

We develop the two-step consistent estimation procedure.
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Taking the cross-section averages of (192) over i, j and s,

ȳ...t = β′x̄...t + µ̄... + θ̄..t + ζ̄ ..t + v̄..t + π̄...λt + ε̄...t (193)

where x̄...t = 1
N1

∑N1
i=1

1
N2

∑N2
j=1

1
N

∑N3
s=1 xijst,

ε̄...t = 1
N1

∑N1
i=1

1
N2

∑N2
j=1

1
N

∑N3
s=1 εijst,

µ̄... = 1
N1

∑N1
i=1

1
N2

∑N2
j=1

1
N

∑N3
s=1 µijs,

π̄... = 1
N1

∑N1
i=1

1
N2

∑N2
j=1

1
N

∑N3
s=1 πijs,

θ̄..t = 1
N1

∑N1
i=1

1
N2

∑N2
j=1 θijt, ζ̄ ..t = 1

N2

∑N2
j=1

1
N

∑N3
s=1 ζjst,

and v̄..t = 1
N1

∑N1
i=1

1
N

∑N3
s=1 vist.
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From (193) we have:

λt =
1

π...

{
ȳ...t −

(
β′x̄...t + µ̄... + θ̄..t + ζ̄ ..t + v̄..t + π̄...λt + ε̄...t

)}
.

We derive the cross-section augmented version of (192) by

yijst = β′xijst+ψ
′
ijsft+µijs+θijt+ζjst+vist+ε∗ijst, (194)

where ft = (ȳ...t, x̄
′
...t)
′,

ψ′ijs =
(
ψ0,ijs,ψ

′
ijs

)
=
(
πijs
π̄...

,−πijs
π̄...
β′
)
and

ε∗ijst = εijst − πijs
π̄...

(
ε̄...t + θ̄..t + ζ̄ ..t + v̄..t

)
.

As N1, N2, N3 →∞, ε∗ijst →p εijst.
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Apply the 4D-within transformation (190) to (194):

ỹijst = β′x̃ijst + ψ̃
′
ijsf̃t + ε̃∗ijt. (195)

where f̃t =
(
ft − f̄

)
and

ψ̃
′
ijs =

(
ψijs −ψ.js −ψi.s −ψij. +ψ..s +ψ.j. +ψi.. −ψ...

)′
We rewrite (195) as

Ỹijs = X̃ijsβ + F̃ψ̃ijs + ε̃∗ijs, (196)

where

Ỹijs
T×1

=

 ỹijs1
...

ỹijsT

 , X̃ijs
T×kx

=

 x̃′ijs1
...

x̃′ijsT

 , F̃
T×kf

=

 f̃ ′1
...

f̃ ′T

 .
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It is straightforward to derive the PCCE estimator of β by

β̂PCCE =

(
N1∑
i=1

N2∑
j=1

N3∑
s=1

X̃′ijsMF̃X̃ijs

)−1(
N1∑
i=1

N2∑
j=1

N3∑
s=1

X̃′ijsMF̃Ỹijs

)
,

(197)

where MF̃ = IT − F̃
(
F̃′F̃

)−1
F̃′.
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We follow KSS and develop 4D models with the hierarchical
multi-factor error structure.

Define the global factor λt which affects all (ijs) pairs, the
regional factors τ it, τ∗jt, τ

∗∗
st , and finally the local factors τ ijt,

τ∗ist and τ
∗∗
jst.

This suggests the following model:

yijst = x′ijstβ + µijs + vjsτ it + v∗isτ jt + v∗∗ij τ st + ζsτ ijt(198)

+ζ∗jτ
∗
ist + ζ∗∗i τ

∗∗
jst + πijλt + εijst.

Such setups involve several layers of factor specifications (a
number that grows with the dimension), rendering their
estimation challenging.
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We construct DGP1 by

yijt = β′xijt + µij + πijλt + εijt, (199)

xijt = µxij + µij + πxijλt + vijt, (200)

for i = 1, ..., N1, j = 1, ..., N2, and t = 1, ..., T .

The global factor, λt and idiosyncratic errors, εijt and vijt are
generated independently as iid processes

λt ∼ iidN (0, 1) , εijt ∼ iidN (0, 1) , vijt ∼ iidN (0, 1) .

We generate pairwise individual effects independently as

µij ∼ iidN (0, 1) , µxij ∼ iidN (0, 1) .

Factor loadings, πij and πxij , are independently generated
from U [1, 2].
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Next, we construct DGP2 by

yijt = β′xijt + µij + vit + ζjt + πijλt + εijt. (201)

xijt = µxij + µij + πxijλt + vijt, , (202)

for i = 1, ..., N1, j = 1, ..., N2, and t = 1, ..., T .

In addition, we generate vit and ζjt independently as:

vit ∼ U (−1, 1) and ζjt ∼ U (−1, 1)

In both DGP1 and DGP2 we set β = 1.
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We evaluate the following summary statistics:

Bias: β̂R − β0 (= 1) and β̂R = R−1
∑R

r=1 β̂r.

RMSE:

√
R−1

∑R
r=1

(
β̂r − β0

)2
.

Size: the rejection probability of the t-statistic for the null
β = β0 against β 6= β0 at the 5%.

We conduct experiment 1,000 times for
N1, N2 = {25, 49, 100} and T = {50, 100, 200, 400}.
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Monte Carlo Study

In Table 1 biases of the 2D PCCE and 3D PCCE estimators of
β are mostly negligible even for (N1, N2, T ) = (25, 25, 50).

The CTFE estimator displays substantial biases.

RMSE results are qualitatively similar to the bias pattern.

CTFE over-rejects the null in all cases and tends to 1 even as
N1 (N2) or T rises.

The size of the 2D PCCE is close to the nominal 5% while 3D
PCCE slightly over-rejects when N1 or N2 is small.

Overall performance of the 2D PCCE estimator is the best
under DGP1.
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Table: Simulation results for β under the DGP1
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CTFE
Bias

(N1N2, T ) 50 100 200 400
25 0.0829 0.0832 0.0833 0.0822
49 0.0347 0.0341 0.0338 0.0344
100 -0.0307 -0.0315 -0.0313 -0.0316

RMSE
(N1N2, T ) 50 100 200 400
25 0.0914 0.0871 0.0854 0.0832
49 0.0420 0.0383 0.0357 0.0353
100 0.0347 0.0336 0.0324 0.0322

Size
(N1N2, T ) 50 100 200 400
25 0.7610 0.9590 0.9980 1.0000
49 0.4020 0.6290 0.8810 0.9950
100 0.5530 0.8410 0.9910 1.0000

2D PCCE 3D PCCE
Bias

(N1N2, T ) 50 100 200 400 50 100 200 400
25 0.0017 0.0011 0.0014 0.0003 0.0017 0.0008 0.0012 0.0002
49 0.0006 -0.0005 0.0002 0.0004 0.0000 -0.0001 0.0000 0.0006
100 0.0004 -0.0005 -0.0001 -0.0003 0.0009 -0.0002 0.0000 -0.0003

RMSE
(N1N2, T ) 50 100 200 400 50 100 200 400
25 0.0290 0.0202 0.0146 0.0101 0.0290 0.0202 0.0146 0.0101
49 0.0207 0.0156 0.0100 0.0071 0.0207 0.0156 0.0100 0.0071
100 0.0142 0.0103 0.0070 0.0051 0.0142 0.0103 0.0070 0.0051

Size
(N1N2, T ) 50 100 200 400 50 100 200 400
25 0.049 0.045 0.052 0.052 0.133 0.124 0.132 0.114
49 0.041 0.062 0.047 0.047 0.095 0.113 0.097 0.086
100 0.042 0.048 0.044 0.055 0.081 0.093 0.074 0.093
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Notes: We report the simulation results for three estimators for the DGP1,
(199) and (200). CTFE refers to the 3D within estimator given by (129), 2D
PCCE is the PCCE estimator given by (137) and 3D PCCE is the PCCE

estimator given by (146).
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Simulation results in Table 2 are qualitatively similar to those
in Table 1.

Biases of PCCE are almost negligible and their RMSEs
decrease rapidly with N1 (N2) or T .

Empirical sizes are still close to the nominal 5% level.

CTFE suffers from substantial biases and size distortions, and
its performance does not improve in large samples.

Good performance of the 2D PCCE is rather surprising as the
3D PCCE estimator is expected to dominate.

Overall simulation results support the simulation findings
reported under the 2D panels by Kapetanios and Pesaran
(2005) and Pesaran (2006).
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Monte Carlo Study

Table: Simulation results for β under the DGP2



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

Multi-dimensional Panel Data Modelling in the Presence of Cross Sectional Error Dependence

Monte Carlo Study

CTFE
Bias

(N1N2, T ) 50 100 200 400
25 0.0835 0.0829 0.0830 0.0827
49 0.0143 0.0144 0.0155 0.0156
100 -0.0365 -0.0371 -0.0362 -0.0370

RMSE
(N1N2, T ) 50 100 200 400
25 0.0921 0.0872 0.0850 0.0839
49 0.0272 0.0220 0.0194 0.0177
100 0.0400 0.0388 0.0371 0.0374

Size
(N1N2, T ) 50 100 200 400
25 0.7780 0.9450 1.0000 1.0000
49 0.1420 0.2060 0.3630 0.5650
100 0.7120 0.9400 0.9940 1.0000

2D PCCE 3D PCCE
Bias

(N1N2, T ) 50 100 200 400 50 100 200 400
25 -0.0001 0.0008 0.0009 0.0001 0.0012 0.0006 0.0009 0.0005
49 -0.0002 0.0000 0.0006 0.0001 -0.0001 0.0000 0.0005 0.0005
100 0.0000 -0.0001 0.0001 -0.0002 0.0001 -0.0003 0.0001 -0.0002

RMSE
(N1N2, T ) 50 100 200 400 50 100 200 400
25 0.0295 0.0201 0.0145 0.0104 0.0368 0.0250 0.0181 0.0130
49 0.0208 0.0147 0.0102 0.0072 0.0238 0.0169 0.0120 0.0083
100 0.0148 0.0103 0.0069 0.0049 0.0161 0.0114 0.0076 0.0054

Size
(N1N2, T ) 50 100 200 400 50 100 200 400
25 0.0510 0.0470 0.0630 0.0570 0.1290 0.1240 0.1330 0.1260
49 0.0480 0.0540 0.0460 0.0500 0.0910 0.1010 0.1070 0.0850
100 0.0620 0.0510 0.0450 0.0490 0.0930 0.0800 0.0660 0.0700
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Notes: We report the simulation results for three estimators for the DGP2,
(201) and (202). CTFE refers to the 3D within estimator given by (129), 2D
PCCE is the PCCE estimator given by (137) and 3D PCCE is the PCCE

estimator given by (146).
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The Gravity Model of the Intra-EU Trade

Anderson and van Wincoop (2003): “The gravity equation
tells us that bilateral trade, after controlling for size, depends
on the bilateral trade barriers but relative to the product of
their Multilateral Resistance Indices (MTR).”

Omitting MTR induces severe bias (e.g. Baldwin and
Taglioni, 2006).

Subsequent research focused on estimating the model with
directional country-specific fixed effects to control for
unobservable MTRs (e.g. Feenstra, 2004).
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A large number of studies established an importance of taking
into account multilateral resistance and bilateral heterogeneity
in the 2D panels.

Serlenga and Shin (2007) is the first to develop the panel
gravity model by incorporating observed and unobserved
factors.

Behrens et al. (2012) develop the spatial econometric
specification, to control for multilateral cross-sectional
correlations across trade flows.

Mastromarco et al. (2015) compare the factor- and the
spatial-based gravity models to investigate the Euro impact on
intra-EU trade flows over 1960-2008 for 190 country-pairs of
14 EU and 6 non-EU OECD countries.

The CD test confirms that the factor-based model is more
appropriate for controlling for CSD.
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For the 3D models, we should control for source of biases
presented by unobserved time-varying MTRs.

Baltagi et al. (2003) propose the 3D model (128) with CTFE
specification (126).

This approach popular in measuring the impacts of MTRs of
the exporters and the importers in the structural gravity
studies (e.g. Baltagi et al., 2015).

CTFE or CTRE estimators fail to accommodate (strong and
heterogeneous) CSD.

The presence of CSD across (ij) pairs suggests that the
appropriate econometric techniques be required.
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We apply our approach to the dataset covering the period
1960-2008 (49 years) for 182 country-pairs amongst 14 EU
member countries (Austria, Belgium-Luxemburg, Denmark,
Finland, France, Germany, Greece, Ireland, Italy, Netherlands,
Portugal, Spain, Sweden, United Kingdom).

Consider the generalised panel gravity specification:

lnEXPijt = β0 + β1CEEijt + β2EMUijt + β3SIMijt + β4RLFijt
(203)

+ β5 lnGDPit + β6 lnGDPjt + β7RERt

+ γ1DISij + γ2BORij + γ3LANij + uijt
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The dependent variable EXPijt is the export flow from
country i to country j at time t;

CEE and EMU are dummies for European Community
membership and European Monetary Union;

SIM and RLF measure similarity in size and difference in
relative factor endowments;

RER represents the logarithm of common real exchange rates;

GDPit and GDPjt are logged GDPs of exporter and importer;

The logarithm of geographical distance (DIS) and the
dummies for common language (LAN) and for common
border (BOR) represent time-invariant bilateral barriers.
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We report the estimation results of (258) for 4 estimators;

the two-way within estimator with uijt = µij + λt + εijt;
the CTFE estimator with uijt = µij + vit + ζjt + εijt;
the 2D PCCE estimator with uijt = µij + πijλt + εijt;
the 3D PCCE estimator with
uijt = µij + vit + ζjt + πijλt + εijt.

