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1 Introduction

Cross-section dependence (CSD) seems pervasive in panels, since it seems rare
that the covariance of the errors is zero. Recently, there has been much progress
in characterising and modelling CSD. Phillips and Sul (2003) note that the
consequences of ignoring CSD can be serious: pooling may provide little gain in
effi ciency over single equation estimation; estimates may be badly biased and
tests for unit roots and cointegration may be misleading.
CSD has always been central in spatial econometrics (Baltagi, 2005) where

there is a natural way to characterise dependence in terms of distance, but for
most economic and social science problems there is no obvious distance measure.
For instance, trade between countries reflects not just geographical distance, but
transport costs, common language, policy and historical factors such as colonial
links as well as the multilateral barriers (Anderson and van Wincoop, 2003).
For large T , it is straightforward to test for cross-section dependence using
the squared correlations between the residuals (e.g. Pesaran, 2015). See also
Pesaran, Ullah and Yamagata (2007) for the survey of the various tests.

2 Overview on Cross-section Dependence (CSD)

We consider a generic panel data model advanced by Serlenga an Shin (2007):

yit = β′xit + λ′zi + π′ist + εit, i = 1, ..., N, t = 1, ..., T, (1)

where xit = (x1,it, ..., xk,it)
′ is a k × 1 vector of variables that vary across indi-

viduals and over time periods, st = (s1t, ..., sst)
′ is an s × 1 vector of observed

time-specific factors, zi = (z1i, ..., zgi)
′ is a g×1 vector of individual-specific vari-

ables, β = (β1, ..., βk)
′, λ = (λ1, ..., λg)

′ and πi = (π1i, ..., πsi)
′ are conformably

defined column vectors of parameters.
To address the heterogeneous individual effects and common time effects, we

consider the following one-way and two-way error components specifications:

εit = αi + uit (2)

εit = αi + θt + uit (3)

However, in the presence of cross-section correlations among εit’s, the conven-
tional panel data estimators such as FE, tend to become biased. To control for
CSD, the most popular approach is to add heterogeneous factors:

εit = αi + γ′if t + uit, (4)

where αi is an unobserved individual effect (heterogeneity), f t is the c × 1
vector of unobserved common factors with heterogeneous parameter vector,
γi = (γ1i, ..., γci)

′, and uit is a zero mean idiosyncratic uncorrelated random
disturbance. Notice that both αi and f t might be correlated with explanatory
variables xit and zi.
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The distinguishing feature of this model is that it allows for observed and
unobserved time effects both of which are cross-sectionally correlated. Factors
are expected to provide good proxy for any remaining complex time-varying
patterns associated with multilateral resistance and globalisation trends, e.g.
Mastromarco et al. (2016). Notice that the cross-section dependence in (1) is
explicitly allowed through heterogeneous loadings, γi, see Pesaran (2006) and
Bai (2009).

2.1 Representations of CSD

There are various sources of CSD (neighborhood or network effects, the influence
of a dominant unit or the influence of common unobserved factors). Factor
models propose that the errors reflect a vector of unobserved common factors:

yit = δ′izt + β′ixit + εit with εit = γ′if t + uit (5)

where yit is a scalar dependent variable, zt is a kz×1 vector of variables that do
not differ over units, e.g. intercept and trend, xit is a kx × 1 vector of observed
regressors which differ over units, f t is an r × 1 vector of unobserved factors,
which may influence each unit differently and which may be correlated with the
xit, and uit is an unobserved disturbance with E (uit) = 0, E

(
u2
it

)
= σ2

i , which
is independently distributed across i and (possibly) t. The covariance of the
errors, εit = γ′if t + uit is determined by the factor loadings γi. Notice that if
f t is correlated with xit, as is likely in many economic applications, then not
allowing for CSD by omitting f t causes the estimates of βi to be biased.
Spatial models allow the N × 1 vector of errors, εt = (ε1t, ..., εNt)

′ to follow:

εt = Wut

where ut = (u1t, ..., uNt)
′ is cross-sectionally independent and W is a known

(possibly time-varying) matrix, e.g. reflecting whether the units share a common
border. This can be used to represent spatial autoregressive, moving average or
error component models.
This approach assumes that the structure of cross section correlation is re-

lated to the location and distance among units on the basis of a pre-specified
weight matrix. Hence, cross section correlation is represented by means of a
spatial process, which explicitly relates each unit to its neighbors. A num-
ber of approaches for modeling spatial dependence has been suggested. The
most popular ones are the Spatial Autoregressive (SAR), the Spatial Moving
Average (SMA), and the Spatial Error Component (SEC) specifications. The
spatial panel data model is estimated using the maximum likelihood (ML) or
the generalized method of moments (GMM) techniques (Elhorst, 2011).
We consider a spatial panel data gravity (SARAR) model, which combines

a spatial lagged variable and a spatial autoregressive error term:

yit = ρy∗it + β′xit + γ′zi + α̃i + vit, i = 1, ..., N, t = 1, ..., T, (6)

vit = λv∗it + uit (7)
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where y∗it =
∑N
j 6=i wijyjt is the spatial lagged variable, and v

∗
it =

∑N
j 6=i wijvjt is

the spatial autoregressive error term, wij’s are the spatial weight with the row-
sum normalisation,

∑
i wij = 1 and wii = 0, and uit is a zero mean idiosyncratic

disturbance with constant variance. ρ is the spatial lag coeffi cient and λ the
spatial error component coeffi cient. They capture the spatial spillover effects
and measure the influence of the weighted average of neighboring observations
on cross section units. Chudik et al. (2011) show that a particular form of a
weak cross dependent process arises when pairwise correlations take non-zero
values only across finite units that do not spread widely as the sample size
rises. A similar case occurs in the spatial/netwrok processes, where the local
dependency exists only among adjacent observations.

2.2 Weak and Strong CSD

Chudik et al. (2011) show that these factor models exhibit the strong form
of cross-sectional dependence since the maximum eigenvalue of the covariance
matrix for εit tends to infinity at rate N . On the other hand spatial economet-
ric models display the weak form of cross-sectional dependence, which can be
represented by an infinite number of weak factors and no idiosyncratic error.
With weak CSD, the dependences are local and decline with N . This could

be the case with spatial correlations, where each cross-section unit is correlated
with near neighbors but not others; with strong CSD the dependences influence
all units. The distinction can be expressed in various ways.
Suppose the elements of yt are stationary, e.g. growth rates, and the weighted

average of the elements ȳt =
∑N
i=1 yit/N, where the weights are ‘granular’, go

to zero as N → ∞. Then, with weak CSD the variance of ȳt goes to zero
as N → ∞. If there is strong CSD, it does not, for instance there may be a
global cycle in ȳt. If there is weak CSD, the influence of the factors,

∑N
i=1 γ

2
i

is bounded as N → ∞, while if there is strong dependence, it goes to infinity
with N . If there is weak dependence, all the eigenvalues of the covariance
matrix of the errors are bounded as N → ∞. If there is strong dependence,
the largest eigenvalue goes to infinity with N . Bailey, Kapetanios and Pesaran
(2016) characterise the strength of the dependence in terms of the exponent of
CSD, defined as α = ln(n)/ ln(N), where n is the number of units with non zero
factor loadings. In the case of a strong factor, α = 1 while α < 1/2 indicates the
weak factor. The values of 1

2 ≤ α ≤
3
4 represent a moderate degree of CSD.

1

CSD is central to all the issues discussed. For instance, there is a growing
literature on testing for structural change in panels. However, the apparent
structural change may result from having left out an unobserved global variable,
f t. If f t is omitted and the correlation between f t and xit changes, this will
change the estimate of βi giving the appearance of structural change. Similarly,

1Vega and Elhorst (2016) argue "the terminology of weak and strong cross-sectional depen-
dence is to some extent misleading, because the terms strong and weak suggest that the former
is more important than the latter, while we find that their contributions are almost equally
as important. We therefore propose the descriptions common factors and spatial dependence
to acknowledge the importance of both properties.
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an omitted factor may give the impression of non-linearity.2 Since unobserved
factors play a major role in the treatment of CSD, we begin by discussing
the estimation of such factors. The implications for estimation are different
depending on whether f t are merely regarded as nuisance parameters that we
wish to control for in order to get better estimates of β or whether they are
the parameters of interest: one wishes to estimate f t as variables of economic
interest in their own right.

3 Factor Models

The meaning of the ‘factor’has a variety of different meanings in different areas.
Here some observed variables xit, i = 1, 2, ..., N are determined by unobserved
factors, fjt, j = 1, ..., r:

xit = λi0 +

r∑
j=1

λijfjt + eit (8)

where λij are called factor loadings, and the eit are idiosyncratic effects. Usually
r is much smaller than N so the variation in a large number of observed variables
can be reduced to a few unobserved factors

3.1 Uses

Factor models are used in various applications:

• In economics the oldest is the decomposition of time series into unobserved
factors labelled trend, cycle, seasonals etc.

• The observed series may be generated by some underlying unobserved fac-
tors and the objective is to measure them. This was developed extensively
in psychometrics, where the xit are answers to a variety of questions by a
sample of people. The underlying factors are aspects of personality, e.g.
neuroticism, openness, conscientiousness, agreeableness and extroversion.
It has also been used in economics for unobserved variables like: develop-
ment, natural rates, permanent components, core inflation, etc.

• Factor models can be used to measure the dimension of the independent
variation in a set of data, e.g. how many factors are needed to account
for most of the variation in xit. For I(1) series these dimensions may be
the stochastic trends.

• Factor models can be used to reduce the dimensionality of a set of possible
explanatory variables in regression or forecasting models, i.e. replace the
large number of xit by a few fjt which contain most of the information in
the xit. This may reduce omitted variable problems.

2Cerrato, de Peretti and Sarantis (2007) extend the Kapetanios, Shin and Snell (2003) test
for a unit root against a non-linear ESTAR alternative to allow for cross-section dependence.
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• Factor models are used to model residual cross-section depen-
dence in panel data models.

• Factor models have been used to choose instruments for IV or GMM esti-
mators when there is a large number of potential instruments.

One can distinguish two different types of problem. The Pesaran approach
to the role of unobserved factors in panels is primarily motivated by the need to
allow for "error" cross-sectional dependence. The aim is to estimate the (mean)
coeffi cient of xit allowing for error cross-sectional dependence and/or missing
unobserved effects.
Alternatively, it might be relevant to view the unobserved factor as "miss-

ing" (omitted) common effects. An example is "technology" in the aggregate
production function. In modelling error CSD the error of each cross section unit
should have mean zero (otherwise the model suffers from omitted variables) and
could be serially correlated. The errors could also be I(1). But if the aim is to
test for cointegration between observables, yit and xit (which could also contain
observed common effects such as oil prices), and if we maintain the possibility
that the errors of the relationship between yit and xit can be I(1), then it is
clear that yit and xit cannot cointegrate.
One could hypothesize that yit and xit and ft are cointegrated where ft is an

"unobserved" factor. Even if such a possibility existed, it may not be relevant if
the economic relation of interest is between yit and xit; e.g. in the case of PPP
or UIP.
In the case where the common factor represents a missing variable, such as

the technological variable in the production function, our main interest is in
fact that yit (log output per man hour), kit (log capital per man hour) and ft
(global technology) are cointegrated. The role of ft is not to model error CSD,
but is an integral part of the model, which happens to be unobserved. One
could try to obtain proxies for ft - some assume that ft is a linear trend with
a stationary component while others assume that it is a latent variable and use
HP-filter to measure it. In the context of growth convergence one might
estimate ft by the cross sectional average of yit over i. But, there will
be some degree of arbitrariness. For example, how can we establish that ft is
I(1) or trend stationary? Not knowing whether ft is I(1) or trend stationary,
how can we test that yit, kit and ft are cointegrated.3

3.2 Estimation Methods

There are various ways to estimate factors:

• Univariate (N = 1) filters (e.g. the Hodrick-Prescott filter for trends).

• Multivariate (N > 1) filters such as the Kalman filter used to estimate
unobserved-component models, see Canova (2007).

3 In the case of testing for panel unit roots, the cross-sectionally augmented CADF test,
CADF is a joint test of a unit root and a stationary ft.
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• Multivariate judgemental approaches, e.g. NBER cycle dating based on
many series.

• Using a priori weighted averages of the variables.

• Deriving estimates from a model, e.g. Beveridge Nelson decompositions
which treat the unobserved variable as the long-horizon forecast.

• Principal component based methods.

The relative attractiveness of these methods depends on the number of ob-
served series, N , and the number of unobserved factors, r. The method empha-
sised is Principal Components (PC). This can be appropriate for large N and
small r. Unobserved component models for small N tend to put more para-
metric structure on the factors whilst PCs do not. The size of N and T are
crucial. There are some methods that work for small N , other methods that
work for large N , but no obvious methods for the medium sized N that we have
in practice.
Factor models have a long history. In the early days, it was not clear whether

the errors in variables model (observed data generated by unobserved factors)
or the errors in equation model was appropriate and both models were used.
From the late 1940s the errors in equations model came to dominate. The basic
approach to measuring unobserved variables by the PCs of a data matrix was
developed by Hotelling (1933). Stone (1947) used this method to show that most
of the variation in a large number of financial accounts series could be accounted
for by three factors, which could be interpreted as trend, cycle and rate of change
of the cycle. Factor analysis was extensively developed in psychometrics and
played relatively little role in the development of econometrics, which focussed
on the errors in equations model. There are some exceptions, such as factor
interpretations of Friedman’s permanent income.
However, there has been an explosion of papers on factor models. The

original statistical theory was developed for cases where one dimension, say N
was fixed and the other say T went to infinity. It is only recently that the theory
for large panels, where both dimensions can go to infinity, has been developed,
e.g. Bai (2003).

3.3 Calculating Principal Components

Static models Suppose that we have a T ×N data matrix, X with element
xit for units i = 1, ..., N and periods t = 1, ..., T . The direction in which you take
the factors could also be reversed, i.e. treat X as an N ×T matrix. We assume
that the T × N data matrix X is generated by a smaller set of r unobserved
factors stacked in the T × r matrix F . In matrix notation,

X = FΛ +E (9)

where Λ is an r × N matrix of factor loadings and E is a T × N matrix of
idiosyncratic components. Units can differ in the weight that is given to each
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of the factors. Strictly factor analysis involves making some distributional as-
sumptions about eit and applying ML to estimate factor loadings, but we use a
different approach and estimate the factors as the PCs of the data matrix.
The PCs of X are the linear combinations of X that have maximal variance

and are orthogonal to (uncorrelated with) each other. Often theX matrix is first
standardised (subtracting the mean and dividing by the standard deviation), to
remove the effect of units of measurement on the variance. X ′X is then the
correlation matrix. To obtain the first PC we construct a T×1 vector f1 = Xa1

such that f ′1f1 = a′1 X
′Xa1 is maximised. We need some normalisation, so

use a′1a1 = 1.4 The problem is to choose a1 to maximise the variance of f1

subject to this constraint. The Langrangian is

L = a′1X
′Xa1 − φ1 (a′1a1 − 1)

∂L
∂a1

= 2X ′Xa1 − 2φ1a1 = 0

X ′Xa1 = φ1a1

so a1 is the first eigenvector of X
′X, (the one corresponding to the largest

eigenvalue, φ1) or the first eigenvector of the correlation matrix ofX if the data
are standardised. This gives us the weights we need for the first PC.
The second PC, f2 = Xa2 is the linear combination which has the second

largest variance, subject to being uncorrelated with a1 i.e. a′2a1 = 0; so a2 is
the second eigenvector. If X is of full rank, there are N distinct eigenvalues
and associated eigenvectors and the number of PCs is N .
We can stack the results:

X ′XA = ΦA

where A is the matrix of eigenvectors and Φ = diag (φ1, ..., φN ) is the diagonal
matrix of eigenvalues. We can also write this

A′X ′XA = Φ or F ′F = Φ

The eigenvalues can be used to calculate the proportion of the variation in X
that each principal component explains: φi/

∑N
i=1 φi. If the data are standard-

ised, then
∑N
i=1 φi = N is the total variance. Forming the PCs is a mathematical

operation replacing the T ×N matrix X by the T ×N matrix F .
We define the PCs as F = XA, but we can also write X = FA′ defining

X in terms of the PCs.5 Usually, we want to reduce the number of PCs. To
reduce the dimensionality, we can write:

X = F 1A
′
1 + F 2A

′
2 (10)

4We need to impose normalizations on the factors and factor loadings to pin down the
rotational indeterminacy. This is due to the fact that FΛ = FQQ−1Λ for any r× r full-rank
matrix Q. Because an arbitrary r × r matrix has r2 degrees of freedom, we need to impose
at least r2 restrictions (order condition) to remove the indeterminacy.

5Note that AA′ = IN and A′ = A−1.
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where the T×r matrix F 1 contains the r < N largest PCs, the r×N matrix A′1
contains the first r eigenvectors corresponding to the largest eigenvalues. We
treat F 1 = (f1t, ..., frt) as the common factors and F 2A

′
2 as the idiosyncratic

factors corresponding to the eit in (9). While it is an abuse of this notation, we
usually write F 1 as F and F 2A

′
2 as E.

Dynamic models We write the factor model (9) in time series form:

xt = Λf t + et (11)

where xt is an N×1 vector, Λ an N×r matrix of loadings, f t an r×1 vector of
factors and et an N×1 vector of errors. In using PCs to calculate the factors we
have ignored all the information in the lagged values of xt. It may be that some
lagged elements of xit−j contain information that help predict xit; e.g. factors
influence the variables at different times. Standard PCs, which just extract the
information from the covariance matrix, are often called static factor models,
because they ignore the dynamic information and the idiosyncratic component,
et, may be serially correlated. There are also dynamic factor models which
extract the PCs of the long-run covariance matrix or spectral density matrix,
see Forni et al. (2000, 2003, 2005). The spectral density matrix is estimated
using some weight function, like the Bartlett or Parzen windows, with some
truncation lag.
The dynamic factor model gives different factors, say

xt = Λ∗f∗t + e∗t (12)

where f∗t is an r
∗ × 1 vector. In practice, we can approximate the dynamic

factors by using lagged values of the static factors,

xt = Λ (L)f t + est (13)

where Λ (L) is a pth order lag polynomial. This may be less effi cient in the sense
that r < rp: one can get the same degree of fit with fewer parameters using
the dynamic factors than using current and lagged static factors. Determining
whether the dynamics in xt comes from an autoregression in xt, dynamics in
f t or serial correlation in et raises quite diffi cult issues of identification.
Dynamic PCs are two sided filters, taking account of future as well as past

information, thus are less suitable for forecasting purposes. This problem does
not arise with using current and lagged static factors. Forni et al. (2003)
discuss one sided dynamic PCs which can be used for forecasting. Forecasting
also includes ‘nowcasting’, where one has a series, say quarterly GDP, produced
with a lag but various monthly series produced very quickly, such as industrial
production and retail sales. PCs of the rapidly produced series are then used to
provide a ‘flash’estimate of current GDP.