We report the CD test results for the residuals and the
estimates of the CSD exponent (α).

Our focus is on the impacts of tij that contain both barriers
and incentives to trade. We focus on the two dummy
variables;

CEE (one when both countries belong to the European
Community);

EMU (one when both adopt the same currency).

Both are expected to exert a positive impact on bilateral
export flows.
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The empirical evidence is mixed.

Rose (2001), Frankel and Rose (2002), Glick and Rose (2002)
and Frankel (2008), document a huge positive effect;

A number of studies report negative or insignificant effects
(Persson, 2001, Pakko and Wall, 2002, De Nardis and
Vicarelli, 2003).

Recent studies by Serlenga and Shin (2007), Mastromarco et
al. (2015) and Gunnella et al. (2015) findng a small but
significant effect (7 to 10%) of the euro on intra-EU trade,
after controlling for strong CSD.
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Table 3 reports the estimation results.

The two-way FE estimation results are statistically significant
except RER.

The impacts of home and foreign GDPs on exports are
positive, but surprisingly, the former is twice larger than the
latter.

The impact of SIM is negative and significant, inconsistent
with a priori expectations.

CEE and EMU significantly boost exports, but their
magnitudes seem to be too high.

The CD test rejects the null of no or weak CSD convincingly.

α̂ is 0.99 with CI containing unity; the residuals strongly
correlated and the FE results biased and unreliable.

This supports our main concern that upward trends in omitted
trade determinants may cause them to be upward-biased.
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We turn to the CTFE estimation results.

CD test results indicate that the CTFE residuals do not suffer
from any strong CSD.

This rather surprising result is not supported by α̂ = 0.91
(pretty close to 1).

All the coeffi cients become insignificant except for CEE.

The CEE is still substantial (0.29) while the EMU turns
negligible (-0.011).

Overall CTFE results are unreliable.
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The 2D PCCE results are significant with the expected signs
except for EMU.

The impact of foreign GDP on exports is substantially larger
than home GDP.

The RER is positive, confirming that a depreciation of the
home currency increases exports.

The CEE is smaller (0.186), but EMU is insignificant and
negligible (0.017).

The 2D PCCE suffers from strong CSD residuals with
α̂ = 0.87.



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

Multi-dimensional Panel Data Modelling in the Presence of Cross Sectional Error Dependence

The Gravity Model of the Intra-EU Trade

Finally, the 3D PCCE results show that all the coeffi cients are
significant with the expected signs.

The CD test fails to strongly reject the null, supported by the
smaller estimate of α̂ = 0.77, close to a moderate range of
weak CSD.2

CEE still substantial (0.335) while the EMU modest at 0.081,
close to the consensus reported in the 2D panel studies (e.g.
Baldwin, 2006, Gunnella et al., 2015).

The 3D PCCE results are mostly reliable, suggesting that the
trade-boosting effect of the Euro should be viewed in the
long-run historical and multilateral perspectives rather than
simply focusing on the formation of a monetary union as an
isolated event.

2BHP show that the values of α ∈ [1/2, 3/4) represent a moderate degree
of CSD.
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Table: 3D panel gravity model estimation results for bilateral export flows
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FE CTFE
Coeff se t-ratio Coeff se t-ratio

gdph 2.185 0.041 52.97
gdpf 1.196 0.041 28.98
sim -0.263 0.052 -5.069 -0.055 0.074 -0.754
rlf 0.031 0.006 5.011 0.006 0.005 1.294
rer 0.005 0.007 0.791 0.031 0.072 0.436
cee 0.302 0.014 22.05 0.290 0.017 16.99
emu 0.204 0.019 10.71 -0.011 0.036 -0.315

CD stat 620.1 -2.676
α0.05 α α0.95 α0.05 α α0.95

CSD exponent 0.925 0.992 1.059 0.865 0.914 0.963
2D PCCE 3D PCCE
Coeff se t-ratio Coeff se t-ratio

gdph 0.289 0.095 3.033
gdpf 1.491 0.095 15.69
sim 0.042 0.105 0.401 1.032 0.111 9.290
rlf 0.007 0.005 1.420 -0.004 0.005 -0.748
rer 0.144 0.019 7.427 0.168 0.114 1.471
cee 0.187 0.014 13.20 0.335 0.022 15.10
emu 0.018 0.015 1.160 0.081 0.045 1.793

CD stat 76.11 -4.19
α0.05 α α0.95 α0.05 α α0.95

CSD exponent 0.837 0.867 0.897 0.724 0.775 0.826
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Notes: Using the annual dataset over 1960-2008 for 182 country-pairs
amongst 14 EU member countries, we estimate the generalised panel gravity
specification, (258). FE stands for the standard two-way fixed effects estimator

with country-pair and time fixed effects. CTFE refers to the 3D within
estimator given by (129). 2D PCCE is the PCCE estimator given by (137) with

factors ft =
{
gdp.t, sim..t, rlf ..t, cee..t, rert, t

}
. 3D PCCE is the PCCE

estimator given by (146) with factors ft =
{
sim..t, rlf ..t, rert

}
. CD test refers

to testing the null hypothesis of residual cross-sectional error independence or
weak dependence and is defined in (169). CSD exponent denotes the point
estimate of the exponents of CSD α and the 90% level confidence bands.
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The CTFE estimator is proposed to capture (unobserved)
multilateral resistance terms and trade costs, but it fails to
accommodate strong CSD among MTRs, clearly present in
our sample of the EU countries (confirmed by CD tests and
CSD exponent estimates).

We should model the time-varying interdependency of
bilateral export flows in a flexible manner than simply
introducing deterministic country-time specific dummies.

MTRs arise from the bilateral country-pair specific reactions
to global shocks or the local spillover effects or both.
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Conclusion

We propose novel estimation techniques to accommodate
CSD within the 3D panel data models.

Our framework is a generalisation of the multidimensional
country-time fixed and random effects estimators.

Our approach is the first attempt to introduce strong CSD
into the multi-dimensional error components.

We develop the two-step estimation procedure, the 3D-PCCE
estimator.

The empirical usefulness of the 3D-PCCE estimator is
demonstrated via the Monte Carlo studies and the empirical
application to the gravity model of the intra-EU trade.
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Conclusion

Extensions and generalisations.
First, we develop the multi-dimensional heterogenous panel
data models with hierarchical multi-factor error structure
(KSS).
Next, we aim to develop the challenging models by combining
the spatial- and the factor-based techniques.

Bailey et al. (2016) develop the multi-step estimation
procedure that can distinguish the relationship between spatial
units from that which is due to the effect of common factors.
Mastromarco et al. (2015) propose the technique for allowing
weak and strong CSD in stochastic frontier panels by
combining the exogenously driven factor-based approach and
an endogenous threshold regime selection by Kapetanios et al.
(2014, KMS).
Bai and Li (2015) and Shi and Lee (2014,5) developed the
framework for jointly modelling spatial effects and interactive
effects.
See also Gunnella et al. (2015) and Kuersteiner and Prucha
(2015).
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Introduction

Given the growing availability of the multidimensional dataset,
recent studies attempted to extend the two-way model to the
multidimensional setting.

Balazsi, Mátyás and Wansbeek (2015, BMW) introduce the
3D within estimators for the three-way fixed effects panel data
models and analyses their behavior.

The 3D models applied to a number of bilateral flows such as
trade, FDI, capital or migration as well as a variety of matched
dataset (the employer-employees or pupils to teachers).
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Introduction
Consider the 3D country-time fixed effects panel data model:

yijt = β′xijt + γ ′sit + δ′djt + κ′qt +ϕ′zij + uijt, (204)

for i = 1, ..., N1, j = 1, ..., N2, t = 1, ..., T , with errors:

uijt = µij + vit + ζjt + εijt (205)

where yijt is the dependent variable across 3 indices (the
import of country j from country i at period t); xijt, sit, djt,
qt, zij are the kx × 1, ks × 1, kd × 1, kq × 1, kz × 1 vectors of
covariates covering all measurements across 3indices.
The multi-error components contain pair-fixed effects

(
µij
)
as

well as origin and destination CTFEs, vit and ζjt.
The specification (205), proposed by Baltagi et al. (2003),
applied to measure the impacts of (unobserved) multilateral
resistance of exporters and importers in the structural gravity
studies (Feenstra, 2004).
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Motivations and extensions
KMSS consider the following error components:

uijt = µij + πijλt + εijt (206)

uijt = µij + vit + ζjt + πijλt + εijt (207)

In this paper we model the error components, uijt to follow
the hierarchical multi-factor structure:

uijt = γ ′ijf t + γ ′◦jf i◦t + γ ′i◦f◦jt + εijt, (208)

Exporter i reacts heterogeneously to the common import
market condition f◦jt and importer j reacts heterogeneously
to the common export market condition f i◦t. Both reacts
heterogeneously to the common global market condition f t.
3 types of CSD: (i) strong global factor, f t influences the (ij)
pairwise interactions (of N2 dimension); (ii) semi-strong local
factors, f i◦t and f◦jt, influence origin or destination (of N
dimension); and (iii) weak CSD εijt.
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The full estimation can be feasible by combining the Pesaran
or the Bai type estimation procedures.
A few studies attempt to develop an approach that can
accommodate both weak and strong CSD in panels.
Bailey et al. (2015) develop the multi-step estimation
procedure.
Mastromarco et al. (2015) propose the novel technique for
allowing weak and strong CSD in modelling technical
effi ciency of stochastic frontier panels by combining the
exogenously driven factor-based approach by SS and an
endogenous threshold regime selection by KMS.
Bai and Li (2015) and Shi and Lee (2017) develop the
framework for jointly modelling spatial effects and interactive
effects. See also Kuersteiner and Prucha (2015).
An extension of such joint modelling to the multidimensional
data would be challenging but shed further lights on the
understanding the complex structure of CSD.
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The model setup

Consider the triple-index heterogeneous panel data model:

yijt = β′ijxijt + δ′ijdt + uijt, i, j = 1, ..., N, t = 1, ..., T,
(209)

yijt is the dependent variable observed across 3 indices, i the
origin, j the destination at period t (say, the export from
country i to j at t);

xijt is the mx × 1 vector of covariates;

dt is the md × 1 vector of observed common effects such as
constants and trends.

βij and δij are the mx × 1 and md × 1 vectors of parameters.
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We allow uijt to follow the hierarchical multi-factor structure:

uijt = γ ′ijf t + γ ′◦jf i◦t + γ ′i◦f◦jt + εijt (210)

f t, f◦jt and f i◦t are mf × 1, m◦• × 1 and m•◦ × 1 vectors of
unobserved common effects’
εijt are idiosyncratic errors distributed independently of
(xijt,dt).
f t are the global factors affecting all of the bilateral pairs;
f i◦t and f◦jt are local origin i and destination j factors.
They are designed to account for commonality in yijt; CSD
between a given flow and a flow from the exporting region’s
commonality to the importing region (exporting-based
dependence) and another flow from the exporting region to
the importing region’s commonality (importing-based
dependence).
This can provide an alternative to the existing literature on
business cycles, e.g. Kose et al. (2003) and Choi et al.
(2016).
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To deal with the general case where f t, f◦jt and f i◦t, are
correlated with (xijt,dt), we consider the following DGP:

xijt = Dijdt + Γijf t + Γ◦jf i◦t + Γi◦f◦jt + vijt, (211)

where Dij is the (mx ×md) parameter matrix, Γij , Γ◦j and
Γi◦ are (mx ×mf ), (mx ×m•◦), (mx ×m◦•) factor loading
matrices, and vijt are the idiosyncratic errors.
Combining (209)-(211), we have:

zijt =

(
yijt
xijt

)
= Ξijdt + Φijf t + Φ◦jf i◦t + Φi◦f◦jt + uijt

(212)

Ξij =

(
δ′ij + β′ijDij
Dij

)
,Φij =

(
γ ′ij + β′ijΓij

Γij

)
,Φi◦ =

(
γ ′i◦ + β′ijΓi◦

Γi◦

)
,

(213)

Φ◦j =

(
γ ′◦j + β′ijΓ◦j

Γ◦j

)
,uijt =

(
εijt + β′ijvijt

vijt

)
.

The ranks of Φij , Φi◦ and Φ◦j determined by the ranks of

Γ̃ij
(mx+1)×mf

=

(
γ ′ij
Γij

)
, Γ̃i◦

(mx+1)×m◦•
=

(
γ ′i◦
Γi◦

)
, Γ̃◦j

(mx+1)×m•◦
=

(
γ ′◦j
Γ◦j

)
.
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Rewrite (209) and (212) in the matrix notation:

yij = Xijβij +Dδij +Fγij +F i◦γ◦j +F ◦jγi◦+εij , (214)

zij = DΞij + FΦij + F i◦Φ◦j + F ◦jΦi◦ + uij , (215)

where

yij
T×1

=

 yij1
...

yijT

 , Xij
T×mx

=

 x′ij1
...

x′ijT

 , D
T×md

=

 d′1
...
d′T

 , zij
T×(mx+1)

=

 z′ij1
...

z′ijT

 ,
(216)

F
T×mf

=

 f ′1
...
f ′T

 , F i◦
T×m•◦

=

 f ′i◦1
...

f ′i◦T

 , F ◦j
T×m◦•

=

 f ′◦j1
...

f ′◦jT

 , εij
T×1

=

 εij1
...

εijT

 ,uij=
 u′ij1

...
u′ijT
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Assumption 1. Common Effects: The
(md +mf +m•◦ +m◦•)× 1 vector of common factors
gt =

(
d′t,f

′
t,f
′
i◦t,f

′
◦jt
)′, is covariance stationary with absolute

summable autocovariances, distributed independently of εijt′ and
vijt′ for all i, j, t and t′.

Assumption 2. Individual-specific Errors: εijt and vijt′ are
distributed independently for all i, j, t and t′, and they are
distributed independently of xijt and dt.
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Assumption 3. Factor Loadings: Unobserved factor loadings are
independently and identically distributed across (i, j), and of εijt,
vijt, gt for all i, j, t, with finite means and variances. In particular,

γij = γ◦◦ + ηij , γi◦ = γ•◦ + ηi◦, γ◦j = γ◦• + η◦j , (217)

Γij = Γ◦◦ + ξij , Γi◦ = Γ•◦ + ξi◦, Γ◦j = Γ◦• + ξ◦j , (218)

where ηij ∼ iid
(
0,Ωη◦◦

)
, ξij ∼ iid

(
0,Ωξ◦◦

)
, ηi◦ ∼ iid

(
0,Ωη•◦

)
,

ξi◦ ∼ iid
(
0,Ωξ•◦

)
, η◦j ∼ iid

(
0,Ωη◦•

)
and ξ◦j ∼ iid

(
0,Ωξ◦•

)
.

Further, ‖γ◦◦‖ < K, ‖γ•◦‖ < K, ‖γ◦•‖ < K, ‖Γ◦◦‖ < K,
‖Γ•◦‖ < K, and ‖Γ◦•‖ < K for positive constant K <∞.

Assumption 4. Random Slope Coeffi cients:

βij = β+νi◦+ν◦j+νij ,νi◦ ∼ iid (0,Ων•◦) ,ν◦j ∼ iid (0,Ων◦•) ,νij ∼ iid (0,Ων◦◦)
(219)

where ‖β‖ < K and νij , νi◦, ν◦j are distributed independently of
one another, and of γij , Γij , εijt, vijt and gt for all i, j and t.
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Assumption 5. Identification of βij and β: Construct the
cross-section averages of zijt by

z̄t =
1

N2

N∑
i=1

N∑
j=1

zijt, z̄i◦t =
1

N

N∑
j=1

zijt and z̄◦jt =
1

N

N∑
i=1

zijt

(220)
Let Z̄ij =

(
Z̄, Z̄i◦, Z̄◦j

)
and H̄ ij =

(
D, Z̄ij

)
, where

Z̄
T×(mx+1)

=

 z̄′1
...
z̄′T

 , Z̄i◦
T×(mx+1)

=

 z̄′i◦1
...

z̄′i◦T

 , Z̄i◦
T×(mx+1)

=

 z̄
′
◦j1
...
z̄′◦j1

 ,
(i) Identification of βij : Ψ̄ij,T = T−1

(
X ′ijM̄ ijXij

)
are

nonsingular, and Ψ̄
−1
ij,T have finite second-order moments, where

M̄ ij = IT − H̄ ij

(
H̄
′
ijH̄ ij

)−1
H̄
′
ij (221)

(ii) Identification of β: Ψ̄ = N−2
∑N

i=1

∑N
j=1 Ψ̄ij,T is nonsingular.
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Remark 1: It is challenging to develop an appropriate model for
accommodating CSD within the multilevel dataset. LeSage and
Llano (2015) propose a spatial econometric methodology that
introduces spatially-structured origin and destination effects. Choi
et al. (2016) develop a multilevel factor model with global and
country factors, and propose a sequential principal component
estimation procedure. KMSS control CSD in 3D panels by adding
unobserved heterogeneous global factors to the CTFE specification,
and propose the 3D PCCE estimator. The hierarchical multi-factor
error model is more parsimonious and structural.
Remark 2: The weights are not necessarily unique. One could use
the equal weight, 1/N for reasonably large N .
Remark 3: The number of observed factors and the number of
individual-specific regressors are fixed and known.



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

Estimation and Inference for Multi-dimensional Heterogeneous Panel Datasets with Hierarchical Multi-factor Error Structure

Represent hierarchical cross-section averages as follows:

z̄t = Ξ̄◦◦dt + Φ̄◦◦f t + Φ̄◦•f•◦t + Φ̄•◦f◦•t + ūt, (222)

z̄i◦t = Ξ̄i◦dt + Φ̄i◦f t + Φ̄◦•f i◦t + Φi◦f◦•t + ūi◦t, (223)

z̄◦jt = Ξ̄◦jdt + Φ̄◦jf t + Φ◦jf•◦t + Φ̄•◦f◦jt + ū◦jt, (224)

Ξ̄◦◦ =
1

N2

N∑
i=1

N∑
j=1

Ξij , Ξ̄i◦ =
1

N

N∑
j=1

Ξij , Ξ̄◦j =
1

N

N∑
i=1

Ξij ,

Φ̄◦◦ =
1

N2

N∑
i=1

N∑
j=1

Φij , Φ̄i◦ =
1

N

N∑
j=1

Φij , Φ̄◦j =
1

N

N∑
i=1

Φij ,

(225)

Φ̄◦• =
1

N2

N∑
i=1

N∑
j=1

Φ◦j =
1

N

N∑
j=1

Φ◦j , Φ̄•◦ =
1

N2

N∑
i=1

N∑
j=1

Φi◦ =
1

N

N∑
i=1

Φi◦,

(226)

ūt =
1

N2

N∑
i=1

N∑
j=1

uijt, ūi◦t =
1

N

N∑
j=1

uijt, ū◦jt =
1

N

N∑
i=1

uijt

f◦•t =
1

N

N∑
j=1

f◦jt, f•◦t =
1

N

N∑
i=1

f i◦t
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Combining (222)-(224), we have:

z̄ijt = Ξ̄ijdt + Φ̄ijf ijt + ūijt, (227)

where

z̄ijt
3(mx+1)×1

=

 z̄t
z̄i◦t
z̄◦jt

 , f ijt
m×1

=

 f t
f i◦t
f◦jt

 , ūijt =

 ūt + Φ̄◦•f•◦t + Φ̄•◦f◦•t
ūi◦t + Φi◦f◦•t
ū◦jt + Φ◦jf•◦t



Ξ̄ij
3(mx+1)×md

=

 Ξ̄◦◦
Ξ̄i◦
Ξ̄◦j

 , Φ̄ij
3(mx+1)×m

=

 Φ̄◦◦ 0 0
Φ̄i◦ Φ̄◦• 0
Φ̄◦j 0 Φ̄•◦

 ,
(228)

with m = mf +m◦• +m•◦.
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Using (213) and (219), Φ̄ij can be represented as follows:

Φ̄◦◦
(k+1)×mf

= B̃Γ̃◦◦ +

(
1
N2

∑N
i=1

∑N
j=1 (νi◦ + ν◦j + νij)

′ Γij
0

)
(229)

Φ̄◦•
(k+1)×m◦•

= B̃Γ̃◦• +

(
1
N

∑N
j=1 (νi◦ + ν◦j + νij)

′ Γ◦j
0

)
(230)

Φ̄•◦
(k+1)×m•◦

= B̃Γ̃•◦ +

(
1
N

∑N
=1 (νi◦ + ν◦j + νij)

′ Γi◦
0

)
(231)

Φ̄i◦
(k+1)×mf

= B̃Γ̃i◦ +

(
1
N

∑N
j=1 (νi◦ + ν◦j + νij)

′ Γij
0

)
(232)

Φ̄◦j
(k+1)×mf

= B̃Γ̃◦j +

(
1
N

∑N
i=1 (νi◦ + ν◦j + νij)

′ Γij
0

)
(233)

B̃ =

(
1 β′

0 Ik

)
, Γ̃◦◦=

(
γ̄ ′◦◦
Γ̄◦◦

)
, Γ̃◦•=

(
γ̄ ′◦•
Γ̄◦•

)
, Γ̃•◦=

(
γ̄ ′•◦
Γ̄•◦

)
, Γ̃i◦=

(
γ̄ ′i◦
Γ̄i◦

)
, Γ̃◦j=

(
γ̄ ′◦j
Γ̄◦j

)
and Γ̄◦◦, γ̄◦◦, Γ̄◦•, γ̄◦•, Γ̄•◦, γ̄•◦, Γ̄i◦, γ̄i◦, Γ̄◦j and γ̄◦j are
defined similarly to Φ̄◦◦, Φ̄i◦, Φ̄◦j , Φ̄◦• and Φ̄•◦.
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Suppose that the rank condition holds:

Rank
(
Φ̄ij

)
= m for all (ij) . (234)

Then, we obtain from (227):

f ijt =
(
Φ̄
′
ijΦ̄ij

)−1
Φ̄
′
ij

(
z̄ijt − Ξ̄ijdt − ūijt

)
(235)

It is easily seen that

ūijt = Op

(
1

N

)
+Op

(
1√
NT

)
for each t, as N →∞.

Therefore,

f ijt−
(
Φ̄
′
ijΦ̄ij

)−1
Φ̄
′
ij

(
z̄ijt − Ξ̄ijdt

)
= Op

(
1

N

)
+Op

(
1√
NT

)
.

We can use h̄ijt =
(
d′t, z̄

′
ijt

)′
as observable proxies for f ijt,

and consistently estimate βij and their mean β by
augmenting the regression, (209) with dt and z̄ijt.
These are referred to as the 3DCCE estimators.
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Individual Specific Coeffi cients
The 3DCCE estimator of βij is given by

b̂ij =
(
X ′ijM̄ ijXij

)−1
X ′ijM̄ ijyij (236)

We show the dependence of b̂ij on the unobserved factors as:

b̂ij − βij =

(
XijM̄ ijXij

T

)−1 X ′ijM̄ ijF ij

T
γ∗ij +

(
X ′ijM̄ ijXij

T

)−1
X ′ijM̄ ijεij

T

(237)

=

(
XijMQ,ijXij

T

)−1 X ′ijMQ,ijF ij

T
γ∗ij +

(
X ′ijMQ,ijXij

T

)−1
X ′ijMQ,ijεij

T

+Op

(
1

N

)
+Op

(
1√
NT

)
where F ij = (F ,F i◦,F ◦j), γ∗ij =

(
γ ′ij ,γ

′
i◦,γ

′
◦j

)′
and

MQ,ij = IT −Qij

(
Q′ijQij

)−1
Q′ij with

Qij =
(
F Φ̄

′
◦◦,F i◦Φ̄

′
◦•,F ◦jΦ̄

′
•◦

)
.
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Suppose that the rank condition (234), is satisfied. Then,

Theorem

Consider the triple-index heterogeneous panel data model,
(209)-(211). Suppose that Assumptions 1-4 and 5(a) hold. Then,
the 3DCCE estimator of the individual slope coeffi cients given by
(236) is consistent. Further, as N,T →∞ and T/N → K <∞,

√
T
(
b̂ij − βij

)
→d N(0,V ij), (238)

where V ij = Σ−1
v,ijΣijεΣ

−1
v,ij , Σv,ij = V ar(vijt),

Σijε = p limT→∞
[
X′ijMF,ijΩijεMF,ijXij

T

]
, and

Ωijε = E
(
ε′ijεij

)
.
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Remark: If the rank condition (234) does not hold, we need
to show that 1

TX
′
ijM̄ ij

(
Fγij + F i◦γ◦j + F ◦jγi◦

)
converges

to zero.

We can establish that

b̂ij − βij =

(
X ′ijMQ,ijXij

T

)−1
X ′ijMQ,ijεij

T
+ op (1) .

√
T
(
b̂ij − βij

)
will be asymptotically normal if

√
T/N → 0

as N,T →∞.
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3D Common Correlated Effects Mean Group Estimator
The 3DCCEMG estimator is an average of the individual b̂ij :

b̂MG =
1

N2

N∑
i=1

N∑
j=1

b̂ij , (239)

Under Assumption 4 and using (237), we decompose√
N
(
b̂MG − β

)
and analyse each terms to obtain the following

Theorem.
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Theorem

Consider the 3D model, (209)-(211). Suppose that Assumptions
1-4 and 5(a) hold. Then, the 3D CCEMG, b̂MG is consistent. As
N,T →∞,
√
N
(
b̄MG − β

)
→d N(0,V MG),V MG = Ων•◦+Ωη•◦+Ων◦•+Ωη◦•

(240)

Ων•◦= lim
N,T→∞

1

N

N∑
i=1

E
(
A1,i,NTΩνi◦A

′
1,i,NT

)
,

Ωη•◦= lim
N,T→∞

1

N

N∑
i=1

E
(
A2,i,NTΩηi◦A

′
2,i,NT

)
Ων◦•= lim

N,T→∞

1

N

N∑
j=1

E
(
A1,j,NTΩν◦jA

′
1,j,NT

)
,

Ωη◦•= lim
N,T→∞

1

N

N∑
j=1

E
(
A2,j,NTΩη◦jA

′
2,j,NT

)
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V MG can be consistently estimated by

V̂MG=
1

N − 1

N∑
i=1

(
b̂i − b̂MG

)(
b̂i − b̂MG

)′
(241)

+
1

N − 1

N∑
j=1

(
b̂j − b̂MG

)(
b̂j − b̂MG

)′
,

where b̂i = 1
N

∑N
j=1 b̂ij and b̂j = 1

N

∑N
i=1 b̂ij .
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The dominant terms of
√
N
(
b̄MG − β

)
are those that involve

νi◦, νi◦, ηi◦ and η◦j only, because the terms associated with
νij and ηij are asymptotically negligible. This explains the
N1/2 rate of convergence.

The nonparametric variance estimator
1
N2

∑N
i=1

∑N
j=1

(
b̂ij − b̂MG

)(
b̂ij − b̂MG

)′
used by Pesaran

(2006), is not consistent since it gives equal weights to the
terms containing νi◦, νi◦, ηi◦ and η◦j , and those containing
νij and ηij .

The consistent nonparametric estimator, V̂ MG ensures that
νij and ηij are averaged out by the use of b̂i and b̂j .