3.4 Issues in Using PCs

How to choose r? How many factors to use depends on statistical criteria,
the purpose of the exercise and the context. Traditional rules of thumb for
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determining r included choosing the PCs that correspond to eigenvalues that
are above average value or equivalently greater than unity for standardised data
or graphing the eigenvalues and seeing where they drop off sharply. There are
also various tests and information criteria. There has been work on information
criteria when both N and T are large.
Kapetanios (2004) suggests to use the largest eigenvalue to choose the num-

ber of factors. Onatski (2009) suggests another function of the largest eigen-
values of the spectral density matrix at a specified frequency. The statistical
properties of the various tests, information criteria and other methods of choos-
ing r for economic data is still a matter of research.
We focus on two types of methods; one based on information criteria and the

other based on the distribution of eigenvalues. Bai and Ng (2002) proposed a
model selection procedure which can consistently estimate the number of factors

when N and T converge to ∞. Let λ̂
k

i and F̂
k
t be the PC estimators assuming

that the number of factors is k. We may treat the sum of squared residuals
(divided by NT ) as a function of k:

V (k) =
1

NT

N∑
i=1

T∑
t=1

(
xit − λ̂

k′
i F̂

k
t

)2

Define the following loss function:

IC(k) = ln(V (k)) + kg (N,T )

where the penalty function g (N,T ) satisfies two conditions: (i) g (N,T ) → 0,
and (ii) min

{
N1/2, T /12

}
g (N,T )→∞, as N,T →∞. Define the estimator for

the number of factors as

k̂IC = arg min
0<k<kmax

IC(k);

where kmax is the upper bound. Then consistency can be established under
standard conditions:

k̂IC → r as N, T →∞;

Bai and Ng (2002) propose the following information criteria:

IC1(k) = ln(V (k)) + k

(
N + T

NT

)
ln

(
NT

N + T

)

IC2(k) = ln(V (k)) + k

(
N + T

NT

)
ln
(
C2
NT

)
IC3(k) = ln(V (k)) + k

(
ln
(
C2
NT

)
C2
NT

)
YC: def. C2

NT ??
Monte Carlo simulations show that all criteria perform well when both N

and T are large. For the cases where either N or T is small, and if errors are

10



uncorrelated across units and time, the preferred criteria tend to be IC1 and
IC2. Still, they may not work well when N or T are small, leading to too many
factors being estimated, e.g. always choosing the maximum number allowed.
Some desirable features of the above method are worth mentioning. Firstly,

the consistency is established without any restriction between N and T . Sec-
ondly, the results hold under heteroskedasticity in both the time and the cross-
section dimensions, as well as under weak serial and cross-section correlation.
Kapetanios (2004) suggests to use the largest eigenvalue to choose the num-

ber of factors. Based on random matrix theory, Onatski (2009) established a
test of k0 factors against the alternative that the number of factors is between
k0 and k1. The test statistic is given by

R = max
k0<k≤k1

γk − γk+1

γk+1 − γk+2

where γk is the k-th largest eigenvalue of the sample spectral density of data
at a given frequency. For macroeconomic data, the frequency could be chosen
at the business cycle frequency. The basic idea is that under the null of k0

factors, the first leading k0 eigenvalues will be unbounded, while the remaining
eigenvalues are all bounded. As a result, R will be bounded under the null, while
explode under the alternative, making R asymptotically pivotal. The limiting
distribution of R is derived under the assumption that T grows suffi ciently faster
than N , which turns out to be a function of the Tracy-Widom distribution. Ahn
and Horenstein (2013) proposed two estimators, the Eigenvalue Ratio (ER)
estimator and the Growth Ratio (GR) estimator, based on simple calculation
of eigenvalues. The ER estimator is defined as maximizing the ratio of two
adjacent eigenvalues in decreasing order. The intuition is similar to Onatski
(2009, 2010).
The statistical properties of the various tests, information criteria and other

methods of choosing r for economic data is still a matter of research. The
choice of r will depend not just on statistical criteria but also the purpose of
the exercise and the context.
YC: update and how to extend to the MD case?

Determining the number of dynamic factors The dynamic factor model
considers the case in which lags of factors also directly affect xit. The methods
for static factor models can be extended to estimate the number of dynamic
factors. Consider

xit = λ′i0ft + λ′i1ft−1 + ...+ λ′isft−s + eit = λi(L)′ft + eit (14)

where ft is q× 1 and λi(L) = λi0 + λi1L+ ...+ λisL
s. While Forni et al. (2000,

2004, 2005) consider the case with s→∞, we focus on the case with a fixed s.
Model (14) can be represented as a static factor model with r = q(s+ 1) static
factors:

xit = λ′iFt + eit
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λi =


λi0
λi1
...
λis

 ; Ft =


ft
ft−1

...
ft−s


We refer to ft as the dynamic factors and Ft as the static factors. Regarding
the dynamic process for ft, we may use a finite-order VAR:

Φ(L)ft = εt

where Φ(L) = Iq − Φ1L − ... − ΦhL
h. Then, we may form the V AR(k) repre-

sentation of the static factor, Ft, where k = max {h, s+ 1},

ΦF (L)Ft = ut with ut = Rεt

where ΦF (L) = Iq(s+1) − ΦF1L − ... − ΦFkL
k, and the q(s + 1) × q matrix R

are given by R = [Iq, 0, ..., 0]′.
The spectrum of the static factors has rank q instead of r = q(s+ 1). Given

that
ΦF (L)Ft = Rεt;

the spectrum of F at frequency ω is

SF (ω) = ΦF
(
e−iω

)−1
RSε (ω)R′ΦF

(
eiω
)−1

;

whose rank is q if Sε (ω) has rank q for |ω| ≤ π. This implies SF (ω) has only
q nonzero eigenvalues. Hallin and Liska (2007) estimate the rank of this matrix
to determine the number of dynamic factors. Onatski (2009) also considers
estimating q using the sample estimates of SF (ω).

Alternatively, we may first estimate a static factor model using Bai and Ng
(2002) to obtain F̂t. Next, we may estimate a V AR(p) for F̂t to obtain the
residuals ût. Let Σ̂u = T−1

∑
ûtû
′
t. Note that the theoretical moments E(utu

′
t)

has rank q. We may estimate q using the information about the rank of Σ̂u.
Using a different approach, Stock & Watson (2005) considered a richer dy-

namics in error terms, and transformed the model such that the residual of the
transformed model has a static factor representation with q factors. Bai and Ng
(2002)’s IC can then be directly applied to estimate q.
Amengual and Watson (2007) derived the corresponding econometric theory

for estimating q. They started from the static factor model,

Xt = ΛFt + et,

and considered a V AR(p) for Ft,

Ft =

p∑
i=1

ΦiFt−i + εt; εt = Gηt;
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where G is r×q with full column rank and ηt is a sequence of shocks with mean
0 and variance Iq. The shock ηt is the dynamic factor shock, whose dimension
is the number of dynamic factors. Let

Yt = Xt −
p∑
i=1

ΛΦiFt−i

and Γ = ΛG, then Yt has a static factor representation with q factors,

Yt = Γηt + et :

If Yt is observed, q can be directly estimated using Bai and Ng (2002)’s IC. In
practice, Yt needs to be estimated. Let Ŷt = Xt −

∑p
i=1 Λ̂Φ̂iF̂t−i where Λ̂ and

F̂t are PC estimators from Xt, and Φ̂i is obtained by V AR(p) regression of F̂t.

How to choose N? One may have very large amounts of potential data
available (e.g. thousands of time series on different economic, social, and demo-
graphic variables for different countries) and an issue is how many you should
use in constructing the PCs. Information seems better so one should include
as many as possible, but this may not be the case. Adding variables that are
weakly dependent on the common factors will add very little information.
To calculate the PCs the weights on the series have to be estimated and

adding more series adds more parameters to be estimated. This increases the
noise due to parameter estimation error. If the series have little information on
the factors of interest, they just add noise, worsening the estimation problem.
The series may be determined by different factors, increasing the number of
factors needed to explain the variance. They may also have outliers or idiosyn-
cratic jumps and this will introduce a lot of variance which may be picked up by
the estimated factors. Many of the disputes in the literature about the relevant
number of factors reflect the range of series used to construct the PCs.
If the series are mainly different sort of price and output measures, two

factors may be adequate; but if one adds financial series such as stock prices
and interest rates, or foreign variables, more factors may be needed. One may
be able to look at the factor loading matrix and see whether it has a block
structure, certain factors loading on certain sets of variables. If this is the case
one may want to split the data using different dataset to estimate different
factors. But it may be diffi cult to determine the structure of the factor loading
matrix.

N may be larger than the number of variables, if transformations of the
variables (e.g. logarithms, powers, first differences, etc.) are also included.
This trade-off between the size of the information set and the errors introduced
by estimation may be a particular issue in forecasting, where parsimony tends
to produce better forecasting models. Then using more data may not improve
forecasts, e.g. Mitchell et al. (2005) and Elliott and Timmerman (2008). Notice
that in forecasting we would need to update our estimates of Ft, and perhaps r
the number of factors, as our sample size, T changes.
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How to Identify and interpret factors? To interpret the factors requires
just identifying restrictions. Suppose that we have obtained estimates:

X = FΛ +E

For any non-singular r×r matrix, Q, the new factors and loadings (FQ)(Q−1Λ)
are observationally equivalent to FΛ. The new loadings are Λ∗ = Q−1Λ and
factors are F ∗ = FQ. The r2 just identifying restrictions used to calculate PCs
are the unit length and orthogonality normalisations which come from treating
it as an eigenvalue problem. Thus, the factors are only defined up to a non-
singular transformation. A major problem in applications is to interpret the
estimated PCs. Often in time-series the first PC has roughly equal weights
and corresponds to the mean of the series. Looking at the factor loadings
and the graphs of the PCs may help interpret them. The choice of Q, just
identifying restrictions, called ‘rotations’in psychometrics, is an important part
of traditional factor analysis. These are needed to provide some interpretation
of the factors.6

The same identification issue arises in simple regression. For

y = Xβ + u

is observationally equivalent to the reparameterisation:

y =
(
XQ−1

)
(Qβ) + u = Zδ + u

For instance, Z could be the PCs, which have the advantage that they are
orthogonal and so the estimates of the factor coeffi cients are invariant to which
other factors are included. But there could be other Q matrices. To interpret
the regression coeffi cients we need to choose a parameterisation, k2 restrictions
that specify Q. We tend to take the parameterisation for granted in economics,
so this is not usually called an identification problem.
For some purposes, e.g. forecasting, one may not need to identify the factors,

but for other purposes their interpretation is crucial. It is quite often the case
that one estimates the PCs and has no idea what they mean or measure.

Estimated or imposed weights? Factors are estimated as linear combina-
tions of observed data series. Above it has been assumed that the weights in
the linear combination should be estimated to optimise some criterion function,
e.g. to maximise variance explained in the case of PCs. However, there are
possible a priori weights, imposing the weights rather than estimating them.
Examples are equal weights as in the mean or trade weights as in effective
exchange rates. There is a bias-variance trade-off. The imposed weights are
almost certainly biased, but have zero variance. The estimated weights may be
unbiased but may have large variance because of estimation error. The imposed

6Rotations in psychometrics are as controversial as just-identifying restrictions in eco-
nomics, so while many psychologists agree that there are five dimensions to personality, r = 5;
how they are described differs widely.
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weights may be better than the estimated weights in the sense of having smaller
mean square error (bias squared plus variance). Forecast evaluation of regres-
sion models indicates that simple models with imposed coeffi cients tend to do
very well. Measures constructed with imposed weights are usually also much
easier to interpret.
The most obvious candidate for imposed weights is to use equal weights, a

simple average (perhaps after having standardised the variable to have mean
zero and variance one). In many cases the first PC seems to have roughly equal
weights and thus behave like an average or sum.
Alternatively, economic theory may suggest suitable weights. For instance,

effective exchange rates for country i (weighted averages of exchange rates with
all other countries) use trade weights: exports plus imports of i with j as a share
of total exports plus imports of country i). PCs might give a lot of weight to a
set of countries which have very volatile exchange rates even though country i
does not trade with them. Measures of core inflation give zero weights to the
inflation rates of certain volatile components of total expenditure while a PC
might give a high weight to those volatile components because they account for
a lot of the variance. Monte Carlo evaluation of estimators that allow for CSD
indicate the methods that use imposed weights, like the CCE estimator, often
do much better than estimators that rely on estimating the number of PCs and
their weights. See the comparison between the CCE estimator by Pesaran and
the IPC estimator by Bai see also the studies by Westlund and coauthors.

Explanation using PCs Suppose the model of interest is

y = Xβ + u (15)

where β is an N×1 vector of parameters and we wish to reduce the dimension of
X. This could be because there are a very large number of candidate variables
or because there is multicollinearity. Replacing X by all the PCs, F = XA is
just a reparameterisation:

y = XAA′β + u = Fδ + u (16)

However, we could reduce the number of PCs by writing it:

y = F 1δ1 + F 2δ2 + u (17)

where F 1 are the r < N PCs (corresponding to the r largest eigenvalues).
Setting δ2 = A′2β = 0 to give

y = F 1δ1 + v (18)

In this case the original coeffi cients could be recovered as β = A1δ1. The
hypothesis, δ2 = 0 is testable (as long as N < T ). This has been suggested as
a way of dealing with multicollinearity, or choosing a set of instruments.
There are some problems. First, it is quite possible that a PC which has

a small eigenvalue and explains a very small part of the total variation of X
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may explain a large part of the variation of y. The PCs are chosen on the
basis of their ability to explain X not y, but the regression is designed to
explain y. Secondly, unless F 1 can be given an interpretation, e.g. as an
unobserved variable, it is not clear whether the hypothesis, δ2 = A′2β = 0
has prior plausibility or what the interpretation of the estimated regression
is. Thirdly, estimation error is being introduced by using F 1 and these are
generated regressors with implications for the estimation of the standard errors
of δ1. As a result, until recently with the Factor augmented VARS and ECMs
discussed below, economists have tended not to use PCs as explanatory variables
in regressions. Instead multicollinearity tended to be dealt with through the
use of theoretical information, either explicitly through Bayesian estimators
or implicitly by a priori weights e.g. through the construction of aggregates.
Notice that we could include certain elements of X directly and have others
summarised in factors.

3.5 Factor-Augmented Regressions

One of the popular applications of large factor model is the factor-augmented
regressions. Bai and Ng (2006) develop the econometric theory for such factor-
augmented regressions. Consider the following forecasting model for yt:

yt+h = α′Ft + β′Wt + εt+h

whereWt is the vector of a small number of observables including lags of yt, and
Ft is unobservable. Suppose there is a large number of series xit, i = 1, ..., N ,
t = 1, ..., T , which has a large factor representation as

xit = λ′iFt + eit :

When yt is a scalar, these become the diffusion index forecasting model of Stock
and Watson (2002b). Clearly, each xit is a noisy predictor for yt+h. Because
Ft is latent, the conventional mean-squared optimal prediction of yt+h is not
feasible. Alternatively, consider the method of PCs to estimate F̂t, which is a
consistent estimator for H ′Ft for some rotation matrix H. Then, regress yt+h on
F̂t andWt to obtain α̂ and β̂. The feasible prediction for ŷT+h|T = E(yT+h|ΩT ),
where ΩT = [FT ,WT , FT−1,WT−1, ...] is given by

ŷT+h|T = α̂′F̂t + β̂
′
Wt

Let δ =
(
α′H−1, β′

)′
and εT+h|T = yT+h− yT+h|T , Bai and Ng (2006) show

that when N is large relative to T (i.e.,
√
T/N → 0), δ̂ will be

√
T -consistent

and asymptotically normal. ŷT+h|T and ε̂T+h|T are min
{
N1/2, T 1/2

}
-consistent

and asymptotically normal. Inference needs to take into account the estimated
factors, except for the special case T/N → 0. In particular, under standard
assumptions for large approximate factor model, when

√
T/N → 0, we have

δ̂ − δ →d (0,Σδ)
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Let zt = [F ′t ,W
′
t ]
′, ẑt = [F̂ ′t ,W

′
t ]
′, and ε̂t+h = yt+h−ŷt+h|t, a heteroskedasticity-

consistent estimator for Σδ is given by

Σδ =

(
1

T

T−h∑
t=1

ẑtẑ
′
t

)−1(
1

T

T−h∑
t=1

ε̂2
t+hẑtẑ

′
t

)(
1

T

T−h∑
t=1

ẑtẑ
′
t

)−1

If in addition, we assume
√
N/T → 0, then

ŷT+h|T − yT+h|T√
var

(
ŷT+h|T

) →d N (0, 1)

where
var

(
ŷT+h|T

)
=

1

N
ẑ′TAvar

(
δ̂
)
ẑT +

1

N
α̂′Avar

(
F̂T

)
α̂

A notable feature of the limiting distribution of the forecast is that the overall
convergence rate is given by min

{
N1/2, T 1/2

}
. Given that

ε̂T+h = ŷT+h|T − yT+h = ŷT+h|T − yT+h|T + εT+h

if we further assume that εt is normal with variance σ2
ε, then the forecasting

error also becomes approximately normal

ε̂T+h ∼ N
(
0, σ2

ε + var
(
ŷT+h|T

))
so that confidence intervals can be constructed for the forecasts.

3.6 Factor Augmented VAR (FAVAR)

The analysis of monetary policy often involves estimating a small VAR in some
focus variables, e.g. output, inflation and interest rates. Then, the VAR is used
to examine the effect of a monetary shock to interest rates on the time paths
of the variables (impulse response functions). To identify the monetary shock
involves making some short-run just identifying assumptions, e.g. a Choleski
decomposition imposes a recursive causal ordering, in which some variables (e.g.
output and inflation) are assumed to respond slowly, and others (e.g. interest
rates) to respond fast. VARs plus identifying assumptions are often called struc-
tural VARs. Generalised Impulse Response Functions do not require any just
identifying assumptions but cannot be given a structural interpretation.
Small VARs can give implausible impulse response functions, e.g. the "price

puzzle", that a contractionary monetary shock was followed by a price increase
rather than a price decrease as economic theory would predict. This was inter-
preted as reflecting misspecification errors, the exclusion of relevant conditioning
information. One response was to add variables and use larger VARs, but this
route rapidly runs out of degrees of freedom, since Central Bankers monitor
hundreds of variables. The results are also sensitive to the choice of variables.
A central question of using VAR is how to identify structural shocks, which

in turn depends on what variables to include in the VAR system. A small VAR
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cannot fully capture the structural shocks. In the meantime, including more
variables in the VAR system could be problematic due to either the degree of
freedom problem or the variable selection problem. We now focus on another
popular response, the factor-augmented vector autoregressions (FAVAR), orig-
inally proposed by Bernanke et al. (2005). The FAVAR assumes that a large
number of economic variables are driven by a small VAR, which can include
both latent and observed variables. The dimension of structural shocks can be
estimated instead of being assumed to be known and fixed.
FAVAR is used to measure US monetary policy in Bernanke Boivin and

Eliasz (2005, BBE); UK monetary policy in Lagana and Mountford (2005,
LM); US and Eurozone monetary policy in Favero, Marcellini and Neglia (2005,
FMN). The technical issues are discussed by Stock and Watson (2005, SW).
Consider an M × 1 vector of observed focus variables Y t, a K × 1 vector of

unobserved factors F t with a VAR structure:(
F t
Y t

)
= A (L)

(
F t−1

Y t−1

)
+ vt (19)

whereA (L) is a polynomial lag operator. The unobserved factors F t are related
to an N × 1 vector Xt, which contains a large number (BBE use N = 120; LM
N = 105) of potentially relevant observed variables by

Xt = ΛF t + et

where F are estimated as the PCs of Xt, which may include Y t. There is an
identification problem, since

Xt = ΛF t + et = ΛQQ−1F t + et = Λ∗F ∗t + et.