Remark Theorem 2 does not require the rank condition as
long as the number of factors m is fixed. We do not require
any restriction on the relative rate of N and T .
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3D Common Correlated Effects Pooled Estimator

Consider the special case where βij are homogeneous, where
effi ciency gains from pooling can be achieved.

We still allow the coeffi cients on observed and unobserved
common effects to differ across (ij).

We derive the pooled estimator of β, referred to as the 3D
CCEP estimator by

b̂P =

 N∑
i=1

N∑
j=1

X ′ijM̄ ijXij

−1
N∑
i=1

N∑
j=1

X ′ijM̄ ijyij , (242)
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Theorem

Consider the 3D model, (209)-(211). Suppose that Assumptions
1-4 and 5(b) hold. Then,

√
N
(
b̂P − β

)
→d N(0,Ψ−1RΨ−1) (243)

Ψ = lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Ψij with Ψij = E

[(
XijM̄ ijXij

T

)−1
]

(244)
R = Ω̃ν•◦ + Ω̃η•◦ + Ω̃ν◦• + Ω̃η◦•. (245)
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Ω̃ν•◦= lim
N,T→∞

1

N

N∑
i=1

E
(
Ã1,i,NTΩ′νi◦Ã

′
1,i,NT

)
,

Ω̃η•◦= lim
N,T→∞

1

N

N∑
i=1

E
(
Ã2,i,NTΩ′ηi◦Ã2,i,NT

)
Ω̃ν◦•= lim

N,T→∞

1

N

N∑
j=1

E
(
Ã1,j,NTΩν◦jA

′
1,j,NT

)
,

Ω̃η◦•= lim
N,T→∞

1

N

N∑
j=1

E
(
Ã2,j,NTΩη◦jÃ

′
2,j,NT

)
where Ã1,i,NT , Ã2,i,NT , Ã1,j,NT and Ã2,j,NT are defined in
Appendix.
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The variance Ψ−1RΨ−1 can be consistently estimated by
Ψ̂
−1
R̂Ψ̂

−1
:

Ψ̂ =
1

N2

N∑
i=1

N∑
j=1

X ′ijM̄ ijXij

T
, (246)

R̂=
1

N

N∑
i=1

 1

N

N∑
j=1

(
X ′ijM̄ ijXij

T

)(
b̂ij − b̂MG

) 1

N

N∑
j=1

(
b̂ij − b̂MG

)′(X ′ijM̄ ijXij

T

)
+

1

N

N∑
j=1

[
1

N

N∑
i=1

(
X ′ijM̄ ijXij

T

)(
b̂ij − b̂MG

)][ 1

N

N∑
i=1

(
b̂ij − b̂MG

)′(X ′ijM̄ ijXij

T

)]

Remark The asymptotic variance matrix of b̂P depends on
unobserved factors and loadings, but it is possible to estimate it
consistently along lines similar to 3DCCEMG.
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The Special Cases

Better convergence rates can be achieved if the hierarchical
structure is simplified.
We focus on two special cases:

Condition S1 : ηi◦ = η◦j = νi◦ = ν◦j = 0

Condition S2 : F i◦ = F ◦j = 0.

S2 is more restrictive and considered by KMSS.
Under Condition S2, the setup is similar to that of Pesaran
(2006) because there is no hierarchical factor structure.
We can treat the dataset as a T ×N2 panel by amalgamating
the two cross-section dimensions into one and applying the 2D
CCE estimation procedure.
The
√
N rate will be replaced by N , and all the results of

Pesaran (2006) and others analysing CCE estimator hold.
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Next, consider the case where S1 holds but not S2. Then,

√
N
(
b̂MG − β

)
=

1

N3/2

N∑
i=1

N∑
j=1

νij +
1

N2

N∑
i=1

N∑
j=1

Ψ−1
ijT

(√
NX ′ijMQ,ijεij

T

)
(247)

+
1

N3/2

N∑
i=1

N∑
j=1

χij+
1

N3/2

N∑
i=1

N∑
j=1

χij,◦◦+
1

N3/2

N∑
i=1

N∑
j=1

χij,•◦

+
1

N3/2

N∑
i=1

N∑
j=1

χij,◦• +Op

(
1

N

)
+Op

(
1√
NT

)
,

From the proof of Theorem 2, the magnitude of all terms on
the RHS of (247) is still N as long as N/T → 0, since

1√
NT

= o
(

1
N

)
.

Normality does not follow since the Op
(

1
N

)
term in RHS of

(247) is not negligible.
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In this case, the asymptotic variance estimators in Pesaran
(2006) become relevant only if normality holds. In particular,

V̂ MG =
1

N2

N∑
i=1

N∑
j=1

(
b̂ij − b̂MG

)(
b̂ij − b̂MG

)′
, (248)

for the mean group estimator, and for the pooled estimator

R̂ =
1

N2

N∑
i=1

N∑
j=1

(
X ′ijM̄ ijXij

T

)(
b̄ij − b̄MG

) (
b̄ij − b̄MG

)′(X ′ijM̄ ijXij

T

)
,

(249)
If Condition S1 is considered too restrictive, we may entertain
the more general setup:

γi◦ = γij◦ = γ•◦ + ηij◦, γ◦j = γ◦ij = γ◦• + η◦ij .

Because of the double cross-section averaging, ηij◦ and η◦ij
are negligible since terms associated with χij,•◦ and χij,◦•
decay to give the same fast convergence rate as under S1.
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Monte Carlo Study
We generate yijt and xijt as follows:

yijt = βijxijt+γ1,ijf1,t+γ2,ijf2,t+γ1,◦jf1,i◦t+γ2,◦jf2,i◦t+γ1,i◦f1,◦jt+γ2,i◦f2,◦jt+εijt,
(250)

xijt = Γ1,ijf1,t+Γ2,ijf2,t+Γ1,◦jf1,i◦t+Γ2,◦jf2,i◦t+Γ1,i◦f1,◦jt+Γ2,i◦f2,◦jt+vijt,
(251)

We set md = 0, mx = 1 and mf = m◦• = m•◦ = 2.
f t, f◦jt, f i◦t are generated independently as stationary AR
processes with zero mean and unit variance:

fh,t = ρfhfh,t−1+υfht with υfht ∼ iidN
(
0, 1− ρ2

fh

)
for h = 1, 2

fh,i◦t = ρfh,i◦fh,i◦,t−1+υfh,i◦t with υfh,i◦t ∼ iidN
(

0, 1− ρfh,i◦
)
for h = 1, 2

fh,◦jt = ρfh,◦jfh,◦j,t−1+υfh,◦jt with υfh,◦jt ∼ iidN
(

0, 1− ρ2
fh,◦j

)
for h = 1, 2

εijt and vijt, are generated independently as

εijt = ρεεij,t−1 + eε,ijt with eε,ijt ∼ iidN
(
0, 1− ρ2

ε

)
vijt = ρvvij,t−1 + ev,ijt with ev,ijt ∼ iidN

(
0, 1− ρ2

v

)
We set ρfh = ρfh,i◦ = ρfh,◦j = ρε = ρv = {0, 0.5}.
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2 experiments: Experiment A with the full rank and
Experiment B with the rank condition (234) violated.
For xijt in (251), we draw the factor loadings independently by

Γ1,ij ∼ iidN (0.5, 0.5) and Γ2,ij ∼ iidN (0, 0.5) for i, j = 1, ..., N

Γ1,◦j ∼ iidN (0.5, 0.5) and Γ2,◦j ∼ iidN (0, 0.5) for j = 1, ..., N

Γ1,i◦ ∼ iidN (0.5, 0.5) and Γ2,i◦ ∼ iidN (0, 0.5) for i = 1, ..., N

For yijt in (250), we consider two experiments. For
experiment A,

γ1,ij ∼ iidN (1, 0.2) and γ2,ij ∼ iidN (1, 0.2) for i, j = 1, ..., N

γ1,◦j ∼ iidN (1, 0.2) and γ2,◦j ∼ iidN (1, 0.2) for j = 1, ..., N

γ1,i◦ ∼ iidN (1, 0.2) and γ2,i◦ ∼ iidN (1, 0.2) for i = 1, ..., N.

For experiment B, we generate:

γ1,ij ∼ iidN (1, 0.2) and γ2,ij ∼ iidN (0, 1) for i, j = 1, ..., N

γ1,◦j ∼ iidN (1, 0.2) and γ2,◦j ∼ iidN (0, 1) for j = 1, ..., N

γ1,i◦ ∼ iidN (1, 0.2) and γ2,i◦ ∼ iidN (0, 1) for i = 1, ..., N
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Consider Case 1 with the heterogeneous slopes:

βij = β+νi◦+ν◦j+νij , νi◦ ∼ iidN (0, 1) , ν◦j ∼ iidN (0, 1) , νij ∼ iidN (0, 1)

and Case 2 with the homogeneous slopes βij = β = 1.
We consider the two-way within estimator with
uijt = αij + θt + εijt, and the three versions of 3D estimators:
the 3DCCEG with uijt = αij + γ ′ijf t + εijt where we
approximate the heterogenous global factors only by
z̄t = (ȳt, x̄t)

′; the 3DCCEL estimator with
uijt = αij + γ ′◦jf i◦t + γ ′i◦f◦jt + εijt where we approximate
the heterogenous local factors only by z̄i◦t and z̄◦jt and the
3DCCEGL estimator with
uijt = αij + γ ′◦jf i◦t + γ ′i◦f◦jt + γ ′ijf t + εijt where we
approximate the heterogenous global and local factors by z̄t,
z̄i◦t and z̄◦jt.
We report the bias, the root mean squared error and coverage
rates at the 95% confidence with 1,000 replications for (N,T )
pairs with N = {10, 25, 100} and T = {50, 100} .
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Table 1: simulation results for Experiment A (the full rank)
with heterogeneous coeffi cients (Case 1).
The biases of 3DCCEGL are mostly negligible even for the
relatively small samples.
The performance of both pooled and mean group estimators
is almost identical.
Both FE and 3DCCEG estimators suffer from severe biases.
The biases of the 3DCCEL are much smaller than those of
the 3DCCEG, showing that the local factor approximations
seem to be more effective than the global counterpart, though
they are still non-negligible even for large N and T .
The 2D CCE estimator advanced by Pesaran (2006) fails to
remove correlations between local factors and regressors.
These provide strong support for our theoretical predictions
that the joint approximations of the heterogenous global and
local factors can only provide consistent estimation of E (β)
in the presence of the hierarchical multifactors.
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We find the similar patterns of RMSE.

The RMSEs of 3DCCEL and 3DCCEGL estimators are
significantly lower than those of FE and 3DCCEG
estimators.

The difference between 3DCCEL and 3DCCEGL is mostly
negligible, but the RMSEs of 3DCCEGL tends to decline
slightly faster with sample sizes.

Turning to the coverage rates, 3DCCEL and the 3DCCEGL
estimators perform better than FE and 3DCCEG estimators.

Coverage rates of 3DCCEGL estimator only tend to the
nominal 95% as N or T rises.
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Table 2 presents simulation results for Experiment A (the full
rank) with homogeneous coeffi cients (Case 2).

We find qualitatively similar results for the biases to Table 1,
confirming that the 3DCCEGL estimator is most reliable.

RMSEs of FE and 3DCCEG estimators are significantly
higher than those of 3DCCEL and 3DCCEGL estimators.

RMSEs of 3DCCEGL is significantly lower than those of
3DCCEL, but they also fall sharply with sample sizes.

The relative performance of both pooled and mean group
estimators is qualitatively similar.

Surprisingly, all the estimators produce unsatisfactory
coverage rates. FE, 3DCCEG and 3DCCEL estimators
tend to under-estimate coverage substantially even as N rises
whilst 3DCCEGL over-estimate it.
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Table 3 presents simulation results for Experiment B (the rank
deficiency) with heterogeneous coeffi cients (Case 1).
We find qualitatively similar results to Table 1; the
performance of the estimators are not affected significantly by
the rank deficiency; confirming that the 3DCCEGL estimator
is most reliable.
Table 4 presents simulation results for Experiment B (the rank
deficiency) with homogeneous coeffi cients (Case 2).
We find qualitatively similar results to Table 2, and conclude
that the 3DCCEGL estimator is still most reliable, though it
tends to over-estimate coverage rates.
We conduct the additional simulations under Conditions S1
and S2 described in Section 3.4
We find the results confirming that the faster convergence
rates are achieved in both cases (available on online
supplement).
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Table: Simulation results for Case 1 - Full Rank (Experiment A)
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FE 3DCCEG 3DCCEL 3DCCELG
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100 50 100

10 0.203 0.216 0.232 0.251 0.064 0.079 -0.006 0.008
0 25 0.250 0.217 0.263 0.272 0.062 0.07 -0.004 0.004

50 0.227 0.220 0.285 0.279 0.077 0.072 0.008 0.002
100 0.222 0.224 0.282 0.285 0.074 0.076 0.002 0.003
10 0.233 0.210 0.302 0.253 0.115 0.067 0.04 -0.008

0.5 25 0.220 0.236 0.265 0.289 0.049 0.074 -0.022 0.004
50 0.251 0.251 0.301 0.29 0.079 0.068 0.005 -0.006
100 0.244 0.245 0.300 0.300 0.077 0.078 -0.002 -0.001

Mean Group Estimator
10 0.201 0.212 0.219 0.239 0.046 0.063 0.001 0.017

0 25 0.242 0.211 0.249 0.258 0.053 0.061 0.003 0.012
50 0.219 0.213 0.268 0.264 0.067 0.062 0.011 0.007
100 0.214 0.216 0.265 0.268 0.062 0.065 0.002 0.005
10 0.227 0.205 0.292 0.247 0.103 0.056 0.053 0.006

0.5 25 0.214 0.230 0.254 0.276 0.041 0.063 -0.012 0.010
50 0.241 0.241 0.287 0.276 0.068 0.056 0.009 -0.003
100 0.236 0.237 0.286 0.287 0.064 0.065 -0.001 0.000

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.522 0.524 0.544 0.53 0.488 0.474 0.483 0.468

0 25 0.377 0.361 0.389 0.396 0.293 0.296 0.286 0.287
50 0.300 0.292 0.348 0.345 0.213 0.216 0.198 0.203
100 0.263 0.262 0.316 0.316 0.160 0.156 0.141 0.137
10 0.518 0.511 0.557 0.536 0.479 0.475 0.466 0.469

0.5 25 0.366 0.373 0.390 0.412 0.290 0.300 0.288 0.291
50 0.325 0.322 0.369 0.353 0.225 0.211 0.211 0.200
100 0.283 0.284 0.332 0.332 0.162 0.163 0.142 0.143

Mean Group Estimator
10 0.513 0.520 0.528 0.523 0.480 0.469 0.478 0.464

0 25 0.370 0.356 0.379 0.385 0.289 0.292 0.284 0.286
50 0.293 0.288 0.333 0.332 0.208 0.212 0.197 0.203
100 0.256 0.255 0.301 0.301 0.154 0.151 0.141 0.137
10 0.507 0.503 0.544 0.525 0.466 0.463 0.458 0.460

0.5 25 0.360 0.369 0.382 0.400 0.287 0.297 0.285 0.290
50 0.317 0.314 0.356 0.340 0.220 0.207 0.209 0.199
100 0.275 0.277 0.319 0.320 0.155 0.157 0.141 0.143

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.973 0.969 0.965 0.953 0.903 0.903 0.895 0.886

0 25 0.960 0.965 0.951 0.947 0.924 0.919 0.924 0.929
50 0.941 0.948 0.911 0.898 0.922 0.919 0.94 0.932
100 0.881 0.876 0.792 0.775 0.917 0.924 0.947 0.959
10 0.977 0.968 0.965 0.973 0.898 0.912 0.892 0.890

0.5 25 0.963 0.957 0.96 0.952 0.925 0.931 0.935 0.927
50 0.932 0.928 0.899 0.907 0.914 0.927 0.935 0.945
100 0.855 0.836 0.790 0.745 0.915 0.912 0.952 0.947

Mean Group Estimator
10 0.943 0.934 0.951 0.939 0.891 0.900 0.888 0.891

0 25 0.914 0.910 0.931 0.928 0.923 0.914 0.925 0.931
50 0.818 0.810 0.876 0.863 0.933 0.925 0.946 0.931
100 0.842 0.830 0.724 0.713 0.929 0.929 0.947 0.961
10 0.942 0.945 0.954 0.954 0.904 0.908 0.903 0.901

0.5 25 0.912 0.904 0.936 0.926 0.932 0.934 0.935 0.936
50 0.799 0.798 0.849 0.850 0.917 0.937 0.933 0.949
100 0.805 0.779 0.691 0.677 0.926 0.920 0.949 0.946



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

Estimation and Inference for Multi-dimensional Heterogeneous Panel Datasets with Hierarchical Multi-factor Error Structure

Notes:FE is the the two-way within estimator, 3DCCEG is the 3D CCE estimator

with the global factors approximation only, 3DCCEL is the 3D CCE estimator with

the local factors approximation only, and 3DCCEGL is the 3D CCE estimator with

both global and local factors approximation. 3DCCE estimators are defined in (239)

and (242). We consider both mean group and pooled estimators. The variance of

3DCCEG is estimated by (248) for the mean group and (249) for the pooled

estimator. The variances of 3DCCEL and 3DCCEGL are given by (241) for the

mean group and (246)-(??) for the pooled estimator.
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Table: Simulation Results for Experiment A (Full Rank) with
Homogeneous Coeffi cients
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FE 3DCCEG 3DCCEL 3DCCELG
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100 50 100

10 0.204 0.199 0.240 0.246 0.067 0.073 -0.001 0.006
0 25 0.214 0.215 0.269 0.270 0.068 0.068 0.001 0.002

50 0.218 0.219 0.278 0.278 0.071 0.070 0.001 0.001
100 0.220 0.220 0.281 0.282 0.074 0.074 0.000 0.000
10 0.228 0.225 0.267 0.261 0.076 0.072 0.002 -0.003

0.5 25 0.240 0.245 0.292 0.292 0.075 0.075 0.003 0.004
50 0.245 0.245 0.300 0.299 0.077 0.076 0.002 0.002
100 0.248 0.248 0.304 0.303 0.081 0.080 0.001 0.000

Mean Group Estimator
10 0.202 0.198 0.230 0.235 0.057 0.062 0.005 0.011

0 25 0.207 0.208 0.255 0.256 0.059 0.060 0.006 0.006
50 0.211 0.212 0.262 0.262 0.060 0.060 0.002 0.003
100 0.212 0.212 0.265 0.265 0.061 0.062 0.000 0.001
10 0.224 0.223 0.256 0.252 0.067 0.064 0.010 0.006

0.5 25 0.233 0.236 0.279 0.278 0.066 0.065 0.008 0.008
50 0.236 0.237 0.286 0.286 0.066 0.066 0.004 0.004
100 0.239 0.239 0.289 0.289 0.068 0.067 0.002 0.001

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.236 0.230 0.268 0.273 0.129 0.136 0.110 0.112

0 25 0.220 0.220 0.274 0.274 0.083 0.082 0.045 0.044
50 0.219 0.220 0.279 0.279 0.074 0.074 0.022 0.021
100 0.221 0.220 0.282 0.282 0.075 0.075 0.010 0.010
10 0.257 0.256 0.293 0.289 0.136 0.137 0.113 0.114

0.5 25 0.245 0.250 0.296 0.296 0.090 0.088 0.046 0.045
50 0.247 0.247 0.301 0.300 0.081 0.080 0.022 0.022
100 0.249 0.249 0.304 0.303 0.082 0.081 0.011 0.010

Mean Group Estimator
10 0.230 0.225 0.255 0.259 0.118 0.121 0.103 0.104

0 25 0.212 0.212 0.259 0.260 0.073 0.073 0.042 0.042
50 0.212 0.213 0.263 0.263 0.063 0.064 0.020 0.021
100 0.213 0.212 0.265 0.265 0.062 0.063 0.010 0.010
10 0.249 0.249 0.279 0.276 0.123 0.122 0.103 0.103

0.5 25 0.238 0.240 0.283 0.282 0.078 0.077 0.042 0.041
50 0.237 0.238 0.286 0.287 0.070 0.069 0.021 0.021
100 0.239 0.239 0.289 0.289 0.069 0.068 0.011 0.010

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.997 1.000 1.000 1.000 0.947 0.940 0.964 0.971

0 25 0.994 0.997 1.000 1.000 0.866 0.864 0.985 0.985
50 0.686 0.661 0.988 0.987 0.376 0.363 0.992 0.993
100 0.812 0.760 0.001 0.000 0.000 0.000 0.999 0.995
10 0.998 1.000 1.000 1.000 0.944 0.938 0.976 0.973

0.5 25 0.993 0.992 1.000 1.000 0.838 0.839 0.986 0.990
50 0.666 0.584 0.970 0.955 0.314 0.284 0.990 0.990
100 0.326 0.162 0.000 0.000 0.000 0.000 0.989 0.995

Mean Group Estimator
10 0.999 0.998 1.000 1.000 0.958 0.949 0.963 0.970

0 25 0.992 0.994 1.000 1.000 0.886 0.870 0.987 0.987
50 0.438 0.427 0.973 0.973 0.426 0.416 0.989 0.995
100 0.488 0.460 0.000 0.000 0.001 0.000 0.999 0.991
10 0.996 0.997 1.000 1.000 0.949 0.944 0.976 0.971

0.5 25 0.988 0.984 1.000 1.000 0.853 0.853 0.989 0.987
50 0.344 0.264 0.892 0.861 0.331 0.315 0.985 0.991
100 0.049 0.028 0.000 0.000 0.000 0.000 0.992 0.991
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Table: Simulation results for Case 1 - Rank Deficiency- (Experiment A)
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FE 3DCCEG 3DCCEL 3DCCELG
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100 50 100

10 0.227 0.213 0.220 0.242 0.077 0.099 -0.005 0.018
0 25 0.214 0.222 0.223 0.239 0.050 0.066 -0.017 -0.001

50 0.217 0.208 0.248 0.246 0.061 0.061 0.002 0.001
100 0.232 0.222 0.260 0.249 0.067 0.057 0.012 0.001
10 0.227 0.208 0.242 0.249 0.076 0.084 -0.004 0.003

0.5 25 0.246 0.227 0.273 0.274 0.076 0.079 0.009 0.012
50 0.247 0.241 0.258 0.266 0.049 0.058 -0.012 -0.003
100 0.246 0.245 0.272 0.271 0.056 0.055 0.000 -0.002

Mean Group Estimator
10 0.223 0.210 0.211 0.234 0.040 0.062 0.008 0.030

0 25 0.204 0.217 0.214 0.228 0.028 0.043 -0.006 0.009
50 0.209 0.202 0.237 0.235 0.047 0.046 0.009 0.008
100 0.224 0.214 0.248 0.238 0.057 0.046 0.010 0.005
10 0.227 0.207 0.230 0.241 0.041 0.054 0.006 0.019

0.5 25 0.241 0.220 0.263 0.263 0.059 0.060 0.023 0.024
50 0.239 0.234 0.247 0.254 0.038 0.045 -0.003 0.005
100 0.237 0.236 0.260 0.259 0.047 0.046 0.003 0.002

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.497 0.498 0.509 0.520 0.467 0.469 0.461 0.460

0 25 0.357 0.359 0.364 0.362 0.294 0.279 0.290 0.271
50 0.292 0.290 0.313 0.322 0.202 0.216 0.192 0.208
100 0.273 0.263 0.297 0.286 0.158 0.152 0.144 0.141
10 0.520 0.502 0.517 0.520 0.461 0.463 0.454 0.457

0.5 25 0.388 0.368 0.397 0.396 0.298 0.297 0.289 0.285
50 0.317 0.312 0.326 0.335 0.205 0.212 0.199 0.205
100 0.283 0.284 0.306 0.306 0.151 0.152 0.140 0.143

Mean Group Estimator
10 0.490 0.488 0.503 0.510 0.459 0.457 0.457 0.454

0 25 0.352 0.356 0.358 0.354 0.288 0.274 0.286 0.270
50 0.286 0.285 0.304 0.313 0.197 0.211 0.191 0.207
100 0.266 0.256 0.287 0.276 0.154 0.148 0.144 0.141
10 0.513 0.493 0.501 0.509 0.447 0.452 0.444 0.450

0.5 25 0.383 0.361 0.388 0.388 0.291 0.291 0.286 0.285
50 0.310 0.304 0.317 0.326 0.202 0.208 0.198 0.203
100 0.275 0.275 0.295 0.295 0.146 0.149 0.139 0.142

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.984 0.973 0.967 0.957 0.896 0.893 0.891 0.894

0 25 0.972 0.970 0.967 0.971 0.927 0.944 0.925 0.951
50 0.953 0.944 0.936 0.909 0.938 0.920 0.949 0.927
100 0.844 0.870 0.801 0.833 0.922 0.930 0.941 0.952
10 0.969 0.978 0.967 0.971 0.901 0.912 0.897 0.902

0.5 25 0.965 0.967 0.954 0.955 0.912 0.931 0.926 0.938
50 0.943 0.929 0.943 0.912 0.937 0.926 0.942 0.934
100 0.847 0.851 0.815 0.795 0.932 0.935 0.958 0.942

Mean Group Estimator
10 0.939 0.927 0.956 0.949 0.905 0.907 0.898 0.909

0 25 0.903 0.905 0.948 0.949 0.934 0.951 0.935 0.953
50 0.824 0.801 0.904 0.879 0.946 0.928 0.953 0.932
100 0.788 0.831 0.742 0.768 0.932 0.933 0.949 0.952
10 0.951 0.948 0.962 0.965 0.922 0.923 0.919 0.922

0.5 25 0.886 0.895 0.926 0.928 0.931 0.941 0.931 0.944
50 0.818 0.792 0.898 0.869 0.940 0.937 0.940 0.935
100 0.787 0.781 0.727 0.724 0.937 0.936 0.957 0.943
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Table: Simulation results for Case 2 - Rank Deficiency - (Experiment B)

FE 3DCCEG 3DCCEL 3DCCELG
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100 50 100

10 0.209 0.205 0.231 0.223 0.076 0.072 0.003 -0.001
0 25 0.215 0.214 0.243 0.243 0.063 0.063 0.002 0.002

50 0.219 0.219 0.247 0.248 0.056 0.058 0.000 0.001
100 0.220 0.220 0.250 0.251 0.054 0.054 0.000 0.001
10 0.227 0.230 0.250 0.250 0.078 0.078 0.004 0.004

0.5 25 0.241 0.242 0.270 0.266 0.067 0.064 0.004 0.001
50 0.246 0.247 0.272 0.271 0.059 0.059 0.001 0.001
100 0.249 0.248 0.276 0.275 0.056 0.056 0.001 0.000

Mean Group Estimator
10 0.204 0.201 0.222 0.215 0.053 0.047 0.012 0.006

0 25 0.209 0.208 0.232 0.234 0.048 0.049 0.008 0.009
50 0.211 0.212 0.236 0.237 0.046 0.047 0.005 0.005
100 0.212 0.213 0.238 0.239 0.045 0.046 0.002 0.003
10 0.224 0.227 0.242 0.246 0.057 0.060 0.013 0.016