It is common to use an arbitrary statistical assumption to identify the loadings
as eigenvectors, but other assumptions are possible. The standard practice is to
difference the observable data so that they are stationary, I(0). The factors are
therefore stationary. Differencing loses levels information about the level rela-
tionships, but if one does not difference one has to take account of cointegration
etc.
The argument is that (a) a small number of factors can account for a large

proportion of the variance of Xt and thus reduce omitted variable bias in the
VAR; (b) the factor structure for Xt allows one to calculate impulse response
functions for all the elements of Xt in response to a (structural) shock in Y t

transmitted through F t; (c) the factors may be better measures of underlying
theoretical variables such as economic activity than the observed proxies such as
GDP or industrial production; (d) FAVARs may forecast better than standard
VARs; (e) factor models can approximate infinite dimensional VARs, see Chudik
and Pesaran (2011).
BBE conclude: "the results provide some support for the view that the "price

puzzle" results from the exclusion of conditioning information. The conditioning
information also leads to reasonable responses of monetary aggregates".
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The simplest approach (the two step method) is to (i) estimate K PCs from
theX, (ii) estimate the VAR treating the PCs as measures of F t variables along
with the M observed focus variables Y t. The standard errors produced by the
two-step estimates are subject to the generated regressor problem and thus can
potentially lead to misleading inference. In large samples F t can be treated as
known, thus there is no generated regressor problem, but it is not clear how
good this approximation is in practice.
ChoosingM andK, the number of focus variables and the number of factors,

raises diffi cult issues. SW for the US and LM for the UK argue for 7 factors, BBE
argue for smaller numbers e.g. M = 3 and K = 1; or M = 1 and K = 3. They
use monthly data with either output, inflation and the interest rate as focus
variables and one factor or the interest rate as the only observed focus variable
and 3 unobserved factors, their preferred specification. If a large number of
factors are needed, it reduces the attraction of the procedure and may make
interpretation of the factors more diffi cult. The procedure is sensitive to the
choice of Xt. Just making the set of variables large does not solve the problem,
because there may be factors that are very important in explaining Xt, but do
not help in explaining Y t and vice versa. BBE motivate the exercise with the
standard 3 equation macro model with the unobserved factors being the natural
level of output and supply shocks. However, they do not use this interpretation
in the empirical work, just note the need to interpret the estimated factors
more explicitly. Boivin and Giannoni (2006) use the theory putting the factor
model in the context of a DSGE with imperfect measurement of the theoretical
variables.
Bai et al. (2015) show that, under suitable identification conditions, inferen-

tial theory can be developed for such a two-step estimator, which differs from a
standard large factor model. The second method involves a one-step likelihood
approach, implemented by Gibbs sampling, which leads to joint estimation of
both the latent factors and the impulse responses. The two methods can be
complement of each other. A useful feature of the FAVAR is that the impulse
response function of all variables to the fundamental shocks can be readily cal-
culated.

4 The Factor-based Models of Cross Sectionally
Dependent Panels

CSD has attracted considerable attention and a large number of estimators have
been suggested. Currently, the market leader, according to Monte Carlo studies,
appears to be CCE estimators. It is common to transform the data to make
it stationary before calculating PCs by differencing. If one tries to measure a
stationary unobservable, e.g. a global trade cycle, this is clearly sensible. It is
equally not sensible if one is trying to measure a non-stationary unobservable,
e.g. a global trend. Even in the stationary case it is important that transfor-
mations beyond differencing be considered, stationary transformations of levels
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variables, such as interest rate spreads, may also contain valuable information.
We describe main techniques for dealing with factor-based CSD.

SURE Suppose that the model is heterogeneous:

yit = δ′izt + β′ixit + γ′if t + uit, i = 1, ..., N, t = 1, ..., T (20)

where yit is a scalar dependent variable, zt is a kz vector of variables that do not
differ over groups (intercept and trend), and xit is a kx × 1 vector of observed
regressors which differ over groups, f t is an r × 1 vector of unobserved factors
and uit is an unobserved disturbance with E(uit) = 0, E(u2

it) = σ2
i which is

independently distributed across i and t. Estimating

yit = δ′izt + b′ixit + vit, i = 1, ..., N, t = 1, ..., T (21)

will give inconsistent estimates of βi if f t is correlated with xit and ineffi cient
estimates even if f t is not correlated with xit. In the latter case if N is small,
the equations can be estimated by SURE, but if N is large relative to T , SURE
is not feasible, because the estimated covariance matrix cannot be inverted.
Robertson and Symons (2007) suggest using the factor structure to obtain an
invertible covariance matrix. Their estimator is quite complicated and will not
be appropriate if the factors are correlated with the regressors.

Time effects/demeaning If βi = β, and there is a single factor which in-
fluences each group in the same way, i.e. γi = γ, then including time effects, a
dummy variable for each period, i.e. the two way fixed effect estimator:

yit = θt + αi + β′ixit + uit

will estimate f ′tγ = θt. This can be implemented by using time-demeaned data,
ỹit = yit − ȳt, where ȳt = N−1

∑N
i=1 yit and similarly for x̃it. Unlike SURE

the factor does not have to be distributed independently of xit for
this to work.
It is sometimes suggested (e.g. for unit root tests) that demeaned

data be used even in the case of heterogeneous slopes. Suppose we have
heterogeneous random parameters:

yit = θt + β′ixit + uit with βi = β + ηi

Averaging over groups for each period we get:

ȳt = θt + β′x̄t + ūt +N−1
N∑
i=1

η′ixit

Noting that
β′ixit − β′x̄t = β′ix̃it + η′ix̄t
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Demeaning (ỹit = yit − ȳt) gives:

ỹit = β′ix̃it + ũit + eit with eit = η′ix̄t −N−1
N∑
i=1

η′ixit = N−1
N∑
i=1

η′ix̃it

This removes the common factor θt, but has added new terms to the error
reflecting the effect of slope heterogeneity. If ηi is independent of the regressors,
et will have expected value zero and be independent of the regressors, so one can
obtain large T consistent estimates of βi, but the variances will be larger. One
can compare the fit of the panels using the original data yit and the demeaned
data ỹit to see which effect dominates, i.e. whether the reduction in variance
from eliminating θt is greater or less than the increase in variance from adding
eit.

This model assumes that the factor has identical effects on each unit, im-
plying that they impose the same CSD across all cross-section units.
Rather than demeaning, it is usually better to include the means
directly.

4.1 The Correlated Common Effect (CCE) Estimator

If one wishes to treat factors as nuisance parameters and remove the effect of
CSD, a simple and effective procedure, for large N,T , is the CCE estimator
of Pesaran (2006). Consider the panel data model with unobserved common
factors:

yit = δ′idt + β′ixit + εit with εit = γ′if t + uit (22)

where yit is a scalar dependent variable, dt is a kd×1 vector of variables that do
not differ over units, e.g. intercept and trend, xit is a kx × 1 vector of observed
regressors which differ over units, f t is an r × 1 vector of unobserved factors,
which may influence each unit differently and which may be correlated with the
xit, and uit is an unobserved disturbance with E (uit) = 0 and E

(
u2
it

)
= σ2

i ,
which is independently distributed across i and t. If xit is correlated with f t
and γi, then not allowing for CSD by omitting f t causes the estimates of βi to
be biased and inconsistent.
Pesaran suggests to include the means of yit and xit as additional regressors,

to remove the effect of the factors. The CCE procedure can handle multiple
factors which are I(0) or I(1), which can be correlated with the regressors, and
handles serial correlation in the errors. The consistency holds for any linear
combination of the dependent variable and the regressors, not just the arithmetic
mean, subject to the assumptions that the weights, wi satisfy:

(i) : wi = O

(
1

N

)
; (ii) :

N∑
i=1

|wi| < K; (iii) :

N∑
i=1

wiγi 6= 0

These clearly hold for the mean:

wi =
1

N
;

N∑
i=1

|wi| = 1;

N∑
i=1

wiγi = N−1
N∑
i=1

γi 6= 0
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as long as the mean effect of the factor on the dependent variable is non-zero.
This involves adding the means of the dependent and independent variables

to the regression, (22):

yit = δ′idt + β′ixit + πyiȳt + π′xix̄t + uit (23)

To see the motivation, assume a single factor and average (5) across units to
give:

ȳt = δ̄
′
zt + β̄

′
ix̄t + γ̄ft + ūt +N−1

∑(
βi − β̄

)′
xit (24)

and thus

ft =
1

γ̄

{
ȳt − δ̄

′
zt − β̄

′
ix̄t − ūt −N−1

∑(
βi − β̄

)′
xit

}
(25)

so the ȳt and x̄t provide a proxy for the unobserved factor. As the covariance
between ȳt and uit goes to zero with N , so for large N there is no endogeneity
problem. The CCE generalises to many factors and lagged dependent variables,
but requires that γ̄ or the vector equivalent, is non-zero.
Pesaran (2006) showed that βi can be consistently estimated through the

augmented OLS regression, (23) under the large N,T . Namely,

β̂i =
(
X ′iMDXi

)−1
X ′iMDyi

where yi is a T × 1 vector of the dependent variable for the ith unit, Xi is
a T × kx vector of regressors, and MD = IT − D

(
D′D

)−1
D and D con-

sists of observed common factor and cross sectional average of dependent and
independent variables. We can use the mean group estimator:

β̂MG =
1

n

n∑
i=1

β̂i.

This assumes heterogeneous coeffi cients, but there are homogeneous versions.
Alternatively, β = E(βi) can be obtained by a pooled estimate:

β̂P =

(
n∑
i=1

X ′iMDXi

)−1 n∑
i=1

X ′iMDyi

A clear advantage of the CCE method is that the number of unobserved
factors need not be estimated. In fact, the method is valid with a single or
multiple unobserved factors and does not require the number of factors to be
smaller than the number of observed cross-section averages. In addition, CCE
is easy to compute as an outcome of OLS and no iteration is needed. Desirable
small sample properties of CCE are also demonstrated.
There are sometimes economic reasons for adding averages, but in other cases

the economic interpretation is not straightforward. In a variety of circumstances
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estimating the factors by the means, seems to work better than estimating them
directly by the PC estimator. This procedure determines the weights a priori
rather than estimating them by PCs. Not estimating the weights seems to
improve the performance of the procedure. Kapetanios, Pesaran and Yamagata
(2011) show that this procedure is robust to a wide variety of data generation
processes including unit roots.
Remark: Westerlund and Urbain (2013) show that Pesaran’s estimator

becomes inconsistent when the factor loadings in the y equation are correlated
with the factor loadings in the x equation.

YC: update

4.2 Panel Data Models with Interactive Fixed Effects

Bai (2009) considers the following large N large T panel data model:

yit = X ′itβ + uit with uit = λ′iF t + εit (26)

where Xit is a k × 1 vector of regressors and f t is an r × 1 vector of unob-
served factors. The main difference is that it assumes homogeneous parameters.
Bai interprets it as a generalisation of the additive two-way fixed effect model.
We observe yit and Xit, but do not observe λi, Ft, and εit. Such model nests
conventional fixed effects models as special cases due to the following transfor-
mation:

yit = X ′itβ + αi + ξt + εit = X ′itβ + λ′iF t + εit

where λi = (1, αi)
′ and F t = (t, 1)

′. The interactive fixed effects allow a much
richer form of unobserved heterogeneity. For example, Ft can represent a vector
of macroeconomic common shocks and λi captures individual i’s heterogeneous
response to such shocks.
YC: update on macro and micro
Bai (2009) allows Xit to be correlated with λi, Ft or both. Under the large

N,T , we may estimate the model by minimising a LS objective function:

SSR (β, F,Λ) =

N∑
i=1

(Y i −Xiβ − Fλi)′ (Y i −Xiβ − Fλi)

s.t.
F ′F

T
= Ir, Λ′Λ is diagonal

Although no closed-form solution is available, the estimators can be obtained
by iterations.

1. Obtain some initial values β(0), such as least squares estimators from
regressing Y i on Xi.

2. Perform principal component analysis for the pseudo-data, Y i −Xiβ
(0)

to obtain F (1) and Λ(1).

3. Next, regress Y i − F (1)λ
(1)
i on Xi to obtain β

(1).
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4. Iterate such steps until convergence is achieved.

Bai (2009) showed that the resulting estimator β̂ is
√
NT -consistent, and

the limiting distributions for F̂ and Λ̂ are the same as in Bai (2003) due to their
slower convergence rates. The limiting distribution for β̂ depends on specific
assumptions on εit and on the ratio T/N . If T/N → 0, then the limiting
distribution of β̂ will be centered around zero, given that E (εitεjs) = 0 for
t 6= s, and E (εitεjs) = σij for all i, j, t.
On the other hand, if N and T are comparable such that T/N → K > 0,

then the limiting distribution will not be centered around zero, which poses a
challenge for inference. Bai (2009) provided a bias-corrected estimator for β,
whose limiting distribution is centered around zero. The bias-corrected esti-
mator allows for heteroskedasticity across both N and T . Let β̃ be the bias-
corrected estimator, assume that T/N2 → 0 and N/T 2 → 0, E

(
ε2
it

)
= σ2

it, and
E (εitεjs) = 0 for i 6= j and t 6= s, then

√
NT

(
β̃ − β

)
→d N (0,Σβ)

where a consistent estimator for Σβ is available. Notice that the issue of choosing
r remains.
Ahn et al. (2001, 2013) studied the model (26) under large N but fixed

T . They employ the GMM method that applies moments of zero correlation
and homoskedasticity. Moon and Weidner (2014) consider the same model as
(26)), but allow lagged dependent variable as regressors. They devise a quadratic
approximation of the profile objective function to show the asymptotic theory for
the least square estimators and test statistics. Moon and Weidner (2015) extend
their study by allowing unknown number of factors. They show that the limiting
distribution of the least square estimator is not affected by the number of factors
used in the estimation, as long as this number is no smaller than the true number
of factors. Lu and Su (2015) propose the adaptive group LASSO (least absolute
shrinkage and selection operator), which can simultaneously select the regressors
and determine the number of factors.
Heterogenous panel models with interactive effects are also studied by Ando

and Bai (2014), where the number of regressors can be large and the regularisa-
tion method is used to select relevant regressors. Ando and Bai (2015) provide
a formal test for homogenous coeffi cients. The ML estimation of (26) is studied
by Bai and Li (2014). They consider the case in which Xit also follows a factor
structure and is jointly modeled.
Lu and Su (2015) consider the problem of determining the number of fac-

tors and selecting the proper regressors in linear dynamic panel data models
with interactive fixed effects. Based on the preliminary estimates of the slope
parameters and factors a la Bai and Ng (2009) and Moon and Weidner (2014a),
they propose a method for simultaneous selection of regressors and factors and
estimation through the method of adaptive group Lasso. With probability ap-
proaching one, this method can correctly select all relevant regressors and factors
and shrink the coeffi cients of irrelevant regressors and redundant factors to zero.
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Further, the shrinkage estimators of the nonzero slope parameters exhibit some
oracle property. Monte Carlo simulations demonstrate the superb finite-sample
performance of the proposed method.
YC: update, Moon and Weidner (2015)???

5 The Spatial-based Models of CSD

In general, an important research issue is to model the spatial dependence, the
spatial heterogeneity and nonlinearity, simultaneously.

5.1 The Spatial Autoregressive (SAR) Process

Some models for cross sectional data may capture spatial interactions across
spatial units. Consider the first-order spatial autoregressive (SAR) process:

yi = λwi,nY n + εi, i = 1, ..., n, (27)

where Y n = (y1, ..., yn)′ is an n×1 vector of dependent variable, wi,n is a 1×n
row vector of weights, and εi ∼ iid(0, σ2). We write (389) in the matrix form:

Y n = λW nY n +En (28)

where W nY n is ‘the spatial lag’. Under the assumption that Sn (λ) = In −
λW n is nonsingular, we have:

Y n = Sn (λ)
−1
En.

Also consider the regression model with SAR disturbance:

Y n = Xnβ +Un, Un = ρW nUn +En (29)

The disturbances in Un are spatially-correlated. The variance matrix of Un is
σ2Sn (ρ)

−1
Sn (ρ)

−1′. As the off-diagonal elements of Sn (ρ)
−1
Sn (ρ)

−1′ may
be nonzero, ui’s are cross-sectionally correlated across units.

Spatial autoregressive model with covariates This generalises SAR by
incorporating exogenous variables xi:

Y n = λW nY n +Xnβ +En (30)

where En ∼ iid(0, σ2In). This model has the feature of a simultaneous equation
model and its reduced form is:

Y n = Sn (λ)
−1
Xnβ + Sn (λ)

−1
En.
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Some Intuitions on Spatial Weights Matrix, W n The jth element of
wi,n, wn,ij , represents the link (or distance) between the neighbor j and the
spatial unit i. The diagonal of W n is specified to be zero, i.e., wn,ii = 0 for
all i, because λwi,n represents the effect of other spatial units on the spatial
unit i. It is a common practice to have W n having a zero diagonal and being
row-normalized such that the summation of elements in each row of W n is
unity. In some applications, the ith row wi,n of W n may be constructed as
wi,n = (di1, di2, ..., din)/

∑n
j=1 dij , where dij ≥ 0, represents a function of the

spatial distance between i and j, in some space. The weighting operation may
be interpreted as an average of neighboring values.
When neighbors are defined as adjacent ones for each unit, the correlation

is local in the sense that correlations will be stronger for neighbors but weak for
units far away. Suppose that ‖ρW n‖ ≤ 1 for matrix norm ‖.‖, then

Sn (ρ)
−1

= In +

∞∑
i=1

ρiW i
n

Notice that ∥∥∥∥∥
∞∑
i=m

ρiW i
n

∥∥∥∥∥ ≤ |ρW n|i
∥∥∥Sn (ρ)

−1
∥∥∥

If W n is row-normalized, then∥∥∥∥∥
∞∑
i=m

ρiW i
n

∥∥∥∥∥
∞

≤
∞∑
i=m

∣∣ρi∣∣ =
|ρ|m

1− |ρ|

will be small as m gets larger. Un can be represented as

Un = En + ρW nEn + ρ2W 2
nEn + ...,

where ρW n may represent the influence of neighbors on each unit, ρ2W 2
n is the

second layer neighborhood influence, etc. In the social interactions litera-
ture, WnSn (ρ)

−1 is a vector of measures of centrality, which summaries
the position of each spatial unit in a network.
In conventional spatial cases, neighbor units are defined by only a few ad-

jacent ones. However, there are cases where ‘neighbors’may consist of many
units. An example is a social interactions model, where ‘neighbors’refer to indi-
viduals in a same group. The latter may be regarded as models with large group
interactions. For models with a large number of interactions for each unit, the
spatial weights matrix W n will associate with the sample size. Suppose that
there are R groups and there are m individuals in each group, with the sample
size, n = mR. In a special network (e.g., friendship), one may assume that each
individual in a group is given an equal weight. In that case,

W n = IR ⊗Bm with Bm =
(
`m`

′
m − Im

)
/(m− 1),

where `m is the m-dimensional vector of ones. In general, the number of mem-
bers in each district may be large but have different sizes. This model has many
interesting applications in the social interactions.
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Other generalizations We may combine the SAR equation with SAR dis-
turbances:

Y n = λW nY n +Xnβ +Un, Un = ρMnUn +En (31)

where W n andMn are spatial weights matrices, which may not be identical.
Further extension of a SAR model may allow high-order spatial lags as in

Y n =

p∑
j=1

λjW jnY n +Xnβ +En (32)

where W jn’s are p distinct spatial weights matrices.

5.2 Estimation Methods

We consider the QML, the 2SLS (IV), and the generalized method of moments
(GMM). The QML has usually good finite sample properties. However, the ML
method is not computationally attractive for the higher spatial lags model, in
which case the IV and GMM methods may be feasible, (Lee, 2007).

MLE For the SAR process in (386), we have the log-likelihood function:

lnLn
(
λ, σ2

)
= −n

2
ln(2π)− n

2
lnσ2 + ln |Sn (λ)| − 1

2σ2
Y ′nSn (λ)

′
Sn (λ)Y n,

(33)
where Sn (λ) = In − λW n. For the model with SAR disturbances, (388), the
log likelihood function is

lnLn
(
ρ, β, σ2

)
= −n

2
ln(2π)− n

2
lnσ2 + ln |Sn (ρ)| (34)

− 1

2σ2
(Y n −Xnβ)

′
Sn (ρ)

′
Sn (ρ) (Y n −Xnβ)

The log likelihood function for the SAR model with covariates in (30) is

lnLn
(
λ, β, σ2

)
= −n

2
ln(2π)− n

2
lnσ2 + ln |Sn (λ)| (35)

− 1

2σ2
(Y nSn (λ)−Xnβ)

′
(Y nSn (λ)−Xnβ)

The likelihood function involves the computation of the determinant of
Sn (λ), which is a function of the unknown parameter λ, and may have a large
dimension n. A computationally tractable method is due to Ord (1975), where
W n is a row-normalized weights matrix with

W n = DnW
∗
n,

27



where W ∗
n is a symmetric matrix and Dn = diag

{∑n
j=1 w

∗
n,ij

}−1

. Though

W n is not symmetric, the eigenvalues of W n are still all real. This is because

|W n − vIn| = |DnW
∗
n − vIn|

=
∣∣∣DnW

∗
nD

1/2
n D−1/2

n − vD1/2
n D−1/2

n

∣∣∣
=

∣∣∣D1/2
n

∣∣∣ ∣∣∣D1/2
n W ∗

nD
1/2
n − vIn

∣∣∣ ∣∣∣D−1/2
n

∣∣∣
=

∣∣∣D1/2
n W ∗

nD
1/2
n − vIn

∣∣∣
Thus, the eigenvalues of W n are the same as those of D

1/2
n W ∗

nD
1/2
n , which is

a symmetric matrix. As the eigenvalues of a symmetric matrix are real, the
eigenvalues of W n are real. Let µi’s be the eigenvalues of W n, which are the
same as those of D1/2

n W ∗
nD

1/2
n . Let Γ be the orthogonal matrix such that

D1/2
n W ∗

nD
1/2
n = Γdiag {µi}Γ′

The above relations show that

|In − λW n| = |In − λDnW
∗
n| =

∣∣∣In − λD1/2
n W ∗

nD
1/2
n

∣∣∣
=

∣∣∣D1/2
n D−1/2

n − λD1/2
n D1/2

n W ∗
nD

1/2
n D−1/2

n

∣∣∣
=

∣∣∣D1/2
n

∣∣∣ ∣∣∣In − λD1/2
n W ∗

nD
1/2
n

∣∣∣ ∣∣∣D−1/2
n

∣∣∣
=

∣∣∣In − λD1/2
n W ∗

nD
1/2
n

∣∣∣ =
∣∣In − λΓdiag {µi}Γ′

∣∣
= |In − λdiag {µi}| = Πn

i=1 (1− λµi)

Thus, |In − λW n| can be easily updated during iterations within a maximiza-
tion subroutine, as µi’s need be computed only once.
Another tractable method is the characteristic polynomial. The determi-

nant, |W n − µIn| is a polynomial in µ and is called the characteristic polyno-
mial of W n (the zeros of the characteristic polynomial are the eigenvalues of
W n). Thus,

|In − λW n| = anλ
n + ...+ a1λ1 + a0,

where the constant a depends only onW n. So a’s can be computed once during
the maximization algorithm.

2SLS estimation For the SAR model with covariates, (30), the spatial lag
W nY n can be correlated with the disturbance, En. So OLS may not be a
consistent estimator. However, there is a class of spatialW n (with large group
interaction) that the OLS estimator can be consistent (Lee 2002).
To avoid the bias due to the correlation of W nY n with En, Kelejian and

Prucha (1998) suggested the use of instrumental variables. Let Qn be a matrix
of IVs. Denote Zn = (W nY n,Xn) and θ =

(
λ,β′

)′
, and rewrite (30) as

Y n = Znθ +En (36)
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The 2SLS estimator of θ is

θ̂2SLS =
[
Z ′nQn

(
Q′nQn

)−1
Q′nZn

] [
Z ′nQn

(
Q′nQn

)−1
Q′nY n

]
The asymptotic distribution of θ̂2SLS follows:

√
n
(
θ̂2SLS − θ

)
→d N

(
0, σ2 (GnXnβ,Xn)

′
Qn

(
Q′nQn

)−1
Q′n (GnXnβ,Xn)

)
whereGn = W nS

−1
n , under the assumption that the limiting matrix 1

n (GnXnβ,Xn)
has the full column rank (k+1) where k is the number of columns of Xn. Kele-
jian and Prucha (1998) suggest the use of linearly independent variables in
(Xn,W nXn) for the construction of Qn.

By the Schwartz inequality, the optimum IV matrix is (GnXnβ,Xn). This
2SLS cannot be used for the estimation of the (pure) SAR process with β = 0.
When β = 0, GnXnβ = 0. Hence, (GnXnβ,Xn) = (0,Xn) would have rank
k but not full rank (k+ 1). Intuitively, when β = 0, Xn does not appear in the
model and there is no other IV available.

Method of moments Kelejian and Prucha (1999) suggest an MOM estima-
tion:

min
θ
g′n (θ) gn (θ) .

The moment equations are based on three moments:

E
(
E′nEn

)
= nσ2; E

(
E′nW

′
nW nEn

)
= σ2tr

(
W ′

nW n

)
; E

(
E′nW nEn

)
= 0

In this case we have:

gn (θ) =

 Y ′nSn (λ)
′
Sn (λ)Y n − nσ2

Y ′nSn (λ)
′
W ′

nW nSn (λ)Y n − σ2tr
(
W ′

nW n

)
,

Y ′nSn (λ)
′
W nSn (λ)Y n


For the regression model with SAR disturbances, Y n shall be replaced by least
squares residuals.

GMM estimation For the SAR model with covariates, we can obtain other
moment equations in addition toQn. LetQn be an n×kx IV matrix constructed
as functions of Xn and W n. Let

εn (θ) = Sn (λ)Y n −Xnβ

for any possible θ. The orthogonality conditions, Q′nεn (θ) = 0 provide the
kx × 1 vector of moment conditions.
Now, consider a finite number, saym, of n× n constant matrices, P 1n, ...,Pmn,

each of which has a zero diagonal. Then, (P jnεn (θ))
′
εn (θ) can be used as the
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moment functions in addition toQ′nεn (θ). Then, we have the following moment
conditions vector:

gn (θ) = (P 1nεn (θ) , ...,Pmnεn (θ) ,Qn)
′
εn (θ)

=


εn (θ)

′
P 1n (θ) εn (θ)
...

εn (θ)
′
Pmn (θ) εn (θ)
Q′nεn (θ)


Proposition. For any constant n × n matrix P n with tr(P n) = 0, P nεn

is uncorrelated with εn, i.e., E
(
(P nεn)

′
εn
)

= 0.
Proof :

E
(
(P nεn)

′
εn
)

= E
(
ε′nP

′
nεn

)
= E (ε′nP nεn) = σ2tr(P n) = 0

This shows that E (gn (θ0)) = 0. Thus, gn (θ) are valid moment equations
for GMM. Intuitively, as

W nY n = GnXnβ0 +Gnεn with Gn = W nS
−1
n and Sn = Sn (λ0) ,

and Gnεn is correlated with the disturbance εn in the model,

Y n = λW nY n +Xnβ + εn,

hence, any P jnεn, which is uncorrelated with εn, can be used as IV forW nY n

as long as P jnεn and Gnεn are correlated.

5.3 The Spatial Dynamic Panel Data (SDPD) Model

Dynamic panel data models consider not only heterogeneity but also state de-
pendence that cannot be handled by cross-sectional or static panel data models.
The most general case is the “time-space dynamic”model (Anselin, Le Gallo,
and Jayet, 2008),7 which is termed spatial dynamic panel data (SDPD) model
in Yu, de Jong and Lee(2008):

Y nt = λ0W nY nt+γ0Y n,t−1+ρ0W nY n,t−1+Xntβ0+cn0+αt0ln+V nt, (37)

where cn0 is n × 1 column vector of fixed effects and αt0’s are time effects. γ0

captures the pure dynamic effect and ρ0 captures the spatial-time or diffusion
effect. Due to the presence of fixed individual and time effects, Xnt will not
include any time invariant or individual invariant regressors.

7Anselin, Le Gallo, and Jayet (2008) divide spatial dynamic models into four categories,
namely, “pure space recursive” if only a spatial time lag is included; “time-space recursive”
if an individual time lag and a spatial time lag are included; “time-space simultaneous” if an
individual time lag and a contemporaneous SL term are specified; and “time-space dynamic”
if all forms of lags are included. Korniotis (2010) studies a time-space recursive model with
fixed effects, which is applied to the growth of consumption in each state in the United States
to investigate habit formation. Su and Yang (2007) derive the quasi-maximum likelihood
(QML) estimation of the above model under both fixed and random effects specifications.
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Define

Sn (λ) = In − λW n; Sn ≡ Sn (λ0) = In − λ0W n.

Presuming that Sn is invertible and denoting An = S−1
n (γ0In + ρ0W n), (37)

can be rewritten as

Y nt = AnY n,t−1 + S−1
n (Xntβ0 + cn0 + αt0ln + V nt) , (38)

We study the eigenvalues of An by focusing on the case with W n being
row-normalized. Let $n = diag{$n1, ..., $nn} be the n × n diagonal eigen-
values matrix of W n such that W n = Γn$nΓ−1

n where Γn is the eigenvector
matrix. Because An = S−1

n (γ0In + ρ0W n), the eigenvalues matrix of An is
Dn = (In − λ0W n)

−1
(γ0In + ρ0W n) such that An = ΓnDnΓ−1

n . As W n

is row-normalized, all the eigenvalues are less than or equal to 1 in absolute
value. Denote mn as the number of unit eigenvalues ofW n and let the first mn

eigenvalues of W n be the unity. Dn can be decomposed into two parts, one
corresponding to the unit eigenvalues of W n, and the other corresponding to
the eigenvalues ofW n which are smaller than 1. Define Jn = diag

(
l′mn , 0, ... , 0

)
with lmn being anmn×1 vector of ones and D̃n = diag{0, ..., 0, dn,mn+1, ..., dnn},
where |dni| < 1, for i = mn + 1, ..., n. We have

Ah
n =

(
γ0 + ρ0

1− λ0

)h
ΓnJnΓ−1

n +Bhn with Bn = ΓnD̃nΓ−1
n

Depending on the value of γ0+ρ0
1−λ0 , we may divide the process into four cases.

• Stable case when γ0 + ρ0 + λ0 < 1 (and with some other restrictions on
three parameters).

• Spatial cointegration case when γ0 + ρ0 + λ0 = 1 but γ0 < 1.

• Unit roots case when γ0 + ρ0 + λ0 = 1 and γ0 = 1.

• Explosive case when γ0 + ρ0 + λ0 > 1.

For stability, or in terms of stationarity in the time series notion, there are
more restrictions on the parameter space of (γ0, ρ0, λ0) in addition to γ0 + ρ0 +
λ0 < 1. Such a parameter region can be revealed from conditions such that all
the eigenvalues dni’s of An are less than one in absolute value. The eigenvalues
of An are dni = γ0+ρ0$ni

1−λ0$ni , where $ni’s are eigenvalues of W n. By regarding d
as a function of $, we have:

∂

∂$

(
γ0 + ρ0$ni

1− λ0$ni

)
=

ρ0 + λ0γ0

(1− λ0$)
2

Thus, we have three different situations:

1. ρ0 + λ0γ0 > 0 if and only if dni has the same increasing order as $ni.
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2. ρ0 + λ0γ0 = 0, i.e., separable space-time filter, if and only if dni is a
constant (under this case, dni = γ0).

3. ρ0 + λ0γ0 < 0 if and only if dni has the decreasing order of $ni.

(38) expresses the model in terms of a space-time multiplier (Anselin, Le
Gallo, and Jayet 2008), which specifies how the joint determination of the de-
pendent variables is a function of both spatial and time lags of explanatory
variables and disturbances of all spatial units. This is useful for calculating
marginal effects of changes of exogenous variables on outcomes over time and
across spatial units. LeSage and Pace (2009) have introduced the concept of
direct impact, total impact, and indirect impact. In a SAR model:

Y n = α0ln + λ0W nY n +

kx∑
k=1

βk0Xnk + εn,

where W n does not depend on Xn, the impact of a regressor Xnk on Y n is

∂Yn
∂X ′nk

= (In − λ0W n)
−1
k0 βk0 for the kth regressor.

The average direct, average total and average indirect impacts are defined as

fk,direct (θ0) ≡ 1

n
tr
(

(In − λ0W n)
−1
βk0

)
,

fk,total (θ0) ≡ 1

n
l′n

(
(In − λ0W n)

−1
βk0

)
ln,

fk,indirect (θ0) ≡ fk,total (θ0)− fk,direct (θ0) ,

with ln being an n-dimensional column of ones.
Debarsy, Ertur and LeSage (2012) extend such impact analyses to spatial

dynamic panel models to investigate diffusion effects over time. Lee and Yu
(2012b) extend the impact analysis to the case with time-varying spatial weights.
Elhorst (2012) points out various restrictions on spatial dynamic panel models
with marginal effects implied by specified models.
For an impact analysis for SDPD model, the change in exogenous variables

will only influence the dependent variable of current period, but not the future
ones. By changing the value of a regressor by the same amount across all spatial
units in some consecutive time periods, say, from the time period t1 to t2. Thus,
we have

∂E (Y nt)

∂x
= β0

t−t1∑
h=t−t2

Ah
nS
−1
n ln

where x is a regressor with its coeffi cient being β0. Hence, by denoting θ =
(λ, γ, ρ, β), the average total impact is

ft,total (θ0) ≡ 1

n
l′n
∂E (Y nt)

∂x
= β0

t−t1∑
h=t−t2

1

n

[
l′nA

h
nS
−1
n ln

]
,
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and similarly for other impacts. Debarsy, Ertur and LeSage (2012) study the
case of t2 = t so that

ft,total (θ0) ≡ β0

t−t1∑
h=0

1

n

[
l′nA

h
nS
−1
n ln

]
,

and the object of interest is how a permanent change in Xn,t1 will affect the
future horizons (cumulatively) until t.

5.4 The Spatial Durbin Model

Elhorst (2012) proposes the following general spatial Durbin-type model:

Y t = τY t−1+δWY t+ηWY t−1+Xtβ1+WXtβ2+Xt−1β3+WXt−1β4+Ztθ+vt
(39)

vt = γvt−1 + ρW vt + µ+ λtiN + εt

µ = κWµ+ ξ

where Y t is an N × 1 vector of the dependent variable for spatial unit (i =
1, . . . , N) observed at time (t = 1, . . . , T ), Xt is an N ×K matrix of exogenous
regressors, and Zt is an N × L matrix of endogenous regressors. The N × N
matrix W is a nonnegative spatial-weight matrix with its diagonal elements
being zero. τ , δ and η are the scalar parameters on Y t−1,WY t, andWY t−1.
β1, β2, β3, and β4 are the K × 1 vectors of the parameters on exogenous
regressors and θ is the L×1 vector of the parameters on endogenous regressors.
vt is the N × 1 vector of error term, which may be allowed to be serially and
spatially correlated. µ = (µ1, ..., µN )

′ is the N × 1 vector of the spatial-specific
effects, and λt (t = 1, . . . T ) denotes time effects with iN an N × 1 vector of
ones. We may allow the spatial-specific effects to be spatially autocorrelated.
Finally, εt = (ε1t, ..., εNt)

′ and ξ are vectors of iid disturbances with zero mean
and finite variance σ2 and σ2

ξ .

Stationarity conditions We impose the restrictions on the parameters and
W to obtain the stationarity. The characteristic roots of (I − δW )

−1
(τI + ηW )

in (39) should lie within the unit circle as follows:

τ < 1− (δ + η)ωmax, if δ + η ≥ 0 (40)

τ < 1− (δ + η)ωmin, if δ + η < 0

−1 + (δ − η)ωmax < τ, if δ − η ≥ 0

−1 + (δ − η)ωmin < τ, if δ − η < 0

where ωmin is the smallest (most negative) and ωmax the largest real character-
istic root of W .
Remark: The restriction τ + δ + η < 1 in Lee and Yu (2010a) is not too

restrictive. The stationarity conditions in (40) are more diffi cult to work with.

33



Estimation methods The spatial model has been estimated mainly by the
iterative ML estimation procedure developed by Anselin (1988). Three estima-
tion methods: (i) the bias-corrected quasi-maximum likelihood (QML) estima-
tor, (ii) the IV or GMM estimator, and (iii) the Bayesian Markov Chain Monte
Carlo (MCMC) approach.
Yu et al. (2008) construct a bias-corrected estimator for a dynamic model

with (Y t−1,WY t,WY t−1) and spatial fixed effects. Lee and Yu (2010d) ex-
tend it to include time effects. They provide an asymptotic theory for bias-
corrected LSDV (BCLSDV) estimator when both N and T tend to infinity, but
T cannot be too small relative to N .

A few studies consider IV/GMM estimators, building on works by Arrelano
and Bond (1991) and Blundell and Bond (1998). Elhorst (2010d) extends the
FD-GMM to include endogenous interaction effects and finds that this estimator
can still be severely biased. Lee and Yu (2010c) show that a 2SLS estimator,
which is based on lagged values of Y t−1, WY t−1, Xt and WY t, is inconsis-
tent due to too many moments; the dominant bias is caused by the endogeneity
of WY t. They propose an optimal GMM estimator. Kukenova and Monteiro
(2009) and Jacobs et al. (2009) consider a dynamic panel data model with
(Y t−1,WY t) and extend the system GMM to account for endogenous inter-
action effects. GMM can also be used to instrument endogenous explanatory
variables (other than Y t−1 and WY t).