0.5 25 0.233 0.234 0.258 0.256 0.054 0.052 0.011 0.010
50 0.236 0.238 0.261 0.260 0.051 0.050 0.007 0.006
100 0.239 0.239 0.264 0.264 0.049 0.049 0.004 0.004

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.240 0.235 0.258 0.251 0.136 0.132 0.111 0.110

0 25 0.220 0.220 0.248 0.247 0.078 0.077 0.045 0.044
50 0.220 0.220 0.249 0.249 0.061 0.062 0.023 0.023
100 0.220 0.221 0.250 0.251 0.055 0.056 0.012 0.011
10 0.258 0.258 0.278 0.276 0.138 0.137 0.115 0.112

0.5 25 0.246 0.246 0.275 0.271 0.082 0.079 0.047 0.046
50 0.247 0.248 0.273 0.273 0.064 0.064 0.024 0.024
100 0.249 0.248 0.276 0.276 0.058 0.057 0.012 0.012

Mean Group Estimator
10 0.230 0.228 0.245 0.239 0.116 0.112 0.103 0.101

0 25 0.213 0.213 0.236 0.238 0.063 0.064 0.042 0.042
50 0.213 0.213 0.237 0.238 0.051 0.051 0.021 0.021
100 0.212 0.213 0.238 0.239 0.047 0.047 0.011 0.010
10 0.248 0.249 0.264 0.266 0.118 0.118 0.105 0.103

0.5 25 0.237 0.238 0.261 0.259 0.068 0.066 0.042 0.042
50 0.238 0.239 0.262 0.261 0.055 0.054 0.022 0.021
100 0.239 0.239 0.264 0.264 0.050 0.050 0.011 0.011

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.998 1.000 1.000 1.000 0.945 0.953 0.978 0.965

0 25 0.997 0.996 1.000 1.000 0.893 0.876 0.989 0.983
50 0.613 0.511 0.999 0.996 0.605 0.555 0.991 0.987
100 0.701 0.612 0.075 0.035 0.041 0.017 0.993 0.992
10 0.999 0.999 1.000 1.000 0.945 0.948 0.966 0.976

0.5 25 0.998 0.994 1.000 1.000 0.871 0.887 0.991 0.987
50 0.532 0.431 0.988 0.984 0.557 0.557 0.991 0.990
100 0.170 0.079 0.004 0.000 0.034 0.024 0.993 0.992

Mean Group Estimator
10 0.999 1.000 1.000 1.000 0.962 0.969 0.978 0.973

0 25 0.989 0.991 1.000 0.999 0.938 0.938 0.984 0.983
50 0.301 0.209 0.992 0.992 0.691 0.661 0.988 0.982
100 0.342 0.246 0.005 0.003 0.063 0.040 0.987 0.992
10 0.996 1.000 1.000 1.000 0.953 0.960 0.969 0.980

0.5 25 0.983 0.979 1.000 1.000 0.913 0.912 0.989 0.983
50 0.161 0.124 0.938 0.949 0.586 0.612 0.985 0.991
100 0.007 0.007 0.000 0.000 0.031 0.029 0.989 0.988
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Empirical Application
Anderson and van Wincoop (2003) show that bilateral trade
depends on the bilateral trade barriers but relative to the
product of their Multilateral Resistance Indices, and derive the
system of structural gravity equations:

Xij =
YiYj
Y

(
tij

ΠiPj

)1−σ
(252)

Π1−σ
i =

∑
j

(
tij
Pj

)1−σ Yj
Y
and P 1−σ

j =
∑
i

(
tij
Πi

)1−σ Yi
Y

(253)
where Xij are exports from i to j, Yi, Yj and Y are GPD for i
(exporter), j (importer) and the world, tij (> 1) is one plus
the tariff equivalent of trade costs of imports of j from i,
σ (> 1) is the elasticity of substitution with CES preference;
Πi is ease of access of exporter i, and Pj is the ease of access
of importer j.
Pj and Πi are called inward and outward multilateral
resistance.
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Omitting MTR induces potentially severe bias.

Consider the log-linearised specification of (252):

lnXij = β0+β1 lnYi+β2 lnYj+β3 ln tij+β4 lnPi+β5 lnPj+εij
(254)

where Pi and Pj are unobservable MTRs, and tij contain
both barriers and incentives to trade between i and j.

Subsequent research has focused on estimating (254) with
replacing unobservable MTRs by N country-specific dummies,
µi and µj .
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We extend (254) into 3D panels:

lnXijt = β0+β1 lnYit+β2 lnYjt+β3 ln tijt+β4 lnPit+β5 lnPjt+εijt,
(255)

where we should allow MTRs to vary over time.

Baltagi et al. (2003) propose:

uijt = αij + θit + θ∗jt + εijt, (256)

which contains bilateral pair-fixed effects αij as well as origin
(exporter) and destination (importer) country-time fixed
effects (CTFE) θit and θ∗jt.

This approach popular in measuring the impacts of MTRs of
exporters and importers in the structural gravity studies.
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The main drawback of the CTFE approach lies in the
assumption that bilateral trade flows are independent of what
happens to the rest of the trading world.
Recently, KMSS extend the 3D panel data model (209) with
the more general error components:

uijt = αij + θit + θ∗jt + πijθt + εijt, (257)

that attempts to model residual CSD via unobserved
heterogeneous global factor θt in addition to CTFEs.
CTFE estimator is biased because it fails to remove
heterogenous global factors correlated with covariates.
KMSS develop the two-step consistent 3D-PCCE estimation
procedure by approximating global factors with double
cross-section averages of dependent variable and regressors
and applying the 3D-within transformation.
In this paper, we develop the hierarchical multi-factor error
components specification, (210), which is more structural and
parsimonious.
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The data
We collect the dataset over the period 1970-2013 (44 years),
and consider two control groups:
1 the 210 country-pairs of the EU15 member countries with 11
Euro countries (Austria, Belgium-Luxemburg, Finland, France,
Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain)
and 4 control countries (Denmark, Norway, Sweden, the UK);

2 the 320 country-pairs among 19 countries with the EU15
countries and 4 non-EU OECD countries (Australia, Canada,
Japan and the US).

We collect the bilateral export flow from IMF. The Data starts
from 1970 as the German data are unavailable in the 60s.
There are no missing data so we consider the balanced panel.
Our sample period consists of several important economic
integrations, such as the European Monetary System in 1979
and the Single Market in 1993, all of which can be regarded
as promoting intra-EU trades.
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Empirical specification:
We consider the 3D panel gravity specification:

lnEXPijt = β0 + β1CEEijt + β2EMUijt + β3SIMijt + β4RLFijt + β5 lnGDPit
(258)

+ β6 lnGDPjt + β7RERt + γ1DISij + γ2BORij + γ3LANij + uijt

the dependent variable, EXPijt is the export flow from
country i to country j at time t;
CEE and EMU are dummies for European Community
membership and for European Monetary Union;
SIM is the logarithm of an index that captures the relative
size of two countries and bounded between zero (absolute
divergence) and 0.5 (equal size);
RLF is the logarithm of the absolute value of the difference
between per capita GDPs of trading countries;
RER represents the logarithm of common real exchange rates;
GDPit and GDPjt are logged GDPs of exporter and importer;
the logarithm of geographical distance (DIS) and the
dummies for common language (LAN) and for common
border (BOR) represent time-invariant bilateral barriers.
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We apply the four estimators considered in the MC
simulations, namely the two-way within estimator and the
three versions of 3D CCEP estimators.
We also report the CD results applied to the residuals and the
estimates of the CSD exponent (α).
We focus on investigating the impacts of tij that contain both
barriers and incentives to trade; the two dummy variables CEE
(equal to one when both countries belong to the European
Community) and EMU (equal to one when both trading
partners adopt the same currency).
Both are expected to exert a positive impact on export flows.
Empirical evidence is mixed, though recent studies by
Mastromarco et al. (2015), and Gunnella et al. (2015) that
control for strong CSD in 2D panels, find modest effects (7 to
10%) of the euro on intra-EU trade flows.
KMSS (2017) apply a 3D PCCE estimator; the EMU impact
on exports is about 8%.
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The Estimation Results for the EU15 Countries

Table 5 reports the panel gravity estimation results for the
210 country-pairs among the EU15 member countries over the
period 1970-2013 (44 years).

The FE estimator suffers from strong CSD while the
3DCCEP estimators display lower degree CSD.

CD diagnostic test by Pesaran (2015) fails to reject the null of
weak CSD for both 3DCCEPL and 3DCCEPGL. This is
also supported by the smaller estimates of α for 3DCCEPL
(0.624) and 3DCCEPGL (0.609), close to a moderate range
of weak CSD.

We focus on the 3DCCEPGL estimation results with the
lowest degree of CSD.
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Factor approximations

Theoretically, we should employ the entire set of cross-section
averages to approximate heterogeneous global and local
factors.

In practice, this may raise an issue of multicollinearity.
Further, to avoid the curse of dimensionality, we search for an
optimal subset of cross sectional averages.

In the aftermath of the global financial crisis, export flows
display a negative average growth as shown below:

Export Growth 70/80 80/90 90/00 00/10 10/13
EU15 + 4 OECD 7.06 6.25 4.35 2.16 -0.34
EU15 8.86 7.37 3.92 2.82 -2.05

Hence, we also add t2 as an observed factor, which helps to
capture the confounding effect of the crisis.
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All the coeffi cients are significant and their signs are
consistent with our a priori expectations.
The effect of the foreign GDP is substantially higher than the
home GDP.
The effects of SIM and RER are positive while a depreciation
of the home currency leads to a significant increase in exports.
SIM boosts real export flows, which suggests that the
intra-industry trade is the main part of the trade in the EU.
Importantly, the impacts of EMU and CEE are significant, but
substantially smaller than the potentially biased FE estimates.
Both Euro and CEE impacts drop sharply from 0.099 and
0.074 to 0.03 and 0.05.
Other estimators provide rather unreliable results.3

3For example, the impacts of home GDP on exports is surprisingly larger
than the foreign impact while both Euro and CEE impacts seem to be rather
high for the FE. The RER coeffi cient is significantly negative for the CCEP
with the global approximation only whereas the CEE impact is insignificant and
the Euro impact is almost negligible for the CCEP with the local approximation
only.
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Table: Table 5: Estimation Results for 15 EU Countries
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FE 3DCCEPG 3DCCEPL 3DCCEPGL

gdph 1.517 0.230 0.023 0.342
(0.044) (0.036) (0.037) (0.124)

gdpf 0.953 1.478 0.779 1.498
(0.044) (0.037) (0.057) (0.031)

sim -0.045 0.639 -0.012 0.197
(0.060) (0.069) (0.056) (0.075)

rlf 0.030 -0.002 0.002 0.006
(0.006) (0.005) (0.002) (0.004)

rer 0.012 -0.046 0.016 0.103
(0.008) (0.007) (0.004) (0.010)

euro 0.099 0.030 0.012 0.030
(0.016) (0.003) (0.003) (0.003)

cee 0.074 0.066 0.007 0.050
(0.014) (0.007) (0.007) (0.013)

CD stat 206.6 4.67 2.33 2.72

α 0.91 (0.90-0.93) 0.78 (0.72-0.84) 0.62 (0.59-0.66) 0.61 (0.57-0.65)
Notes: FE is the two-way fixed effect estimator. 3DCCEPG is the CCEP
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estimator with only the global factors approximated by
ft =

{
export..t, gdp..t, sim..t, rlf ..t, cee..t, t, t

2
}
3DCCEPL is the CCEP

estimator with only the local factors approximated by ft = fiot =
{
yi.t, gdpi.t

}
and fojt =

{
sim.jt, rlf .jt

}
. 3DCCEPGL is the CCEP estimator with both

global and local factors approximated by
ft =

{
export..t, gdp..t, sim..t, rlf ..t, cee..t, t, t

2
}
and

fiot =
{
simi.t, rlf i.t, reri.t

}
. * and ** stand for significance at 5% and 10%

level. CD test refers to testing the null hypothesis of residual cross-section
independence or weak dependence (Pesaran, 2015). α is the estimate of CSD

exponent with 90% confidence bands inside parenthesis.
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The 3DCCEP estimator wipes out the time invariant
regressors.
Following the 2-step approach as in Serlenga and Shin (2007),
we can estimate γ by the between estimator:

dijt = αij + γ1DISij + γ2BORij + γ3LANij + uijt (259)

where dijt = yijt − β̂
′
xijt with β̂ being the 3D CCEP

estimator.
We test the validity of the hypothesis: if the Euro had a
positive effect on the EU trade by reducing bilateral barriers
and eliminating exchange-related uncertainties and transaction
costs, this caused a decrease in trade impacts of bilateral
barriers (e.g. Cafiso, 2010).
A declining trend after 1999 will support the hypothesis that
the Euro helps to promote more EU integration.
To this end we estimate (259) by the cross-section regression
at each period, and produce time-varying coeffi cients of γ.
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Figure 1 shows time varying estimates of γ, using the CCEP
estimator with both local and global factors approximation.
The border effect has been declining until the mid 1980’s, and
quite stable except the slight dip during the global financial
crisis albeit statistically insignificant.
The language effect decreasing until the end of 1980’s,
reflecting a progressive lessening of restrictions on labor
mobility within EU, that encouraged migration and reduced
the relative importance of trade costs and cultural difference.
Since the introduction of the Euro in 1999, both language and
border effects became flat, suggesting that the EU integration
may reach near-completion stage. This is consistent with the
currency union formation hypothesis by Frankel (2005) that
countries, which decide to join a currency union, are
self-selected on the basis of distinctive features shared by EU
members.
The effect of distance has been on a declining trend from the
mid 80’s, but started to rise slightly after 1999.
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The Estimation Results for the EU15 plus 4 OECD Countries

Table 3 reports the estimation results for an enlarged sample
of the 342 country-pairs among the EU15 member countries
plus four more countries (Australia, Canada, Japan and the
US).