The dynamic spatial Durbin model Burridge (1981) recommends the first-
order spatial autoregressive distributed lag model, in which Y is regressed on
WY and X andWX. This is known as the spatial Durbin model. The cost of
ignoring spatial dependence in the dependent/independent variables is relatively
high (biased) whilst ignoring spatial dependence in the disturbances will only
cause a loss of effi ciency (LeSage and Pace, 2009). The spatial Durbin model
produces unbiased estimates, even if the DGP contains a spatial error.
If explanatory variables are endogenous, the best estimation method is the

IV/GMM estimator (Fingleton and LeGallo, 2008).8 Elhorst et al. (2010b)
propose a dynamic spatial Durbin model:

Y t = τY t−1 + δWY t + ηWY t−1 +Xtβ1 +WXtβ2 + vt (41)

Rewriting (41) as

Y = (IN − δW )
−1

(τI + ηW )Y t−1+(IN − δW )
−1

(Xtβ1 +WXtβ2)+(IN − δW )
−1
vt,

(42)
we can derive the partial derivatives of Y with respect to the kth explanatory
variable of X at time t by[

∂Y
∂x1k

· · · ∂Y
∂xNk

]
t

= (IN − δW )
−1

(β1kIN + β2kW ) (43)

8The studies on growth and convergence typically regress economic growth on economic
growth in neighboring economies, and the initial income level, the rates of saving, population
growth, technological change, and depreciation in the own and in neighboring countries.
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These denote the effect of a change of an explanatory variable in a spatial unit
on the dependent variable of all other units in the short term. Similarly, the
long-term effects can be:[

∂Y
∂x1k

· · · ∂Y
∂xNk

]
= [(1− τ) IN − (δ + η)W ]

−1
(β1kIN + β2kW ) (44)

(43) and (44) show that the short-term indirect effects do not occur if both
δ = 0 and β2k = 0 while the long-term indirect effects do not occur if both
δ = −η and β2k = 0. By simulating the effects of shocks in vt, it is possible to
find the path along which an economy moves to its long term equilibrium (De
Groot and Elhorst 2010).
The dynamic spatial Durbin model can be used to determine direct effects

and indirect (spatial spillover) effects in the short- and long-term. Anselin et al.
(2008) criticise that this model might suffer from identification problems. By
continuous substitution of Y t−1 up to Y 1 in (42), we have:

Y = (IN − δW )
−T

(τIN + ηW )
T
Y t−T (45)

+

T∑
p=1

(IN − δW )
−p

(τIN + ηW )
p−1 (

Xt−(p−1)β1 +WXt−(p−1)β2 + vt−(p−1)

)
.

This shows that two global spatial multiplier matrices, (IN − δW )
−p and (τIN + ηW )

p−1,
are at work at the same time in conjunction with one process that produces lo-
cal spatial spillover effects, WXt−(p−1)β2.

9 Second, more empirical research
is needed to find out whether the short-term and long-term direct and indirect
effects make sense.
To avoid identification problems, 4 restrictions are imposed. The first re-

striction is β2 = 0 in which the local indirect effects (spatial spillover) are zero.
The indirect effects in relation to the direct effects become the same for every
explanatory variable both in the short- and the long-term. For example, the
ratio for the kth explanatory variable in the short term takes the form:[

(IN − δW )
−1
β1kIN

]rsum
[
(IN − δW )

−1
β1kIN

]d̄ =

[
(IN − δW )

−1
]rsum

[
(IN − δW )

−1
]d̄

where d̄ is the operator that calculates the mean diagonal element of a matrix
and rsum is the operator that calculates the mean row sum of the non-diagonal
elements.10 This is independent of β1k and thus the same for. A similar result
in the long term.

9That is one process too much. One should examine whether the log-likelihood function
is flat or almost flat. Hendry (1995) recommends to regress Yt on Yt−1, Xt and Xt−1 as a
generalization of the first-order autocorrelation model for time-series while Burridge (1981)
recommends to regress Yt on WYt, Xt and WXt as a generalization of the first-order spa-
tial autocorrelation model for cross-section data. Elhorst (2001) suggests to regress Yt on
Yt−1, WYt, WYt−1, Xt, WXt, Xt−1 and WXt−1. This extension, however, worsens the
identification problem.
10LeSage and Pace (2009) propose to report one direct effect measured by the average of

the diagonal elements, and one indirect effect measured by the average of the row sums of the
non-diagonal elements of that matrix.
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The second restriction is δ = 0 in which case (IN − δW )
−1

= IN . Thus,
the global short-term indirect (spatial spillover) effect is zero. This model is less
suitable if the analysis focuses on spatial spillover effects in the short term.
The third restriction is η = −τδ (Parent and LeSage, 2011). The advantage

is that the impact of a change in one of the explanatory variables on the de-
pendent variable can be decomposed into a spatial effect and a time effect; the
impact over space falls by δW for every higher-order neighbor, and over time
by the factor τ for every period. The disadvantage is that the indirect (spatial
spillover) effects in relation to the direct effects remain constant over time. The
ratio of the kth explanatory variable takes the form:[

(IN − δW )
−1

(β1kIN + β2kW )
]rsum

/
[
(IN − δW )

−1
(β1kIN + β2kW )

]d̄
both in the short term and the long term.
The fourth restriction is η = 0. Although this model limits the flexibility of

the ratio between indirect and direct effects, it seems to be the least restrictive
model.

5.5 QMLE of Heterogeneous Spatial Models

Recently, Aquaro, Bailey and Pesaran (2015) extend the spatial autoregressive
panel data model to the case where the spatial coeffi cients differ across the
spatial units. They develop the QML estimator which is shown to be consistent
and asymptotically normally distributed when both the time and cross section
dimensions are large. Small sample properties of the proposed estimators are
investigated by Monte Carlo simulations for Gaussian and non-Gaussian errors,
and with spatial weight matrices of differing degree of sparseness, showing that
the QML estimators have satisfactory small sample properties under certain
sparsity conditions on the spatial weight matrix.
Consider the heterogeneous spatial autoregressive (HSAR) model:

yit = ψi

N∑
j=1

wijyjt + εit, i = 1, ..., N ; t = 1, ..., T (46)

where w′iyt =
∑N
j=1 wijyjt, wi = (wi1, ..., wiN )

′ with wii = 0, and yt =

(y1t, ..., yNt)
′. Here, wi denotes an N × 1 non-stochastic vector. Stacking the

observations on individual units for each t, we have

(IN −ΨW )yt = εt, t = 1, ..., T

where Ψ = diag(ψ) with ψ = (ψ1, ..., ψN )
′. The true value of ψi will be denoted

by ψi0. Define:

S (ψ) = (IN −ΨW ) , and S0 = (IN −Ψ0W ) .
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Assumption 1 The N × N spatial weight matrix, W = (wij) is exactly
sparse such that

hN = max
i≤N

∑
j≤N

I(wij 6= 0);

is bounded in N , where I(A) denotes the indicator function.
Assumption 2 εit are independently distributed over i and t, have zero

means, and constant variances, E
(
ε2
it

)
= σ2.

Assumption 3 The (N + 1) × 1 parameter vector, θ =
(
ψ′, σ2

)′ ∈ Θ is
a subset of the N + 1 dimensional Euclidean space, RN+1. Θ is a closed and
bounded (compact) set and includes the true value of θ, θ0 as an interior point.
Assumption 4 λmin

[
S′ (ψ)S (ψ)

]
> 0 for all values of ψ ∈ Θ and N .

Assumption 5 Let yt = (y1t, ..., yNt)
′, and consider the sample covariance

matrix of yt, Σ̂T = T−1
∑T
t=1 yty

′
t. For a given N we have (as T →∞)

Σ̂T →p Σ0 uniformly in θ =
(
ψ′, σ2

)′
,

where
Σ0 = σ2

0 (IN −Ψ0W )
−1

(IN −Ψ0W )
−1′

= σ2
0S
−1
0 S−1′

0 .

Under Assumption 1 and under the following condition:

sup
i
|ψi| < max

{
1

‖W ‖1
,

1

‖W ‖∞

}
then S (ψ) = (IN −ΨW ) is non-singular and (46) can be expressed as

yt = S−1 (ψ) εt; t = 1, ..., T (47)

Then, the joint density function of y1t, ..., yNt is given by

T∏
t=1

S (ψ)

|σ2IN |1/2 (2π)
N/2

exp

(
− 1

2σ2
y′tS

′ (ψ)S (ψ)yt

)
and the (quasi) log-likelihood function can be written as

` (θ) = −NT
2

ln 2π − NT

2
lnσ2 + T ln |S (ψ)| − 1

2σ2

T∑
t=1

y′tS
′ (ψ)S (ψ)yt

where θ =
(
ψ′, σ2

)′
. The last term of the LLF can be written conveniently as

T∑
t=1

y′tS (ψ)
′
S (ψ) yt = Ttr

[
S (ψ)

′
S (ψ) Σ̂T

]
Hence,

` (θ) = −NT
2

ln 2π − NT

2
lnσ2 + T ln |S (ψ)| − T

2σ2

[
S (ψ)

′
S (ψ) Σ̂T

]
(48)
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Proposition 1 (The main identification) Consider the HSAR model (46)
and suppose that Assumptions 1 to 5 hold and the invertibility condition (47)
is met. Then the true parameter values, σ2

0 and ψi0, for i = 1, 2, ..., N , are
identified if λmin [ΛN (ϕ̄)] > 0, where

ΛN (ϕ) =

[ (
A0 �A′0

)
+ (1− δ) diag

(
G0G

′
0

)
diag (G0) τN − diag

(
G0G

′
0D
)
τN[

diag (G0) τN − diag
(
G0G

′
0D
)
τN
]′ N

2(1−δ)2

]
τN is an N × 1 vector of ones, � is the Hadamard product matrix operator,

A0 = G0 (IN −DG0)
−1

= W (IN −ΨW )
−1
.

For large N , λmin [ΛN (ϕ̄)] > 0 is necessary for identification but need not be
suffi cient if the aim is to identify all the spatial coeffi cients, ψi for i = 1, 2, ..., N .
For local identification the condition simplifies to

λmin [H0] > ε > 0, for all N,

H0 =
[(
G0 �G′0

)
+ diag

(
G0G

′
0

)]
− 2

N
diag (G0) τNτ

′
Ndiag (G0)

G0 = G0 (ψ0) = W (IN −Ψ0W )
−1
,

the ith element of diag
(
G0G

′
0

)
is given by g′0ig0i. For large N it is also required

that λmax [H0] < K for all N .
Proposition 2 (The main asymptotic result) Consider the HSAR model

(46) and suppose that: (a) Assumptions 1 to 5 hold, (b) the invertibility condi-
tion (47) is met, (c) the N ×N information matrix

H11,2 = (G0 �G′0) + diag (G0G
′
0)− 2

N
diag (G0) τ ′NτNdiag (G′0)

is full rank, whereG0 = W (IN−ΨW )−1,Ψ0 = diag(ψ0); ψ0 = (ψ10, ..., ψN0)
′,

the ith element of diag
(
G0G

′
0

)
is given by g′0ig0i, andW is the spatial weight

matrix, and (d) εit ∼ IIDN(0, σ2
0). The MLE of ψ0 has the following asymp-

totic distribution as T →∞,
√
T
(
ψ̂T −ψ0

)
→d N

(
0, AsyV ar

(
ψ̂T

))
AsyV ar

(
ψ̂T

)
=

[
(G0 �G′0) + diag (G0G

′
0)− 2

N
diag (G0) τ ′NτNdiag (G′0)

]−1

which does not depend on σ2
0.

The HSAR model with heteroskedastic error variances and exogenous
regressors The HSAR model (46) can be extended to include exogenous re-
gressors as well as heteroskedastic errors:

yit = ψi

N∑
j=1

wijyjt + β′ixit + εit (49)
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where w′iyt =
∑N
j=1 wijyjt, wi = (wi1, ..., wiN )

′ with wii = 0, and yt =

(y1t, ..., yNt)
′. Now, we also introduce a k × 1 vector of exogenous regressors

xit = (xi1,t, ..., xik,t)
′ with parameters βi = (βi1, ..., βik)′. The above spec-

ification allows for the fixed effects by setting one of the regressors equal to
unity.
We also allow εit to be cross-sectionally heteroskedastic, V ar(εit) = σ2

i for
i = 1, ..., N . Stacking by individual units for each t, (49) becomes

yt = ΨWyt +Bxt + εt (50)

where Ψ = diag(ψ), ψ = (ψ1, ..., ψN )
′, B = diag

(
β′1, ...,β

′
N

)′
, and εt =

(ε1t, ..., εNt)
′. Then (50) can be written as

yt = (IN −ΨW)
−1

(Bxt + εt)

The (quasi) LLF can be written as (assuming that the errors are Gaussian)

` (θ) = −NT
2

ln 2π − T

2

N∑
i=1

lnσ2
i + T ln |IN −ΨW|

−1

2

T∑
t=1

[(IN −ΨW) yt −Bxt]
′
Σε [(IN −ΨW) yt −Bxt]

where Σε = diag(σ2
1, ..., σ

2
N ). Alternatively, it is often more convenient to write

the above log-likelihood function as

` (θ) = −NT
2

ln 2π − T

2

N∑
i=1

lnσ2
i + T ln |IN −ΨW|

−1

2

T∑
t=1

(yi − ψiy∗i −Xiβi)
′
(yi − ψiy∗i −Xiβi)

σ2
i

where θ =
(
ψ,β′1, ...,β

′
N , σ

2
1, ..., σ

2
N

)′
with βi = (βi1, ..., βiN )

′,Xi = (xi1, ...,xiT )
′

is the T × k matrix of regressors on the ith cross section unit with xit =
(xi1,t, ..., xik,t)

′, yi = (yi1, ..., yiT )
′, and y∗i = (y∗i1, ..., y

∗
iT )
′, with the elements

y∗it = w′iyt =
∑N
j=1 wijyjt.

Assumption 6 TheN(k+2)×1 parameter vector, θ =
(
ψ,β′1, ...,β

′
N , σ

2
1, ..., σ

2
N

)′ ∈
Θ is a sub-set of the N(k + 2) dimensional Euclidean space, RN(k+2). Θ is a
closed and bounded (compact) set and includes θ0 as an interior point, and
supi ‖βi‖1 < K.

Assumption 7 εit are independently distributed over i and t; have zero
means, and constant variances, E(ε2

it) = σ2
i .

Assumption 8 xit are exogenous such that E (xitεjt) = 0 for all i and j,

T−1
T∑
t=1

xitεjt →p 0, uniformly in i and j = 1, ..., N.
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The covariance matrices E
(
xitx

′
jt

)
= Σij , for all i and j, are time-invariant

and finite, Σii is non-singular, T−1
∑T
t=1XiX

′
j →p Σij ;

sup
i
λmax

(
T−1XiX

′
i

)
< K, inf

i
λmin

(
T−1XiX

′
i

)
> 0

Proposition 3 (The main asymptotic result) Consider the HSAR model
(49) and suppose that: (a) Assumptions 1, 4, 5, and 6, 7, and 8 hold, (b) the

invertibility condition (47) is met, (c) λmin
(
H̃11,2

)
> ε > 0 for all N , where

H̃11,2 is the N ×N matrix

H̃11,2 = (G0 �G′0) + diag

−g0,ii +

N∑
s=1,s6=i

σ2
s

σ2
i

g2
0,is, i = 1, ..., N


+diag

[
1

σ2
i

N∑
r=1

N∑
s=1

g0,isg0,irβ
′
r

(
Σrs − ΣriΣ

−1
ii Σit

)
βs, i = 1, ..., N

]

G0 = W(IN − ΨW)−1, Ψ0 = diag(ψ0); ψ0 = (ψ10, ..., ψN0)
′, the ith element

of diag
(
G0G

′
0

)
is given by g′0ig0i, and W is the spatial weight matrix, and

(d) εit ∼ IIDN(0, σ2
i ). Then the MLE of ψ0 has the following asymptotic

distribution as T →∞,
√
T
(
ψ̂T −ψ0

)
→d N

(
0, AsyV ar

(
ψ̂T

))
where AsyV ar

(
ψ̂T

)
= H̃−1

11,2.

5.5.1 BHP (2016) application to US housing prices

Almost all spatial econometric models assume that the spatial parameters do
not vary across the units. Such parameter homogeneity is unavoidable when T
is very small. The evidence of parameter heterogeneity in panel data models
is quite prevalent particularly in the case of cross-county or country datasets.
In such cases and when T is suffi ciently large, reducing the spatial effects to
a single parameter appears rather restrictive. ABP allow the spatial effects to
differ across the units, and derive the conditions needed for identification and
consistent estimation under parameter heterogeneity. Consider the following
heterogeneous equation:

xit = ψix
∗
it + uit; for i = 1, ..., N, t = 1, ..., T ;

where x∗it = w′ix◦t, w′i denotes the ith row of the N × N row-standardized
spatial matrix, W . In the spatial econometrics literature it is assumed that all
units have at least one neighbour, which ensures that w′iτ = 1 for all i. But
when using correlation-based weights, it is possible for some units not to have
any connections. In such cases x∗it = 0 and the associated coeffi cient, ψi is
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unidentified, and to resolve the identification problem, we set ψi = 0. In matrix
notation we have

x◦t = ΨWx◦t + u◦t; for t = 1, ..., T ;

where Ψ = diag (ψ), ψ = (ψ1, ..., ψN )
′, and σ2

ui = var (uit), i = 1, ..., N .
An extension that incorporates richer temporal and spatial dynamics and

accommodates negative as well as positive connections is given by

x◦t =

hλ∑
j=1

Λjx◦t−j +

h+ψ∑
j=1

Ψ+
j W+x◦t−j +

h−ψ∑
j=1

Ψ−j W−x◦t−j + u◦t

where hλ = max (hλ1, ..., hλN )
′; h+

ψ =
(
h+
ψ1, ..., h

+
ψN

)′
; h−ψ =

(
h−ψ1, ..., h

−
ψN

)′
;

Λj , Ψ+
j , Ψ−j are N ×N diagonal matrices with λij , ψ

+
ij and ψ

−
ij over i as their

diagonal elements. Also, W+ and W− are N ×N network matrices for positive
and negative connections, respectively such that W = W+ + W−. We set
hλ = h+

ψ = h−ψ = 1 for expositional simplicity.
ABP propose a QML procedure. The following concentrated log-likelihood

function can be used:

`
(
ψ+

0 ,ψ
−
0

)
∝ T ln

∣∣IN −Ψ+
0 W+ −Ψ−0 W−∣∣− T

2

N∑
i=1

(
1

T
x̃′iMix̃i

)
where

x̃i = xi −ψ+
i0x

+
i −ψ

−
i0x
−
i

Mi = IT − Zi (Z′iZi)
−1

Zi,Zi =
(
xi,−1,x

+
i,−1,x

−
i,−1

)
ψ+

0 =
(
ψ+

10, ..., ψ
+
N0

)′
,ψ−0 =

(
ψ−10, ..., ψ

−
N0

)′
,

The parameters of the lagged variables, λ1, ψ
+
1 and ψ−1 , can be estimated by

least squares applied to the equations for individual units conditional on ψ+
i0

and ψ−i0. For inference the analysis must be carried out with respect to the
unconcentrated log-likelihood function in terms of θ =

(
θ′1, ...,θ

′
N

)′
, where

θi =
(
ψ+
i0, ψ

−
i0, ψ

+
i1, ψ

−
i1, λi1, σ

2
ui

)′
. The variance—covariance matrix of θ̂ML is

computed as

Σ̂θ̂ML =

− 1

T

∂2`
(
θ̂ML

)
∂θ̂ML∂θ̂

′
ML

−1

See BHP for more detailed applications.

5.6 The Spatiotemporal Autoregressive Distributed Lag
(STARDL) Modelling

Motivations and Plan:
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1. Issues: spatial dependence, spatial heterogeneity, nonlinearity and any-
thing else;

2. Narrow focus:

(a) Most general model in the spatial literature is SDPD or the dynamic
spatial Durbin model; identification and estimation??

(b) SP-VAR extension (Xie, 2015), still subject to the homogeneous co-
effi cients.

(c) ABP approach to HSAR, QML estimation of the heterogeneous coef-
ficients, still not accommodating the dynamic spatial Durbin model;

(d) Hence, we propose an alternative novel STARDL approach that can
allow for consistent estimation of heterogeneous coeffi cients.

(e) Then, we derive the generalised spatial model representation from
which we develop the dynamic, the spatial and the total multipliers
or IRFs...

We consider the STARDL model with the heterogeneous parameters:

yit = φiyit−1+π′i0xit+π
′
i1xi,t−1+φ∗i0y

∗
it+φ

∗
i1y
∗
it−1+π∗′i0x

∗
it+π

∗′
i1x
∗
i,t−1+uit (51)

where yit is the scalar dependent variable of the ith spatial unit at time t,
xit =

(
x1
it, ..., x

K
it

)′
is a K×1 vector of exogenous regressors with a K×1 vector

of parameters, πi0 =
(
π1
i0, ..., π

K
i0

)′
. Similarly for xi,t−1 =

(
x1
i,t−1, ..., x

K
i,t−1

)′
and πi1 =

(
π1
i1, ..., π

K
i1

)′
.

The spatial variables, y∗it and x
∗
it, are defined by

y∗it =

N∑
j=1

wijyjt = wiyt with yt
N×1

= (y1t, ..., yNt)
′
, (52)

x∗it
K×1

=

 x1∗
it
...

xK∗it

 =


∑N
j=1 wijx

1
jt

...∑N
j=1 wijx

K
jt

 = (wi ⊗ ιK)xt; xt
NK×1

=

 x1t

...
xNt


(53)

where wi = (wi1, ..., wiN ) is a 1 × N vector of spatial weights determined a
priori with wii = 0, and ιK is a K × 1 vector of unity. Similarly,

y∗i,t−1 =

N∑
j=1

wijyj,t−1 = wiyt−1 with yt−1
N×1

= (y1,t−1, ..., yN,t−1)
′
,

x∗i,t−1 =
(
x1∗
i,t−1, ..., x

K∗
i,t−1

)′
= (wi ⊗ ιK)xt−1 with xt−1

NK×1

=
(
x′1,t−1, ...,x

′
N,t−1

)′
.
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Then, y∗t = (y∗1t, ..., y
∗
Nt)
′ and x∗t = (x∗′1t, ...,x

∗′
Nt)
′ can be expressed as

y∗t
N×1

= Wyt and x∗t
NK×1

= (W ⊗ ιK)xt (54)

where W is the N ×N matrix of the spatial weights given by

W =

 w11 · · · w1N

...
. . .

...
wN1 · · · wNN

 =

 w1

...
wN

 with wii = 0 (55)

Stacking the individual STARDL(1,1) regressions, (51), we have the follow-
ing generalised spatial representation:

yt = Φyt−1+Π0xt+Π1xt−1+Φ∗0Wyt+Φ∗1Wyt−1+Π∗0 (W ⊗ ιK)xt+Π∗1 (W ⊗ ιK)xt−1+ut
(56)

where

Φ
N×N

=

 φ1 · · · 0
...

. . .
...

0 · · · φN

 , Φ∗h
N×N

=

 φ∗1h · · · 0
...

. . .
...

0 · · · φ∗Nh

 for h = 0, 1

Πh
N×NK

=

 π′1h · · · 0
...

. . .
...

0 · · · π′Nh

 , Π∗h
N×NK

=

 π′∗1h · · · 0
...

. . .
...

0 · · · π′∗Nh

 for h = 0, 1

It is straightforward to develop the general STARDL(p, q) model with the
heterogeneous parameters as follows:

yit =

p∑
h=1

φihyi,t−h +

q∑
h=0

π′ihxi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h +

q∑
h=0

π′∗ihx
∗
i,t−h + uit (57)

Suppose that the lag orders p and q are selected suffi ciently large and assume
that xit are exogenous. In such a case uit’s in (57) are free from serial corre-
lations. Stacking the individual STARDL(p, q) regressions, (57), we have the
following generalised spatial representation:

yt =

p∑
h=1

Φhyt−h +

q∑
h=0

Πhxt−h +

p∑
h=0

Φ∗hWyt−h +

q∑
h=0

Π∗h (W ⊗ ιK)xt−h +ut

(58)
where

Φh
N×N

=

 φ1h · · · 0
...

. . .
...

0 · · · φNh

 , h = 1, ...p, Φ∗h
N×N

=

 φ∗1h · · · 0
...

. . .
...

0 · · · φ∗Nh

 , h = 0, 1, ..., p
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Πh
N×NK

=

 π′1h · · · 0
...

. . .
...

0 · · · π′Nh

 , Π∗h
N×NK

=

 π′∗1h · · · 0
...

. . .
...

0 · · · π′∗Nh

 , h = 0, 1, ..., q.

Remark: Spatial stability: The eigenvalues of Φ∗0W lie inside the unit
circle.
Remark: Time stability: We rewrite equation (58) as

yt =

p∑
h=1

Φ̃hyt−h +

q∑
h=0

Π̃hxt−h + ũt, (59)

where Φ̃h = (IN −Φ∗0W )
−1

(Φh + Φ∗hW ), Π̃h = (IN −Φ∗0W )
−1

[Πh+Π∗h (W ⊗ ιK)],
and ũt = (IN −Φ∗0W )

−1
ut. The roots of the N × N matrix polynomial

Φ̃ (z) = IN −
∑p
h=1 Φ̃hz lie outside the unit circle.

5.6.1 Estimation and Inference

To deal with the endogeneity of y∗it in (57) we apply the control function ap-
proach.11 Consider the following CF DGP for y∗it:

y∗it = ϕ′izit + vit with E (z′itvit) = 0 (60)

where zit be the L× 1 vector of exogenous variables:

zit =
(
z1′
it , z

2′
it

)
where z1

it be the L1 × 1 vector of exogenous variables included in (57) and z2
it

be the L2 × 1 vector of exogenous variables excluded.
We assume that the error terms uit and vit have a joint distribution:(

uit
vit

)
∼ iid (0,Σuv) , Σuv =

[
σ2
u σuv

σuv σ2
v

]
(61)

Furthermore, E (uit|vit) = ρvit and E (uit|vit) = σ2
e. The endogeneity of y

∗
it

comes from the correlation between uit and vit. Using (169), we can construct12

uit = ρvit + eit (62)

11Most linear models are estimated using IV methods —two stage least squares (2SLS). An
alternative, the control function (CF) approach, relies on the same kind of identification con-
ditions. However, in models with nonlinearities or random coeffi cients, the form of exogeneity
is stronger and more restrictions are imposed on the reduced forms.
12 In the special case where (uit, vit)

′ has a jointly normal distribution, then

uit|vit ∼ N
(
σuv

σ2v
vit,

σ2uv
σ2v

)
and eit is independent of vit.
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where ρ = E (vituit) /E
(
v2
it

)
. By construction, E (z′iteit) = 0 and E (viteit) =

0. Replacing uit by (62), we obtain the following transformation of (57):

yit =

p∑
h=1

φihyi,t−h+

q∑
h=0

π′ihxi,t−h+

p∑
h=0

φ∗ihy
∗
i,t−h+

q∑
h=0

π′∗ihx
∗
i,t−h+ρvit+eit (63)

where vit is the additional control variable, rendering the new error terms, eit
uncorrelated with y∗it as well as with vit and other regressors in (63). In practice,
we use the two-step procedure: (i) obtain the reduced form residuals, v̂it =
y∗it − ϕ̂

′
izit from (60) and (ii) then run the following regression:

yit =

p∑
h=1

φihyi,t−h+

q∑
h=0

π′ihxi,t−h+

p∑
h=0

φ∗ihy
∗
i,t−h+

q∑
h=0

π′∗ihx
∗
i,t−h+ρv̂it+e

∗
it (64)

where e∗it = e∗it + ρ (ϕ̂i −ϕi)
′
zit depends on the sampling error in ϕ̂i unless

ρ = 0 (exogeneity test). Then, the OLS estimator from (64) will be consistent
for all the parameters.
Remark: The selection of exogenous IVs, zit. We prefer to construct them

internally. Potentially, under the assumption of exogeneity of xit, xit and x∗it
would be good candidates. Then, why not xjt and x∗jt, j (6= i) = 1, ..., N? For
the current application on the relationship between inflation and output gap, we
may suggest to use the cross-section average of yit−1, ȳt−1 as the just-identified
IV for y∗it. yit−1 is unocrrelated with uit whereas ȳt−1 (measuring the sort of
global inflation) should be highly correlated with y∗it (measuring the individual
country-specific global inflation).

5.6.2 The Spatiotemporal Dynamic Multipliers

It is straightforward to derive (dynamic) multipliers associated with unit changes
in xt, y∗t and x

∗
t on yt. Rewrite the STARDL(p, q) model, (57) as13

φi (L) yit = φ∗i (L) y∗it + πi (L)xit + π∗i (L)x∗it + uit (65)

where

φi (L) = 1−
p∑

h=1

φihL
h; φ∗i (L) = 1−

p∑
h=0

φ∗ihL
h; πi (L) =

q∑
h=0

π′ihL
h; π∗i (L) =

q∑
h=0

π∗′ihL
h.

Premultiplying (65) by the inverse of φi (L), we obtain:

yit = φ̃
∗
i (L) y∗it + π̃i (L)xit + π̃∗i (L)x∗it + ũit (66)

where φ̃
∗
i (L)

(
=
∑∞
j=0 φ̃

∗
ijL

j
)

= [φi (L)]
−1
φ∗i (L), π̃i (L)

(
=
∑∞
j=0 π̃

′
ijL

j
)

=

[φi (L)]
−1
πi (L), π̃∗i (L)

(
=
∑∞
j=0 π̃

∗′
ijL

j
)

= [φi (L)]
−1
π∗i (L) and ũit = [φi (L)]

−1
uit.

13To construct the dynamic multipliers, we should use the structural parameters in (57)
which are consistently estimated by the CF-augmented regression, (64).
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The dynamic multipliers, φ̃
∗
ij , π̃

′
ij and π̃

∗′
ij for j = 0, 1, ..., can be evaluated using

the following recursive relationships:

φ̃
∗
ij = φi1φ̃

∗
i,j−1 + φi2φ̃

∗
i,j−2 + · · ·+ φi,j−1φ̃

∗
i1 + φij φ̃

∗
i0 + φ∗ij , j = 1, 2, ... (67)

where φij = 0 for j < 1 and φ̃
∗
i0 = φ∗i0, φ̃

∗
ij = 0 for j < 0 by construction,

π̃′ij = φi1π̃
′
i,j−1 + φi2π̃

′
i,j−2 + · · ·+ φi,j−1π̃

′
i,1 + φijπ̃

′
i0 + π′ij , j = 1, 2, ... (68)

where π̃′i0 = π′i0, π̃
′
ij = 0 for j < 0, and

π̃∗′ij = φi1π̃
∗′
i,j−1 + φi2π̃

∗′
i,j−2 + · · ·+ φi,j−1π̃

∗′
i,1 + φijπ̃

∗′
i0 + π′ij , j = 1, 2, ... (69)

where π̃∗′i0 = π∗′i0, π̃
∗′
ij = 0 for j < 0.

Define the dynamic multiplier effects as

∂yi,t+h
∂y∗it

,
∂yi,t+h
∂x′it

=

[
∂yi,t+h
∂x1

it

, ...,
∂yi,t+h
∂xKit

]
1×K

,
∂yi,t+h
∂x∗′it

=

[
∂yi,t+h
∂x∗1it

, ...,
∂yi,t+h
∂x∗Kit

]
K×1

The cumulative dynamic multiplier effects of y∗it, xit and xit on yi,t+h for h =
0, ...,H, can be evaluated as follows:

myi (y∗i , H) =

H∑
h=0

φ̃
∗
ih,myi (xi, H) =

H∑
h=0

π̃′ih,myi (x∗i , H) =

H∑
h=0

π̃∗′ih, H = 0, 1, ...

By construction, as H →∞,

myi (y∗i , H)→ βyi; myi (xi, H)→ β′xi; myi (x∗i , H)→ β∗′xi

where βyi, βxi and β
∗
xi are the associated long-run coeffi cients.

Remark: An important feature of the SARDL model is to capture three
different forms of dynamic adjustment from initial equilibrium to the new equi-
librium following an economic perturbation with respect to domestic conditions,
overseas conditions and the overseas policy decisions.

• An investigation of the key parameters in (57) enables us to categorise the
group of countries, say countries that focus on domestic conditions only
(e.g. the US), and those that pay attention to both domestic and overseas
conditions. The small open economy may be likely to depend more on
overseas conditions and vice versa. Also differently in the short- and the
long-run.

• We may apply the mean group estimation of the key parameters and the
dynamic multipliers to see the overall mean patterns on a global scale.

We now develop spatial-dynamic multipliers more generally in terms of the
spatial system representation (58). We rewrite (58) as

Φ (L)yt = Φ∗ (L)Wyt + Π (L)xt + Π∗ (L) (W ⊗ ιK)xt + ut (70)
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where

Φ (L) = IN−
p∑

h=1

ΦhL
h; Φ∗ (L) =

p∑
h=0

Φ∗hL
h; Π (L) =

q∑
h=0

ΠhL
h; Π∗ (L) =

q∑
h=0

Π∗h (W ⊗ ιK)Lh

Premultiplying (70) by the inverse of Φ (L), we obtain:

yt = Φ̃
∗

(L)Wyt + Π̃ (L)xt + Π̃
∗

(L) (W ⊗ ιK)xt + ũt (71)

where Φ̃
∗

(L)
(

=
∑∞
h=0 Φ̃

∗
hL

h
)

= [Φ (L)]
−1

Φ∗ (L), Π̃ (L)
(

=
∑∞
h=0 Π̃hL

h
)

=

[Φ (L)]
−1

Π (L), Π̃
∗

(L)
(

=
∑∞
h=0 Π̃

∗
hL

h
)

= [Φ (L)]
−1

Π∗ (L), and ũt = [Φ (L)]
−1
ut.

The dynamic multipliers, Φ̃
∗
j , Π̃j and Π̃

∗
j for j = 0, 1, ..., can be evaluated using

the following recursive relationships:

Φ̃
∗
j = Φ1Φ̃

∗
j−1 + Φ2Φ̃

∗
j−2 + · · ·+ Φj−1Φ̃

∗
1 + ΦjΦ̃

∗
0 + Φ∗j , j = 1, 2, ... (72)

where Φj = 0 for j < 1 and Φ̃
∗
0 = Φ∗0, Φ̃

∗
j = 0 for j < 0,

Π̃j = Φ1Π̃j−1 + Φ1Π̃j−2 + · · ·+ Φj−1Π̃1 + Φ1Π̃0 + Πj , j = 1, 2, ... (73)

where Π̃0 = Π0, Π̃j = 0 for j < 0, and

Π̃
∗
j = Φ1Π̃

∗
j−1 + Φ1Π̃

∗
j−2 + · · ·+ Φj−1Π̃

∗
1 + Φ1Π̃

∗
0 + Π∗j , j = 1, 2, ... (74)

where Π̃
∗
0 = Π∗0, Π̃

∗
j = 0 for j < 0. The matrices of the cumulative dynamic

multiplier effects can be evaluated as follows:

my∗ (H) =

H∑
h=0

∂yt+h
∂y∗′t

=

H∑
h=0

Φ̃
∗
h,

mx (H) =

H∑
h=0

∂yt+h
∂x′t

=

H∑
h=0

Π̃h,mx∗ (H) =

H∑
h=0

∂yt+h
∂x∗′t

=

H∑
h=0

Π̃
∗
h,

Remark: my∗ (H), mx (H) and mx∗ (H) capture the dynamic multiplier
effects with respect to three different types of regressors, y∗t , xt and x

∗
t , respec-

tively. But, they are block-diagonal by construction because Φ̃
∗
h, Π̃h and Π̃

∗
h

are block-diagonal.

5.6.3 Diffusion Multipliers

We rewrite (59) as
Φ̃ (L)yt = Π̃ (L)xt + ũt, (75)

where ũt = (IN −Φ∗0W )
−1
ut,

Φ̃ (L) = IN −
p∑
j=1

Φ̃jL
j with Φ̃j = (IN −Φ∗0W )

−1 (
Φj + Φ∗jW

)
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Π̃ (L) =

q∑
j=0

Π̃jL
j with Π̃j = (IN −Φ∗0W )

−1
[Πh + Π∗h (W ⊗ ιK)]

Premultiplying (75) by the inverse of Φ̃ (L), we obtain:

yt = B (L)xt +
[
Φ̃ (L)

]−1

ũt, B (L)

=

∞∑
j=0

BjL
j

 =
[
Φ̃ (L)

]−1

Π̃ (L) (76)

The diffusion multipliers, Bj for j = 0, 1, ..., can be evaluated as follows:
Algebra:

Φ̃ (L)B (L) = Π̃ (L)IN − p∑
j=1

Φ̃jL
j

 ∞∑
j=0

BjL
j

 =

q∑
j=0

Π̃jL
j

(
IN − Φ̃1L− Φ̃2L

2 − Φ̃3L
3 − · · ·

) (
B0 +B1L+B2L

2 +B3L
3 + · · ·

)
= B0 +

(
−Φ̃1B0 +B1

)
L+

(
−Φ̃1B1 − Φ̃2B0 +B2

)
L2

+
(
−Φ̃1B2 − Φ̃2B1 − Φ̃3B0 +B3

)
L3 + · · ·

Therefore,
B0 = Π̃0

B1 = Φ̃1B0 + Π̃1

B2 = Φ̃1B1 + Φ̃2B0 + Π̃2

B3 = Φ̃1B2 + Φ̃2B1 + Φ̃3B0 + Π̃3

· · ·
Bj = Φ̃1Bj−1 + Φ̃2Bj−2 + · · ·+ Φ̃j−1B1 + Φ̃jB0 + Π̃j , j = 1, 2, ... (77)

where B0 = Π̃0 and Bj = 0 for j < 0 by construction.
Define the dynamic multiplier effects as

∂yt+h
∂x′t

=


∂y1,t+h
∂x11t

· · · ∂y1,t+h
∂xk1t

· · · ∂y1,t+h
∂x1Nt

· · · ∂y1,t+h
∂xkNt

∂y2,t+h
∂x11t

· · · ∂y2,t+h
∂xk1t

· · · ∂y2,t+h
∂x1Nt

· · · ∂y2,t+h
∂x1Nt

...
...

...
...