Again we focus on the estimation results for the
3DCCEPGL, which shows the lowest degree of CSD.

The results are qualitatively similar to those in Table 2.

All the coeffi cients are significant with expected signs.

The effect of the foreign GDP is substantially higher than the
home GDP effect.

The effects of SIM is slightly higher (from 0.2 to 0.22) but
RLF becomes negligibly negative.

The impact of RER is stronger (from 0.10 to 0.18), implying a
stronger terms of trade effect.
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The impacts of EMU and CEE are significant, though their
magnitudes become smaller than those with the EU15
countries, namely from 3% to 1.5% and from 5% to 3%.

The smaller effects for the enlarged sample might reflect the
trade diversion between the Euro and non-Euro area.

The effects of the EMU on trade will differ with respect to the
selected control group and depend on the composition of
treatment and control groups (e.g. Baier and Bergstrand,
2009).

Other estimators provide rather misleading results. In
particular, the FE estimation provides an opposite result that
both Euro and CEE impacts increase substantially, from 0.099
and 0.074 to 0.258 and 0.161.
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Table: Table 6: Estimation Results for 15 EU plus 4 OECD countries
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FE 3DCCEPG 3DCCEPL 3DCCEPGL

gdph 1.066 0.531 0.069 0.169
(0.019) (0.016) (0.010) (0.055)

gdpf 0.904 1.419 1.262 1.417
(0.020) (0.020) (0.015) (0.017)

sim 0.332 0.109 0.100 0.220
(0.029) (0.021) (0.013) (0.023)

rlf 0.027 -0.008 0.010 -0.004
(0.004) (0.002) (0.001) (0.002)

rer 0.058 0.086 0.074 0.179
(0.008) (0.004) (0.002) (0.005)

euro 0.258 0.012 0.012 0.014
(0.009) (0.003) (0.001) (0.002)

cee 0.161 0.021 0.007 0.030
(0.028) (0.017) (0.001) (0.012)

CD stat 243.33 3.272 2.331 3.201

α 0.90 (0.88-0.920) 0.74 (0.69-0.76) 0.65 (0.61-0.69) 0.62 (0.57-0.66)
Notes: FE is the two-way fixed effect estimator. 3DCCEPG is the CCEP



Modelling the Cross-section Dependence, the Spatial Heterogeneity and the Network Diffusion in the Multi-dimensional Dataset

Estimation and Inference for Multi-dimensional Heterogeneous Panel Datasets with Hierarchical Multi-factor Error Structure

estimator with only the global factors approximated by
ft =

{
export..t, gdp..t, sim..t, rlf ..t, cee..t, t

}
. 3DCCEPL is the CCEP

estimator with only the local factors approximated by ft = fiot =
{
yi.t, gdpi.t

}
and fojt =

{
sim.jt, rlf .jt

}
. 3DCCEPGL is the CCEP estimator with both

global and local factors approximated by
ft =

{
export..t, gdp..t, sim..t, rlf ..t, cee..t, t

}
and fiot =

{
simi.t, rlf i.t, reri.t

}
.

* and ** stand for significance at 5% and 10% level. CD test refers to testing
the null hypothesis of residual cross-section independence or weak dependence
(Pesaran, 2015). α is the estimate of CSD exponent with 90% confidence

bands inside parenthesis.
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Figure 2 displays time varying estimates of γ, using the CCEP
estimator with both local and global factors approximation.

Both border and language effect show similar pattern to the
case with the EU15 countries.

Again, we do not observe any evidence in favour of the Euro
effect on trade integration, consistent with the currency union
formation hypothesis by Frankel (2005).

The effect of distance has been slightly increasing over the
whole period. This is consistent with the meta-study by
Disdier and Head (2008), who document that the trade
elasticity with respect to distance has not declined, but rather
increased recently.
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We propose novel estimation techniques to accommodate
CSD within the 3D panel data models.
Our approach is the first attempt to introduce strong CSD
into the multi-dimensional error components.
The empirical usefulness of the 3D-PCCE estimator is
demonstrated via the Monte Carlo studies and the empirical
application to the gravity model of the intra-EU trade.
Extensions and generalisations:
We aim to develop the challenging models by combining the
spatial- and the factor-based techniques.
Bailey et al. (2016) develop the multi-step estimation
procedure that can distinguish the relationship between spatial
units from that which is due to the effect of common factors.
Mastromarco et al. (2015) propose the technique for allowing
weak and strong CSD in stochastic frontier panels by
combining the exogenously driven factor-based approach and
an endogenous threshold regime selection by Kapetanios et al.
(2014, KMS).
Bai and Li (2015) and Shi and Lee (2014,5) developed the
framework for jointly modelling spatial effects and interactive
effects. See also Gunnella et al. (2015) and Kuersteiner and
Prucha (2015).
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Further Issues

This area is developing very rapidly, with many interesting and
often surprising results.
There is also a general pattern of extending issues in the
time-series literature to panels with the multiple indexes.
Theoretical and applied econometrics are very different
activities.
The former is a deductive activity where you have no data,
know the model and derive properties of estimators and tests
conditional on that model. There are right and wrong answers.
The latter is an inductive activity where you do have data, but
do not know the model or the questions let alone the answers.
One must take account of the statistical theory but also the
purpose of the activity and the economic context, which
define the parameters of interest.
Different models may be appropriate for different purposes
(forecasting, policy analysis or testing); the economic context
(theory, history, institutions) should guide the choice of model.
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There appear to be some general points when using large N
large T panels.

One should be very careful about using pooled estimators to
estimate dynamic panels. The dynamic parameters are subject
to large potential biases when the parameters differ across
groups and the regressors are serially or spatially correlated.

Pooled regressions can be measuring very different parameters
from averages of the corresponding parameters in time-series
regressions. This difference can be expressed as a consequence
of a dependence between the time-series parameters and the
regressors. The interpretation of this difference will depend on
the theory related to the substantive application.

It is important to allow for between group dependence; the
CCE estimator is a good start, but you may be able to give
the estimates an economic interpretation.
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The Joint Modelling of the Spatial Dependence and
Unobserved Factors

Recently, a few studies attempted to develop a combined
approach that can accommodate both weak and strong CSD.
Bailey et al. (2016) develop multi-step estimation procedure
that can distinguish the relationship between spatial units that
is purely spatial from that which is due to common factors.
Mastromarco et al. (2015) propose the novel technique in
modelling technical effi ciency of stochastic frontier panels by
combining the exogenously driven factor-based approach and
an endogenous threshold regime selection advanced by
Kapetanios et al. (2014).
Shi and Lee (2017), Bai and Li (2015) and Kuersteiner and
Prucha (2015) have also developed the framework for jointly
modelling spatial effects and interactive effects.
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The SDPD Models with Interactive Fixed Effects

Shi and Lee (2017, JoE)

Consider the SDPD model:

Y nt = λW nY nt+γY n,t−1+ρW nY n,t−1+Xntβ+Γnf t+Unt

(260)
Unt = αW̃ nUnt + εnt

where Y nt is a n-dimensional column vector of dependent
variables and Xnt is a n× (K − 2) matrix of exogenous
regressors, so that the total number of variables in Y n,t−1,
W nY n,t−1 and Xnt is K.

The model accommodates two types of CSD; local
dependence and global (strong) dependence.
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The SDPD Models with Interactive Fixed Effects

Individual units are impacted by time-varying unknown factors
f t, which captures global (strong) dependence. The effects
can be heterogeneous.

In an earnings regression where Ynt is the wage rate, each row
of Γn may correspond to a vector of an individual’s skills and
f t is its time varying premium.

The true number of unobserved factors is assumed to be a
fixed constant r, much smaller than n and T .

The matrix of n× r factor loading Γn and the T × r factors
F t = (f1, ..., fT )′ are not observed and treated as fixed effects
parameters.

This approach is flexible and allows unknown correlation
between factors and regressors.
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The SDPD Models with Interactive Fixed Effects

The n× n spatial weights matrices W n and W̃ n are used to
model spatial dependence, which represents local dependence.

λ0W nY nt describes contemporaneous spatial interactions.

γ0Y n,t−1 captures pure dynamic effect.

ρ0W nY n,t−1 is a spatial time lag of interactions (diffusion).

The idiosyncratic error Unt with elements of εit being
iid(0, σ2

0) also possesses a spatial structure W̃ n.

Shi and Lee (2017) propose a QML estimator.

When n and T are comparable, the estimator is
√
nT

consistent.

MC experiment shows that QMLE performs well and the
proposed bias correction is effective.
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The SDPD Models with Interactive Fixed Effects

Bai and Li (2015)

Bai and Li (2015) consider jointly modeling spatial
interactions, dynamic interactions and common shocks:

yit = αi + ρ

N∑
j=1

wij,Nyjt + δyit−1 + x′itβ + λ′if t + eit (261)

where yit is the dependent variable, xit = (xit1, ..., xitk)
′ is a

k-dimensional vector of explanatory variables, f t is an
r-dimensional vector of unobservable common shocks; λi is
the corresponding heterogenous response to the common
shocks, W n is a spatial weights matrix whose diagonal
elements are 0, and eit are idiosyncratic errors.

λ′if t captures the common-effects,
∑N

j=1wij,Nyjt captures
the spatial effects, and δyit−1 captures the dynamic effects.
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The SDPD Models with Interactive Fixed Effects

An additional feature is the allowance of cross sectional
heteroskedasticity.

If heteroskedasticity exists but homoskedasticity is imposed,
then MLE can be inconsistent. Interestingly, we show that the
limiting variance of the MLE is not of a sandwich form if
heteroskedasticity is allowed.

The spatial interaction on the dependent variable gives rise to
the endogeneity problem, while the spatial interaction on the
errors, in general, does not.

Existing estimation methods on the common shocks models
such as Pesaran (2006) and Bai (2009) cannot be directly
applied to model (261) due to the endogeneity from the
spatial interactions.
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The SDPD Models with Interactive Fixed Effects

They consider the pseudo-Gaussian MLE, which
simultaneously estimates all parameters including
heteroskedasticity.

The incidental parameters problem (individual-dependent
intercepts, interactive effects, heteroskedasticity) exists and
the MLE is shown to have a non-negligible bias.

Following Hahn and Kuersteiner (2002), we conduct bias
correction on the MLE to make it center around zero.

This paper integrates several correlation-modeling techniques
and propose dynamic spatial panel data models with common
shocks to accommodate possibly complicated correlation
structure over cross section and time.

We propose a bias correction method for the QMLE. The
simulations reveal the excellent finite sample properties of the
QMLE after bias correction.
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The SDPD Models with Interactive Fixed Effects

Kuersteiner and Prucha (2015)

Consider panel data {yt, xt, zt}Tt=1, where yt = [y1t, ..., ynt]
′,

xt = [x′1t, ..., x
′
nt]
′, and zt = [z′1t, ..., z

′
nt]
′ denote the vector of

endogenous variables, and matrices of kx weakly exogenous
and kz strictly exogenous variables.
They allow for regressors and disturbances to be affected by
common shocks.
Alternatively we allow for CSD from “spatial lags” in
endogenous and exogenous variables and in disturbances.
Spatial lags represent weighted cross sectional averages, where
the weights reflect some measure of distance.
εt = [ε1t, ..., εnt]

′ is the vector of regression disturbances,
ut = [u1t, ..., unt]

′ the vector of unobserved idiosyncratic
disturbances, and µ is an n× 1 vector of unobserved factor
loadings.
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The SDPD Models with Interactive Fixed Effects

The n× n spatial weight matrices denoted as Wpt = (wp,ijt)
and Mqt = (mq,ijt).

Let λ and ρ be P,Q dimensional vectors of parameters with
typical elements λp and ρq and define

Rt (λ) =

P∑
p=1

λpWpt for SAR

R∗t (ρ) = I −
Q∑
q=1

ρqMqt for a spatial AR error term

R∗t (ρ) =

I +

Q∑
q=1

ρqMqt

−1

for a spatial MA error term
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The SDPD Models with Interactive Fixed Effects

The panel data model can be written as

yt = Rt (λ) yt + xtβx + ztβz + εt = Xtδ + εt (262)

R∗t (ρ) εt = µft + ut

where Xt = [M1tyt, ...,MPtyt, xt, zt] and δ =
[
λ′, β′

]′.
As a normalization we take

wp,iit = mq,iit = 0 and fT = 1

(262) is a system of n equations describing simultaneous
interactions between the individual units.

The weights are allowed to be endogenous in that they can
depend on µ1, ..., µN and uit, and can be correlated with εt.