∂yN,t+h
∂x11t

· · · ∂yN,t+h
∂xk1t

· · · ∂yN,t+h
∂x1Nt

· · · ∂yN,t+h
∂xkNt


N×NK

(78)
Then, the matrices of the cumulative diffusion multiplier effects can be evaluated
as follows:

mx (H) =

H∑
h=0

∂yt+h
∂x′t

=

H∑
h=0

Bh, H = 0, 1, 2, ...
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The cumulative diffusion multiplier effects of x`jton yi,t+h are given by the
(i, (j − 1) k + `)th element of the N ×NK matrix, mx (H).
Consider the special case of the single regressor, xt with k = 1. Then, (78)

is simplified to

∂yt+h
∂x′t

=


∂y1,t+h
∂x1t

· · · ∂y1,t+h
∂xNt

. . .
∂yN,t+h
∂x1t

· · · ∂yN,t+h
∂xNt


N×N

, h = 0, 1, ... (79)

and similarly for mx (H).
Remark: In the case of homogeneous spatial panel models, LeSage and Pace

[2009] propose using the average of the main diagonal elements of the N × N
matrix as a summary measure of the own-partial derivatives that they label a
direct (own-region) effect. The direct effect for region i includes some feedback
loop effects that arise as a result of impacts passing through neighboring regions
j and back to region i. LeSage and Pace also propose an average of the (cumu-
lative) off diagonal elements over all rows (observations) to produce a summary
that corresponds to the cross-partial derivative or indirect (other-region) effect
associated with changes in the rth explanatory variable. Debarsy et al. (2012)
extend this cross-sectional reasoning to the case of dynamic space—time panel
data. This allows us to compute own- and cross-partial derivatives that trace
the effects (own-region and other-region) through time and space. Space—time
dynamic models produce a situation where a change in the ith observation of
the rth explanatory variable at time t will produce contemporaneous and fu-
ture responses in all regions’dependent variables yit+T as well as other-region
future responses yjt+T . This is due to the presence of an individual time lag
(time dependence), a spatial lag (spatial dependence) and a cross-product term
reflecting the space—time diffusion. The main diagonal elements of the N ×N
matrix sums for time horizon T represent (cumulative) own-region impacts that
arise from both time and spatial dependence. The sum of off-diagonal elements
reflects both spillovers measuring contemporaneous cross-partial derivatives and
diffusion measuring cross-partial derivatives that involve different time periods.
We note that it is not possible to separate out the time dependence from spillover
and diffusion effects. This implies that except from the contemporaneous effects
that represent pure spatial effects, future time horizons contain both time and
space diffusion effects, which cannot be distinguished from each other. Indeed
this approach is somewhat similar to Diebold-Yilmaz aggregate measures.
Remark: In the case with heterogeneous spatial coeffi cients, LeSage and

Chin (2016) propose use of theN diagonal elements in (79) to produce observation-
level direct effects estimates for each of the N regions. As estimates of region
specific (observation-level) indirect spill-in and spill-out effects (similar to from
and to-effects or in-degree or out-degree in network approach), they propose
use of the sum of off-diagonal elements in each row and column. In this regard,
initially, we may apply our GCM type approach tomx (H) at different horizons.
Remark: mx (H) captures the total diffusion multiplier effects with respect

to xt. It would be an important issue how to decompose the overall diffusion
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multipliers into the spatial and dynamic components. The model can be esti-
mated using the QML-type algorithms employed in the spatial literature.

• Add the GCM measures and network/graph approach to the analysis of
the dynamic or diffusion multipliers.

5.6.4 STARDL models with observed common factors

We can also add the global factors in a straightforward manner. We now consider
the STARDL(p, q) model with the G× 1 vector of observed global factors, gt =(
g1
t , ..., g

G
t

)′
(e.g. oil prices, commodity prices or the common currency such as

the Euro):14

yit =

p∑
h=1

φihyi,t−h+

q∑
h=0

π′ihxi,t−h+

p∑
h=0

φ∗ihy
∗
i,t−h+

q∑
h=0

π′∗ihx
∗
i,t−h+

q∑
h=0

ψ′ihgt−h+uit

(80)
Stacking the individual STARDL-F(p, q) regressions, (80), we have:

yt =

p∑
h=1

Φhyt−h+

q∑
h=0

Πhxt−h+

p∑
h=0

Φ∗hWyt−h+

q∑
h=0

Π∗h (W ⊗ ιK)xt−h+

q∑
h=0

Ψh

(
iN ⊗ gt−h

)
+ut

(81)
where iN is an N × 1 vector of unity,

Φh
N×N

=

 φ1h · · · 0
...

. . .
...

0 · · · φNh

 for h = 1, ...p, Φ∗h
N×N

=

 φ∗1h · · · 0
...

. . .
...

0 · · · φ∗Nh

 for h = 0, 1, ..., p

Πh
N×NK

=

 π′1h · · · 0
...

. . .
...

0 · · · π′Nh

 , Π∗h
N×NK

=

 π′∗1h · · · 0
...

. . .
...

0 · · · π′∗Nh

 ,

Ψh
N×NG

=

 ψ′1h · · · 0
...

. . .
...

0 · · · ψ′Nh

 for h = 0, 1, ..., q.

5.6.5 Special Case: STAR models with factors

We consider the STAR model with the heterogeneous parameters given by

yit = φiyit−1 + φ∗i0y
∗
it + φ∗i1y

∗
it−1 + uit (82)

where yit is the scalar dependent variable of the ith spatial unit at time t.

14For notational simplicity we use the same lag order q for the global factors.
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The spatial variable y∗it is defined by

y∗it =

N∑
j=1

wijyjt = wiyt with yt
N×1

= (y1t, ..., yNt)
′ (83)

where wi = (wi1, ..., wiN ) denotes a 1×N vector of spatial weights determined
a priori with wii = 0. Similarly,

y∗i,t−1 =

N∑
j=1

wijyj,t−1 = wiyt−1 with yt−1
N×1

= (y1,t−1, ..., yN,t−1)
′

Then, y∗t = (y∗1t, ..., y
∗
Nt)
′ can be expressed as

y∗t
N×1

=

 w1yt
...

wNyt

 = Wyt (84)

where W is the N ×N matrix of the spatial weights given by

W =

 w11 · · · w1N

...
. . .

...
wN1 · · · wNN

 =

 w1

...
wN

 with wii = 0 (85)

Stacking the individual STAR(1) regressions, (82), we have the following gen-
eralised spatial representation:

yt = Φyt−1 + Φ∗0Wyt + Φ∗1Wyt−1 + ut (86)

where

Φ
N×N

=

 φ1 · · · 0
...

. . .
...

0 · · · φN

 , Φ∗h
N×N

=

 φ∗1h · · · 0
...

. . .
...

0 · · · φ∗Nh

 for h = 0, 1

It is straightforward to develop the general STAR(p) model with the heteroge-
neous parameters as follows:

yit =

p∑
h=1

φihyi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h + uit (87)

Stacking the individual STAR(p) regressions, (87), we have the following gen-
eralised spatial representation:

yt =

p∑
h=1

Φhyt−h +

p∑
h=0

Φ∗hWyt−h + ut (88)
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where

Φh
N×N

=

 φ1h · · · 0
...

. . .
...

0 · · · φNh

 , h = 1, ...p, Φ∗h
N×N

=

 φ∗1h · · · 0
...

. . .
...

0 · · · φ∗Nh

 , h = 0, 1, ..., p

Remark: Spatial stability: The eigenvalues of Φ∗0W lie inside the unit
circle.
Remark: Time stability: We rewrite equation (88) as

yt =

p∑
h=1

Φ̃hyt−h + ũt, (89)

where Φ̃h = (IN −Φ∗0W )
−1

(Φh + Φ∗hW ), and ũt = (IN −Φ∗0W )
−1
ut. The

roots of the N ×N matrix polynomial Φ̃ (z) = IN −
∑p
h=1 Φ̃hz lie outside the

unit circle.
Suppose that the lag order p is selected suffi ciently large in which case uit’s

in (87) are free from serial correlations. To deal with the endogeneity of y∗it in
(87) we apply the control function approach. Consider the following CF DGP
for y∗it:

y∗it = ϕ′izit + vit with E (z′itvit) = 0 (90)

where zit be the L× 1 vector of exogenous variables:

zit =
(
z1′
it , z

2′
it

)
where z1

it be the L1 × 1 vector of exogenous variables included in (57) and z2
it

be the L2 × 1 vector of exogenous variables excluded.
We assume that the error terms uit and vit have a joint distribution:(

uit
vit

)
∼ iid (0,Σuv) , Σuv =

[
σ2
u σuv

σuv σ2
v

]
(91)

Furthermore, E (uit|vit) = ρvit and E (uit|vit) = σ2
e. The endogeneity of y

∗
it

comes from the correlation between uit and vit. Using (169), we can construct15

uit = ρvit + eit (92)

where ρ = E (vituit) /E
(
v2
it

)
. By construction, E (z′iteit) = 0 and E (viteit) =

0. Replacing uit, we obtain the following transformation of (87):

yit =

p∑
h=1

φihyi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h + ρvit + eit (93)

15 In the special case where (uit, vit)
′ has a jointly normal distribution, then

uit|vit ∼ N
(
σuv

σ2v
vit,

σ2uv
σ2v

)
and eit is independent of vit.
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where vit is the control variable, rendering eit uncorrelated with y∗it as well
as with vit in (93). In practice, we use the two-step procedure: (i) obtain
the reduced form residuals, v̂it = y∗it − ϕ̂

′
izit and (ii) then run the following

regression:

yit =

p∑
h=1

φihyi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h + ρv̂it + e∗it (94)

where e∗it = e∗it + ρ (ϕ̂i −ϕi)
′
zit depends on the sampling error in ϕ̂i unless

ρ = 0 (exogeneity test). Then, the OLS estimator from (94) will be consistent
for all the parameters.
It is straightforward to derive (dynamic) multipliers associated with unit

changes in y∗t on yt. Rewrite the STAR(p) model, (87) as

φi (L) yit = φ∗i (L) y∗it + uit (95)

where

φi (L) = 1−
p∑

h=1

φihL
h; φ∗i (L) = 1−

p∑
h=0

φ∗ihL
h.

Premultiplying (95) by the inverse of φi (L), we obtain:

yit = φ̃
∗
i (L) y∗it + ũit (96)

where φ̃
∗
i (L)

(
=
∑∞
j=0 φ̃

∗
ijL

j
)

= [φi (L)]
−1
φ∗i (L), and ũit = [φi (L)]

−1
uit. The

dynamic multipliers, φ̃
∗
ij , π̃

′
ij and π̃

∗′
ij for j = 0, 1, ..., can be evaluated using the

following recursive relationships:

φ̃
∗
ij = φi1φ̃

∗
i,j−1 + φi2φ̃

∗
i,j−2 + · · ·+ φi,j−1φ̃

∗
i1 + φij φ̃

∗
i0 + φ∗ij , j = 1, 2, ... (97)

where φij = 0 for j < 1 and φ̃
∗
i0 = φ∗i0, φ̃

∗
ij = 0 for j < 0 by construction.

Define the dynamic multiplier effects as ∂yi,t+h
∂y∗it

. Then, the cumulative dy-
namic multiplier effects of y∗it on yi,t+h for h = 0, ...,H, can be evaluated as
follows:

myi (y∗i , H) =

H∑
h=0

φ̃
∗
ih, H = 0, 1, ...

By construction, as H →∞,

myi (y∗i , H)→ β∗yi

where β∗yi is the long-run coeffi cient.
Remark: An important feature of the STAR model is to capture dynamic

(spillover) adjustment from initial equilibrium to the new equilibrium following
an perturbation with respect to overseas conditions
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• An investigation of the key parameters in (57) enables us to categorise
the group of countries, say countries that focus on domestic conditions
only (e.g. the US), and those that pay attention to both domestic and
overseas conditions. The small open economy may be likely to depend
more on overseas conditions and vice versa. Also differently in the short-
and the long-run. Still useful, but not quite suffi ciently informative about
the spatial and the dynamic multipliers.

We now develop spatial-dynamic multipliers in terms of the spatial system
representation (??), which we rewrite as

Φ (L)yt = Φ∗ (L)Wyt + ut (98)

where

Φ (L) = IN −
p∑

h=1

ΦhL
h; Φ∗ (L) =

p∑
h=0

Φ∗hL
h

Premultiplying (98) by the inverse of Φ (L), we obtain:

yt = Φ̃
∗

(L)Wyt + ũt (99)

where Φ̃
∗

(L)
(

=
∑∞
h=0 Φ̃

∗
hL

h
)

= [Φ (L)]
−1

Φ∗ (L), and ũt = [Φ (L)]
−1
ut. The

dynamic multipliers, Φ̃
∗
j for j = 0, 1, ..., can be evaluated using the following

recursive relationships:

Φ̃
∗
j = Φ1Φ̃

∗
j−1 + Φ2Φ̃

∗
j−2 + · · ·+ Φj−1Φ̃

∗
1 + ΦjΦ̃

∗
0 + Φ∗j , j = 1, 2, ... (100)

where Φj = 0 for j < 1 and Φ̃
∗
0 = Φ∗0, Φ̃

∗
j = 0 for j < 0 by construction.

Define the dynamic multiplier effects as

∂yt+h
∂y∗′t

=


∂y1,t+h
∂y∗1t

∂y1,t+h
∂y∗2t

· · · ∂y1,t+h
∂y∗Nt

∂y2,t+h
∂y∗1t

∂y2,t+h
∂y∗2t

· · · ∂y2,t+h
∂y∗Nt

...
...

. . .
...

∂yN,t+h
∂y∗1t

∂yN,t+h
∂y∗2t

· · · ∂yN,t+h
∂y∗Nt


N×N

{Q} What’s ∂yi,t+h∂yjt
? Say,

∂y1,t+h

∂y2t
=
∂y1,t+h

∂y∗1t
× w12 +

∂y1,t+h

∂y∗2t
× w22 + · · ·+ ∂y1,t+h

∂y∗Nt
× wn2

Hence,

∂yi,t+h
∂yjt

=
∂yi,t+h
∂y∗1t

× w1j +
∂yi,t+h
∂y∗2t

× w2j + · · ·+ ∂yi,t+h
∂y∗Nt

× wnj

=

N∑
k=1

∂yi,t+h
∂y∗kt

× wkj for i 6= j
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Then, what about ∂yi,t+h∂yit
? Simply set to zero? More??

The matrix of the cumulative dynamic multiplier effects can be evaluated as
follows:

my∗ (H) =

H∑
h=0

∂yt+h
∂y∗′t

=

H∑
h=0

Φ̃
∗
h

The cumulative dynamic multiplier effects of y∗jt on yit is given by the (i, j)th
element of the N ×N matrix my∗ (H).
Remark: my∗ (H) captures the dynamic multiplier effects with respect to

y∗t . But, they are block-diagonal by construction:

my∗ (H)
N×N

=

 my1 (y∗1 , H) · · · 0
...

. . .
...

0 · · · myN (y∗N , H)


because Φ̃

∗
h is block-diagonal.

Diffusion IRF and FEVD We rewrite (88) as (see also (89)):

Φ̃ (L)yt = ũt, (101)

where ũt = (IN −Φ∗0W )
−1
ut,

Φ̃ (L) = IN −
p∑
j=1

Φ̃jL
j with Φ̃j = (IN −Φ∗0W )

−1 (
Φj + Φ∗jW

)
Premultiplying (101) by the inverse of Φ̃ (L), we obtain:

yt =
[
Φ̃ (L)

]−1

ũt =
[
Φ̃ (L)

]−1

(IN −Φ∗0W )
−1
ut (102)

from which we can construct (diffusion) IRF and FEVD. {Q} with respect to
ũt or ut, probably ut (can we assume ut as structural?)

More to follow: Algebra:

With Factors In the spatial modelling it is implicitly assumed that uit is iid
across spatial units or spatially correlated:

uit = λWut + εit.

Now we introduce the common factor structure as in QVAR paper such that16

ut = Λf t + vt.

16Shi and Lee (2017) also postulate that the error term in a SAR panel equation can be
decomposed into a common factor component and an idiosyncratic component, where common
factors can potentially correlate with included regressors. See also HLP17??
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Then, (82) can be extended as

yit = φiyit−1 + φ∗i0y
∗
it + φ∗i1y

∗
it−1 + λ′if t + vit (103)

where vit contains the idiosyncratic components which are mutually uncorre-
lated across (i, j). More generally, we have STAR(p) with (observed) factors:

yit =

p∑
h=1

φihyi,t−h +

p∑
h=0

φ∗ihy
∗
i,t−h + λ′if t + vit (104)

To deal with the endogeneity of y∗it we apply the control function approach
described above. Then, (104) can be expressed as

Φ̃ (L)yt = (IN −Φ∗0W )
−1

(Λf t + vt) (105)

from which we can construct IRF and FEVD.
Remark: This is quite parsimonious specification, implying that we can

include the large N spatial units, so another way of circumventing the curse of
input dimensionality (e.g. 100 or 1000 asset returns). Further, we may argue
that vit would carry certain structural interpretations.

5.7 GVAR-SPVAR Model

Consider a global economy consisting of N economies, indexed by i = 1, .., N ,
and denote the country-specific variables by an mi × 1 vector yit, and the
country-specific foreign variables by an m∗i × 1 vector y∗it =

∑N
j=1 wijyjt where

wij ≥ 0 is the set of granular weights with
∑N
j=1 wij = 1, and wii = 0 for all

i (e.g. Pesaran, 2006 and GNS). The country-specific VARX∗ (2, 2) model can
be written as

yit = hi0 +hi1t+ Φi1yi,t−1 + Φi2yi,t−2 + Ψi0y
∗
it + Ψi1y

∗
i,t−1 + Ψi2y

∗
i,t−2 +uit

(106)
where the dimension of hij and δij , j = 0, 1, 2, is mi × 1 while the dimensions
of Φij and Ψij , j = 0, 1, 2, are mi × mi and mi × m∗i . GNS assume that
uit ∼ iid (0,Σii) where Σii is an mi ×mi positive definite matrix.

5.7.1 Spatial VAR (SPVAR) Models

Beenstock and Felsenstein (2007) propose the panel VAR model with both spa-
tial and time lags, which they refer to as spatial vector autoregressions (SpVAR):

Ynt = µn + θWYnt +

q∑
j=1

βjYn,t−j + λWYn,t−1 + unt

unt = ρun,t−1 + δWunt + γWun,t−1 + εnt with σni = Cov (εn, εi)

The SpVAR resembles the SDPD except that Ynt are allowed to be a K × 1
vector.
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The structural multivariate counterpart is (SPSVAR):

Yknt = µkn +

K∑
i=1

(
αkiYint + βkjYin,t−1 + θkiY

∗
int + λkiY

∗
in,t−1

)
+ εknt (107)

where µ’s are region-specific effects, α’s are within-region contemporaneous
causal effects between Y ’s with αkk = 0, θ’s are spatial lag coeffi cients, β’s
are temporal lag coeffi cients, and λ’s are lagged spatial lag coeffi cients.
Denote by A, B, Θ and Λ the K ×K coeffi cient matrices for αs, βs, θs and

λs, respectively. We then express (107) as follows:

Yt = µ+A∗Yt +B∗Yt−1 + Θ∗Y ∗t + Λ∗Y ∗t−1 + εt (108)

where Y is an NK × 1 vector of observations stacked by n, µ is an NK × 1
vector of regional-specific effects,

A∗ = IN ⊗A, B∗ = IN ⊗B, Θ∗ = IN ⊗Θ, Λ∗ = IN ⊗ Λ,

are NK ×NK block diagonal matrices. Yt and Y ∗t are not independent of εt.
(108) has a corresponding reduced form:

Yt = Π0 + Π1Yt−1 + Π2Y
∗
t + Π3Y

∗
t−1 + vt (109)

where Π0 = (INK −A∗)−1
µ, Π1 = (INK −A∗)−1

B∗, Π2 = (INK −A∗)−1
Θ∗,

Π3 = (INK −A∗)−1
Λ∗, and vt = (INK −A∗)−1

εt. There are K(K − 1) un-
known A coeffi cients, K2 unknown coeffi cients for each of B, Θ, and Λ, and there
are NK unknown variances for Σε, making a total of K(4K − 1) + K = 4K2

unknown structural parameters in (108). In (109) there are 3K2 data restric-
tions from Πs and Σv provides 1

2K(K + 1) further restrictions. Therefore, the
SpVAR underidentifies the structural parameters and the identification deficit
is 1

2K(K − 1).
Beenstock and Felsenstein (2007) note that "incidental parameter problem"

arises and LSDV estimated B∗ has O(1/T ) downward bias when T is finite, and
further issues arise because q is unknown. When q = 1, they propose the bias-
corrected estimator following Hsiao (2003). They show that impulse responses
of SpVAR help to simulate the spatial-temporal dynamic effects of exogenous
shocks.