This extension is important to model sequential group
formation as in Carrell et al. (2013) or endogenous network
formation as in Goldsmith-Pinkham and Imbens (2013).
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The SDPD Models with Interactive Fixed Effects

The reduced form of the model is given by

yt = (In −Rt (λ))−1Wtδ + (In −Rt (λ))−1 εt (263)

εt = R∗t (ρ)−1 (µft + ut)

Applying a Cochrane-Orcutt type transformation by
premultiplying the first equation in (262) with R∗t (ρ) yields

R∗t (ρ) yt = R∗t (ρ)Wtδ + µft + ut (264)
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The SDPD Models with Interactive Fixed Effects

Three examples

1 The social interactions model by Graham (2008) illustrates
the use of both spatial interaction terms and interactive
effects in a social interaction model;

2 The analysis of the group level heterogeneity is based on
Carrell et al. (2013), which illustrates the use of higher order,
and data-dependent spatial lags to model within-group
heterogeneity. By allowing Rt (λ) to depend on predetermined
outcomes we can accommodate the fact that group
membership is not exogenous;

3 The next example is in the area of health, and considers the
spread of an infectious disease.
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The SDPD Models with Interactive Fixed Effects

They consider a class of GMM estimators.
Significantly expanding the literature by allowing for
endogenous spatial weight matrices, time-varying interactive
effects, as well as weakly exogenous covariates.
An important area of application is in social interaction and
network models where our specification can accommodate
data dependent network formation.
Identification of spatial interaction parameters is achieved
through a combination of linear and quadratic moment
conditions.
We develop an orthogonal forward differencing transformation
to estimate factor components while maintaining
orthogonality of moment conditions.
In the social interactions example, orthogonal forward
differencing amounts to controlling for unobserved correlated
effects by combining multiple outcome measures.
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Further suggestions on the KMS model

Further suggestions on the KMS model

The KMS model can be seen to lie between the two extremes
characterised by weakly cross-sectionally dependent spatial
models and strong factor models.
Inflation expectations: Consider the model with FEs:

πi,t = νi+
ρ

mi,t

N∑
j=1

I (|πi,t−1 − πj,t−1| ≤ r)πj,t−1+εi,t (265)

where π is the one-quarter ahead CPI inflation forecast,
νi ∼ iid(0, σ2

ν), and obtain the within estimator of ρ along
with the consistent estimator of r.
Notable exceptions are two extreme models, PAR and CSA:

πi,t = νi + ρπi,t−1 + εi,t (266)

πi,t = νi + ρπ̄t−1 + εi,t (267)
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Further suggestions on the KMS model

We consider the extensions:

πi,t = νi + ρ1π̃i,t−1 + ρ2π̃
c
i,t−1 + εi,t (268)

where π̃i,t−1 and π̃ci,t−1 are the respective cross-section
averages related to similar and dissimilar forecasters given by

π̃i,t−1 =
1

mi,t

N∑
j=1

I (|πi,t−1 − πj,t−1| ≤ r)πj,t−1

π̃ci,t−1 =
1

N −mi,t

N∑
j=1

I (|πi,t−1 − πj,t−1| > r)πj,t−1

We can also test the hypothesis of ρ2 = 0 (informational
contents arising from dissimilar forecasters).

If ρ2 6= 0, what’s the predicted sign of ρ2?
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Further suggestions on the KMS model

Anselin et al. (2008) distinguish spatial dynamic models into
4 categories based on the time-space-dynamic specification:

xi,t = ρ0xi,t−1 + ρ1

∑
j 6=i

wijxj,t−1 + β
∑
j 6=i

wijxj,t + vi + εi,t

(269)

ρ0 captures serial dependence, β represents the intensity of a
contemporaneous spatial effect and ρ1 captures space time
autoregressive dependence (diffusion).

Most studies focus on the stable case with ρ0 + ρ1 + β < 1.
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Further suggestions on the KMS model

if ρ0 = ρ1 = 0, we are dealing with a SAR model while if
ρ1 = β = 0 we obtain a ‘simple’dynamic model.

if ρ0 = β = 0, we obtain a ‘pure-space recursive’model in
which dependence results from the neighborhood locations in
the previous period;

if β = 0, the model is reduced to a ‘time space recursive’
model in which dependence relates to both the location itself
(xi,t−1) and its neighbors in the previous period∑

j 6=iwijxj,t−1;

if ρ1 = 0, we obtain a ‘time space simultaneous’model which
includes the time lag and the spatial lag.
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Further suggestions on the KMS model

The KMS model is similar to the time-space recursive model
considered by Korniotis (2010). He applies it to investigate
the internal versus external habit formation using the annual
consumption data for the U.S. states, and finds that state
consumption growth is not significantly affected by its own
(lagged) consumption growth but affected by lagged
consumption growth of nearby states.

Notice that the weight wij measures the importance of xj,t−1

on xit. The weights are observed and exogenous.

Because the spatial-time lag,
∑N

j=1wijxj,t−1, is a weighted
average of past consumption of other cross-sectional units, it
is the measure of the catching-up habit.
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Further suggestions on the KMS model

There is a trade-off between KMS model and the time space
recursive model by Korniotis (2010).

In the former the neighbors are selected endogenously but the
equal weights are imposed.

In the Korniotis’s model, the neighbors are selected
exogenously, but the weights are selected in a flexible manner
albeit not time-varying.

The application of the KMS model to the consumption habit
formation will provide an interesting insight.
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Further suggestions on the KMS model

We generalise (265) and allow different weights to the
selected neighbors as follows:

xi,t = νi +
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)wijxj,t−1 + εi,t

(270)
where we consider the following weights

wij =
d−2
ij∑N

j=1 d
−2
ij

, dij = |xi,t−1 − xj,t−1| (271)

The estimation can be done in two steps: first, the consistent
estimate of r is obtained. Then, construct the weights by
(271) and the associated cross-section averages, and estimate
the model, (270).
Possibly more complicated due to the grid search over r. The
KMS approach would be more general than spatial models.
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Endogenous Spatial Weights Matrix

Endogenous Spatial Weights Matrix and KMS

The choice of appropriate spatial weights is central for spatial
models as it assumes a structure of spatial dependence, which
may not correspond closely to reality.

The choice of weights is arbitrary, and empirical results vary
considerably.

When the spatial weights matrix is constructed with
economic/socioeconomic distances, it can be time varying
(e.g. Case et al., 1993).

Lee and Yu (2012b) investigate QMLE of SDPD models with
time varying spatial weights. MC results show that a model
misspecification of a time invariant spatial weights may cause
substantial bias.
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Endogenous Spatial Weights Matrix

Define the N ×N matrix of the spatial weights:

W =

 w11 · · · w1N
...

. . .
...

wN1 · · · wNN

 =

 w1
...
wN

 with wii = 0

(272)

The jth element of wi, wij , represents the link between the
neighbor j and the spatial unit i.

It is a common practice to have W having a zero diagonal
and being row-normalized.

The ith row wi may be constructed as
wi = (di1, di2, ..., din)/

∑n
j=1 dij , where dij ≥ 0 represents a

function of the spatial distance between ith and jth units.
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Endogenous Spatial Weights Matrix

Assumption 6 in Shi and Lee (2017, JoE). (1) The spatial
weights satisfy wij,t ≥ 0, wij,t = 0, and wij,t = 0 if ρij,t > ρc,
i.e., there exists a threshold ρc such that the weight is zero if
the geographic distance exceeds ρc. For i 6= j,

wij,t = hij (zit, zjt) I
(
ρij,t < ρc

)
(273)

or the row normalized version that

wij,t =
hij (zit, zjt) I

(
ρij,t < ρc

)∑n
k=1 hik (zit, zkt) I

(
ρik,t < ρc

)
where hij()’s are nonnegative, uniformly bounded functions.
(2) The function hij(.) satisfies the Lipschitz condition,

|hij (a1, b1)− hij (a2, b2)| ≤ c0 (|a1 − a2|+ |b1 − b2|)

for some finite constant c0.
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Endogenous Spatial Weights Matrix

For convenience consider the simple SAR model:

yit = λ

n∑
j=1

wij,tyjt + vit. (274)

Different specifications for the spatial weights:
Fixed weights based on the physical or economic distance.
This exogenous assumption may hold when spatial weights are
constructed using predetermined geographic distances.
If economic distance such as the GDP or trade volume is used
to construct the weight matrix, it is likely that these elements
are correlated with the final outcome.
BHP use the spatial correlation-based adjacency matrix
subject to sparsity. However, it may render the estimation less
reliable, e.g. in the UK house price data by Beulah’s thesis,
the correlation-based weights matrix contains only 0.3%
nonzero weights.
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Endogenous Spatial Weights Matrix

Qu and Lee (2015) and Shi and Lee (2017) consider:

hij (zit, zjt) =
1

|zit − zjt|
(275)

where |zit − zjt| measures the economic distance.
Using (273) and (275), the model (274) can be written as

yit = λ

n∑
j=1

1

|zit − zjt|
I
(
ρij,t < ρc

)
yjt + vit, (276)

where I
(
ρij,t < ρc

)
is predetermined.

Assuming that geographic distance ρc is known and zit is
correlated with vit, Shi and Lee develops the CF approach:

yit = λ

n∑
j=1

wij,tyjt + (Znt −X2ntΓ)′it δ + ξit. (277)

wij,t =
1

|zit − zjt|
I
(
ρij,t < ρc

)
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Endogenous Spatial Weights Matrix

Consider the single covariate in z:

zit = x′itβz + γ′izfzt + εit (278)

where xit are kz × 1 regressors, fzt consisting of Rz × 1
factors with loading γ′izl and εit is idiosyncratic error.
Then, (277) can be written as

yit = λ

n∑
j=1

wij,tyjt +
(
zit − x′itβz − γ′izfzt

)′
δ + ξit. (279)

The structure of (276) is similar to KMS, given by

yit = λ
1

mit

n∑
j=1

I
(
ρij,t < ρc

)
yjt + vit. (280)

where mit =
∑n

j=1 I
(
ρij,t < ρc

)
.

(276) assumes the known threshold ρc whilst (280) estimates
λ and ρc jointly, then imposing the equal weight once yjt is
selected.
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Endogenous Spatial Weights Matrix

More generally, we consider:

wij,t =
1

ρij,t
I
(
ρij,t < ρc

)
with ρij,t = |zit − zjt| (281)

We may consider the row-normalisation version as

wij,t =

1
ρij,t

I
(
ρij,t < ρc

)∑n
j=1

1
ρij,t

I
(
ρij,t < ρc

) with ρij,t = |zit − zjt| (282)

We can consider (i) the exogenous case, E (z′itvit) = 0 and
(ii) the endogenous case, E (z′itvit) 6= 0.
We may also consider the time-invariant case using

wij =
1

ρij
I
(
ρij < ρc

)
with ρij = |zi − zj | or ρij = |z̄i − z̄j |

(283)
where we use time-invariant covariate, zi or the time-average,
z̄i = T−1

∑
zit.
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Endogenous Spatial Weights Matrix

We conjecture that the KMS algorithm to construct the
endogenous spatial weights matrix would be useful.
For example, we consider VAR as the DGP for the N × 1
vector, zt = (z1t, ..., zNt)

′, say

zt =

p∑
j=1

Φjzt−j + εt

and derive the CF:

vt =

zt −
p∑
j=1

Φjzt−j

′ δ + ξt.

Then, the final model will become:

yit = λ

n∑
j=1

wij,tyjt + ε′itδ + ξit (284)
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Endogenous Spatial Weights Matrix

MORE discussions...
Relationship to the selection bias corrections using both
parametric and semiparametric approaches.

Also in threshold models and network formation or selection?

CCE approximation possible for spatial and factors?

Heterogeneous extension of KMS?

How to estimate the weights and thresholds jointly in KMS
with and without endogeneity?
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Panel Threshold Regression Models in the Presence of CSD

Regime-switching panel data modelling with spatial effects
and factors

Another important issue is how to model the spatial
dependence, the spatial heterogeneity and the spatial
nonlinearity, simultaneously.

See the lecture handouts for a preliminary review of the
current literature.
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Eventually, this project aims to

develop the general econometrics specifications that can
accommodate the spatial and factor dependence, the spatial
heterogeneity, the endogenous spatial weights matrix as well
as the spatial nonlinearity in dynamic heterogenous panels in a
rather unified framework by combining all the recent advances
made in the related literature.

extend all the advances to the multi-dimensional dataset,
separately and jointly. As the dimension grows, it would be
more complicated and challenging to develop the hierarchical
and structural model of both spatial effects and factors,
jointly.

These works will be of great applicability to a variety of the
big dataset, not only the health economics data...
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Further Modelling Issues

This area is developing very rapidly, with very many
interesting and often surprising results emerging.

There is also a general pattern of extending issues in the
time-series literature to panels with the multiple indexes.

Theoretical and applied econometrics are very different
activities.

The former is a deductive activity where you have no data,
know the model and derive properties of estimators and tests
conditional on that model. There are right and wrong answers.

The latter is an inductive activity where you do have data, but
do not know the model or the questions let alone the answers.
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In applied econometrics one must take account of not merely
the statistical theory but also the purpose of the activity and
the economic context, which define the parameters of interest.

Different models may be appropriate for different purposes,
such as forecasting, policy analysis or testing hypotheses and
purpose and the economic context (theory, history,
institutions) should guide the choice of model.

There are some general points that applied workers might
bear in mind when using large N large T panels.
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First, one should be very careful about using pooled
estimators to estimate dynamic panel data models. The
dynamic parameters are subject to large potential biases when
they differ across groups and the regressors are serially or
spatially correlated.

Second, pooled regressions can be measuring very different
parameters from the averages of the corresponding parameters
in time-series regressions. This difference can be expressed as
a consequence of a dependence between the time-series
parameters and the regressors. Its interpretation will depend
on the theory related to the substantive application. It is not
primarily a matter of statistical technique.

Third, it is important to allow for between group dependence,
the CCE estimator is a good start, but you may also need to
be able to give the estimates an economic interpretation.
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Further Modelling Issues

This area is developing very rapidly, with many interesting and
often surprising results emerging.

We assume spatial weighting matrix to be determined
exogenously, ruling out a number of exciting research areas in
social networks. Our control function approach has the
potential to control for this source of endogeneity.

We have restricted ourselves to linear effects, both in time and
across space, and to modelling conditional means rather than
other quantiles of the conditional distribution.

Eventually, this project aims to develop the general
econometrics models that can accommodate spatial and factor
dependence, spatial heterogeneity, endogenous spatial weight
matrix as well as spatial nonlinearity in a unified framework.
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