• Add the review on more recent SPVAR Models: e.g. Mutl (2009) and
Spatial Panel Vector Autoregression by Xie (2015).

5.7.2 The spatial representation of the GVAR model

For convenience we assume mi = k and m = Nk. Define the m × 1 vector of
the global variables:

yt
m×1

= (y′1t, ...,y
′
Nt)
′ with yit

k×1

= (y1,it, ..., yk,it)
′
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Define the N ×N weight matrix:

W =


w11 w12 w1N

w21 w22 w2N

. . .
wN1 wN2 wNN

 =


w1

w2

...
wN


Then, we have:

y∗it
k×1

=
(
y∗1,it, ..., y

∗
k,it

)′
= (wi ⊗ Ik)yt, y

∗
t

m×1
= (y∗′1t, ...,y

∗′
Nt)
′

= (W ⊗ Ik)yt

Thus, (106) can be written as (drop hi0 + hi1t without loss of generality):

yit = Φi1yi,t−1+Φi2yi,t−2+Ψi0 (wi ⊗ Imi)yit+Ψi1 (wi ⊗ Imi)yit−1+Ψi2 (wi ⊗ Imi)yit−2+uit
(110)

Further,

y1t = Φ11y1,t−1+Φ12y1,t−2+Ψ10 (w1 ⊗ Ik)y1t+Ψ11 (w1 ⊗ Ik)y1t−1+Ψ12 (w1 ⊗ Ik)y1t−2+u1t

...

yNt = ΦN1yN,t−1+ΦN2yN,t−2+ΨN0 (wN ⊗ Ik)yNt+ΨN1 (wN ⊗ Ik)yNt−1+ΨN2 (wN ⊗ Ik)yNt−2+uNt

Stacking these results. we have:
y1t

y2t
...
yNt

 =


Φ11 0 0

0 Φ21 0
. . .

0 0 ΦN1



y1t−1

y2t−1
...

yNt−1

+


Φ12 0 0

0 Φ22 0
. . .

0 0 ΦN2



y1t−2

y2t−2
...

yNt−2



+


Ψ10 0 0

0 Ψ20 0
. . .

0 0 ΨN0



y∗1t
y∗2t
...
y∗Nt

+


Ψ11 0 0

0 Ψ21 0
. . .

...
0 0 ΨN1



y∗1t−1

y∗2t−1
...

y∗Nt−1



+


Ψ12 0 0

0 Ψ22 0
. . .

0 0 ΨN2



y∗1t−2

y∗2t−2
...

y∗Nt−2

+


u1t

u2t

...
uNt


Hence, we have:

yt = Φ1yt−1 + Φ2yt−2 + Ψ0y
∗
t + Ψ1y

∗
t−1 + Ψ2y

∗
t−2 + ut (111)

= Φ1yt−1 + Φ2yt−2 + Ψ0 (W ⊗ Ik)yt + Ψ1 (W ⊗ Ik)yt−1 + Ψ2 (W ⊗ Ik)yt−2 + ut

Alternatively, (111) can be written as

(Im −Ψ0 (W ⊗ Ik))yt = (Φ1 + Ψ1 (W ⊗ Ik))yt−1+(Φ2 + Ψ2 (W ⊗ Ik))yt−2+ut
(112)
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or {(
Im −Φ1L−Φ2L

2
)
−
(
Ψ0 + Ψ1L+ Ψ2L

2
)

(W ⊗ Ik)
}
yt = ut (113)

Remark: The above representation clearly shows that SPVAR is the special
case of GVAR. Notice in the GVAR modelling that we are interested in IRFs
in terms of

∂yt+h
∂ut

, which are the combination of the spatial and dynamic ones.
So it would be an important issue how to decompose the overall IRFs into the
spatial and dynamic components.
Remark: We may also be interested in evaluating the dynamic multipliers

in terms of
∂y1,t+h
∂y2t

or vice versa where yt = (y′1ty
′
2t)
′, but this is not quite

straightforward (see the STARDL model above). When we add the global fac-
tors, denoted f t, such as the oil or commodity prices, it is straightforwrad to
derive the dynamic multipliers in terms of

∂yt+h
∂ft

, say.

6 The Joint Modelling of the Spatial Depen-
dence and Unobserved Factors

There has been the massive development of modelling CSD in the double-
indexed panel data (e.g. Pesaran, 2006 and Bai, 2009). There have been two
main approaches: The spatial effects deal with weak CSD whilst the factor ap-
proach accommodates strong CSD. Recently, a few studies attempted to develop
a combined approach that can accommodate both weak and strong CSD.
Bailey et al. (2016) develop the multi-step estimation procedure that can

distinguish the relationship between spatial units that is purely spatial from
that which is due to common factors. Mastromarco et al. (2015) propose the
novel technique in modelling technical effi ciency of stochastic frontier panels
by combining the exogenously driven factor-based approach and an endogenous
threshold regime selection advanced by Kapetanios et al. (2014). Gunella et
al. (2015) develop the unified framework for modelling multilateral resistance
and bilateral heterogeneity simultaneously in panel gravity models. Shi and
Lee (2016), Bai and Li (2015) and Kuersteiner and Prucha (2015) have also
developed the framework for jointly modelling spatial effects and interactive
effects.
YC: update

6.1 The SDPD Models with Interactive Fixed Effects

6.1.1 SDPD Models with Interactive Fixed Effects by Shi and Lee
(2017)

Shi and Lee (2017) consider the following SDPD model with large n and T :

Y nt = λ0W nY nt + γ0Y n,t−1 + ρ0W nY n,t−1 +Xntβ0 + Γ0nf0t +Unt (114)

Unt = α0W̃ nUnt + εnt
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where Y nt is an n-dimensional column vector of dependent variables andXnt is
an n× (K−2) matrix of exogenous regressors, so that the total number of vari-
ables is K. The model accommodates two types of cross sectional dependences,
namely, local dependence and global (strong) dependence. Individual units are
impacted by time varying unknown common factors f0t, which capture global
(strong) dependence. The effects of the factors can be heterogeneous on the
cross section units, Γ0n. For example, in an earnings regression where Ynt is the
wage rate, each row of Γ0n may correspond to a vector of an individual’s skills
and f0t is its time varying premium. The true number of unobserved factors
is assumed to be fixed at r0 that is much smaller than n and T . The matrix
of n × r0 factor loading Γ0n and the T × r0 factors F 0t = (f01, f02, ..., f0t)

′

are treated as fixed effects parameters17 . The fixed effects approach allows un-
known correlation between the time factors and the regressors. The n×n spatial
weights matricesW n and W̃ n represent local (spatial) dependence. λ0W nY nt

describes the contemporaneous spatial interactions. γ0Y n,t−1 captures the pure
dynamic effect. ρ0W nY n,t−1 is a spatial time lag of interactions, which cap-
tures diffusion. The idiosyncratic error Unt with elements of εit being iid(0, σ2

0)
also possesses a spatial structure W̃ n.
The model has a rich spatial structure where a spatial weights matrix is

specified to measure the relative magnitudes of spatial interactions. They con-
sider a quasi-maximum likelihood estimation and show estimator consistency
and characterize its asymptotic distribution. When n and T are comparable,
the estimator is

√
nT consistent. The Monte Carlo experiment shows that the

estimator performs well and the proposed bias correction is effective.

QML Estimation The parameters for the model are θ =
(
δ′, λ, α

)′
with δ =

(γ, ρ, β)′, σ2, Γn and F T . Collect the exogenous regressors by the n× K matrix
Znt = (Y n,t−1,W nY n,t−1,Xnt), where K = k+2. Denote Sn(λ) = In− Wn

and Rn(α) = In − αW̃n. The sample averaged quasi-log likelihood function is

Qnt(θ, σ
2,Γn,F T ) = −1

2
log 2π − 1

2
log σ2 +

1

n
log |Sn(λ)Rn(α)|

− 1

2σ2nT

T∑
t=1

{Sn(λ)Y nt −Zntδ − Γnf t}
′
Rn(α)′Rn(α) {Sn(λ)Y nt −Zntδ − Γnf t}

17Since ΓnFt is observationally equivalent to ΓnHH−1ft for any r×r invertible matrix H, r2
restrictions are needed to uniquely determine Γn and Ft. One set of restrictions has: 1

n
Γ′nΓn =

Ir and F ′TFT is diagonal with positive diagonals. The first condition imposes 1
2

(r2 + r)

restrictions and the second one provides additional 1
2

(r2 − r) ones. There is “rotational
indeterminacy”in the sense that the order of the factors can be switched. Let K be the matrix
of eigenvectors of F ′TFT . Because F

′
TFT is diagonal under restriction, K is a permutation

in the columns of Ir . It can be verified that Γ̃n and F̃t satisfy the restrictions above, with
Γ̃n = ΓnK and F̃T = FTK. This indeterminacy can be eliminated by requiring the diagonals
of F ′TFT to be in decreasing or increasing order. Here Γn and Ft are treated as nuisance
parameters and the above restrictions are not imposed.
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Concentrating out σ2 and dropping the overall constant term for simplicity,

Qnt(θ,Γn,F T ) =
1

n
log |Sn(λ)Rn(α)|

−1

2
log

[
1

nT

T∑
t=1

{Sn(λ)Y nt −Zntδ − Γnf t}
′
Rn(α)′Rn(α) {Sn(λ)Y nt −Zntδ − Γnf t}

]

is a concentrated sample averaged log likelihood function of θ, Γn and F T .
Because for our estimation method, no restriction is imposed on Γn and Rn(α)
is assumed invertible for α, optimizing with respect to Γn ∈ Rn×r is equivalent
to optimizing with respect to the transformed Γ̃n with Γ̃n = Rn(α)Γn. The
objective function can be equivalently written as

Qnt(θ, Γ̃n,F T ) =
1

n
log |Sn(λ)Rn(α)|

−1

2
log

[
1

nT

T∑
t=1

{Rn(α) (Sn(λ)Y nt −Zntδ)}′ {Rn(α) (Sn(λ)Y nt −Zntδ)}
]

Because the parameter of interest is θ and it is easier to optimize with respect to
a finite dimensional vector, we concentrate out factors and their loadings using
the principal component theory: for an n× T matrix HnT ,

min
FT∈RT×r,Γ̃n∈Rn×r

tr
(
HnT − Γ̃n,F

′
T

)(
HnT − Γ̃n,F

′
T

)′
= min

FT∈RT×r
tr
(
HnTMFTH

′
nT

)
=

n∑
i=r+1

µi
(
HnTH

′
nT

)
where the jth column of F̂ T is the eigenvector corresponding to the jth largest
eigenvalue of H ′nTHnT . Because Γ̃nF

′
T cannot be separately identified from

Γ̃nMM−1F ′T for an invertible matrix M , the identification conditions that
F ′TF T = Ir and Γ̃

′
n Γ̃n is diagonal have been imposed. The estimated factors

and factor loadings will be rotations of their true values. However, the asymp-
totic distribution of our QML estimator is unaffected by the normalizations
because the space spanned by the factors and their loadings do not change. The
concentrated log likelihood is

Qnt(θ) = max
FT∈RT×r,Γ̃n∈Rn×r

Qnt(θ, Γ̃n,F T )

=
1

n
log |Sn(λ)Rn(α)| − 1

2
logLnT (θ)

with

LnT (θ) = µ

 1

nT

T∑
t=1

Rn(α)

(
Sn(λ)−

K∑
k=1

Zkδk

)(
Sn(λ)−

K∑
k=1

Zkδk

)′
Rn(α)′
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The QML estimator is
θ̂nT = arg max

∈
Qnt(θ).

The estimate for Γ̃n can be obtained as the eigenvectors associated with the first

r largest eigenvalues ofRn(α)
(
Sn(λ)−

∑K
k=1Zkδk

)(
Sn(λ)−

∑K
k=1Zkδk

)′
Rn(α)′.

By switching n and T , the estimate for F T can be similarly obtained. Note that
the estimated Γ̃n and F T are not unique, as Γ̃nHH

−1F ′T is observationally
equivalent to Γ̃nF

′
T for any invertible r × r matrix H. However, the column

spaces of Γ̃n and F T are invariant to H, hence the projectorsM Γ̃n
and MFT

are uniquely determined.

6.1.2 Dynamic spatial panel data models with common shocks by
Bai and Li (2015)

Bai and Li (2015) consider jointly modeling spatial interactions, dynamic inter-
actions and common shocks within the following model:

yit = αi + ρ

N∑
j=1

wij,Nyjt + δyit−1 + x′itβ + λ′if t + eit (115)

where yit is the dependent variable, xit = (xit1, ..., xitk)
′ is a k-dimensional

vector of explanatory variables, f t is an r-dimensional vector of unobserv-
able common shocks; λi is the heterogenous response to the common shocks,
WN = (wij,N )N×N is a spatial weights matrix whose diagonal elements wii,N
are 0, and eit are the idiosyncratic errors. λ

′
if t captures the common-effects,∑N

j=1 wij,Nyjt captures the spatial effects, and δyit−1 captures the dynamic ef-
fects. The joint modeling allows one to test which type of effects is present. We
may test ρ = 0 while allowing common-shocks effects and dynamic effects, or
similarly, we may determine if the number of factors is zero in a model with
spatial effects and dynamic effects. The features of model (115) make it flexible
enough to cover a wide range of applications.
An additional feature of the model is the allowance of cross sectional het-

eroskedasticity. If heteroskedasticity exists but homoskedasticity is imposed,
MLE can be inconsistent. Under large-N , the consistency analysis for MLE
under heteroskedasticity is challenging even for spatial panel models without
common shocks, owing to the simultaneous estimation of a large number of
variance parameters along with (ρ, δ,β). Interestingly, we show that the lim-
iting variance of the MLE is not of a sandwich form if heteroskedasticity is
allowed.
The spatial interaction on the dependent variable gives rise to the endogene-

ity problem while the spatial interaction on the errors does not. As a result,
existing estimation methods on the common shocks models such as Pesaran
(2006) and Bai (2009) cannot be directly applied to model (115) due to the
endogeneity from the spatial interactions.
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Real data often have complicated correlation over cross section and time.
Modeling, estimating and interpreting the correlations in data are particu-
larly important in economic analysis. This paper integrates several correlation-
modeling techniques and propose dynamic spatial panel data models with com-
mon shocks to accommodate possibly complicated correlation structure over
cross section and time. A large number of incidental parameters exist. The
QML is proposed and heteroskedasticity is explicitly estimated. Our analysis
indicates that the MLE has a non-negligible bias. We propose a bias correction
method. The simulations reveal the excellent finite sample properties of the
QMLE after bias correction.

6.1.3 Dynamic Spatial Panel Models: Networks, Common Shocks,
and Sequential Exogeneity by Kuersteiner and Prucha (2015)

We consider panel data {yt, xt, zt}Tt=1, where yt = [y1t, ..., ynt]
′, xt = [x′1t, ..., x

′
nt]
′,

and zt = [z′1t, ..., z
′
nt]
′ denote the vector of the endogenous variables, and the

matrices of kx weakly exogenous and kz strictly exogenous variables. The spec-
ification allows for temporal dynamics in that xit may include a finite number
of time lags of the endogenous variables.
We allow in each period t for the regressors and disturbances to be affected

by common shocks. Alternatively we allow for CSD from “spatial lags” in the
endogenous variables, the exogenous variables and in the disturbance process.
Our specification accommodates higher order spatial lags, as well as time lags in
xit. Spatial lags represent weighted cross sectional averages, where the weights
will be reflective of some measure of distance between units. The spatial weights
will be summarized by n× n spatial weight matrices denoted as Wpt = (wp,ijt)
and Mqt = (mq,ijt). εt = [ε1t, ..., εnt]

′ denotes the vector of regression distur-
bances, ut = [u1t, ..., unt]

′ denotes the vector of idiosyncratic disturbances, and
µ is an n × 1 vector of unobserved factor loadings or individual specific fixed
effects, which may be time varying through a common unobserved factor ft.
Let λ and ρ be P,Q dimensional vectors of parameters with typical elements λp
and ρq and define

Rt (λ) =

P∑
p=1

λpWpt for SAR

R∗t (ρ) = I −
Q∑
q=1

ρqMqt for a spatial autoregressive error term

R∗t (ρ) =

(
I +

Q∑
q=1

ρqMqt

)−1

for a spatial moving average error term

Then, the dynamic and cross sectionally dependent panel data model can be
written as

yt = Rt (λ) yt + xtβx + ztβz + εt = Xtδ + εt (116)

R∗t (ρ) εt = µft + ut
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where Xt = [M1tyt, ...,MPtyt, xt, zt] and δ =
[
λ′, β′

]′
with β =

(
β′x, β

′
z

)′
. As a

normalization we take

wp,iit = mq,iit = 0 and fT = 1

Note that (116) is a system of n equations describing simultaneous interac-
tions between the individual units. The weighted averages, ȳp,it =

∑n
j=1 wp,ijtyjt

and ε̄q,it =
∑n
j=1mq,ijtεjt model contemporaneous direct cross-sectional inter-

actions. We allow the weights to be stochastic and endogenous in that they can
depend on µ1, ..., µN and uit, and can be correlated with the disturbances εt.
This extension is important to model sequential group formation as in Carrell
et.al. (2013) or endogenous network formation as in Goldsmith-Pinkham and
Imbens (2013).
The reduced form is given by

yt = (In −Rt (λ))
−1
Wtδ + (In −Rt (λ))

−1
εt (117)

εt = R∗t (ρ)
−1

(µft + ut)

Applying a Cochrane-Orcutt type transformation by premultiplying the first
equation in (116) with R∗t (ρ) yields

R∗t (ρ) yt = R∗t (ρ)Wtδ + µft + ut (118)

Three examples:

1. The social interactions model by Graham (2008) illustrates the use of
both spatial interaction terms and interactive effects in a social interaction
model;

2. The analysis of the group level heterogeneity is based on Carrell et. al.
(2013), which illustrates the use of higher order, and data-dependent spa-
tial lags to model within-group heterogeneity. By allowing Rt (λ) to de-
pend on predetermined outcomes we can accommodate the fact that group
membership is not exogenous;

3. The next example is in the area of health, and considers the spread of an
infectious disease.

Kuersteiner and Prucha (2015) consider a class of GMM estimators, allow-
ing for CSD due to spatial lags and due to common shocks. They expand the
scope of the existing literature by allowing for endogenous spatial weight ma-
trices, time-varying interactive effects, as well as weakly exogenous covariates.
An important area of application is in social interaction and network models
where specification can accommodate data dependent network formation. Iden-
tification of spatial interaction parameters is achieved through a combination of
linear and quadratic moment conditions. They develop an orthogonal forward
differencing transformation to aid in the estimation of factor components while
maintaining orthogonality of moment conditions. In the social interactions ex-
ample, orthogonal forward differencing amounts to controlling for unobserved
correlated effects by combining multiple outcome measures.
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6.2 Other Approaches

Introducing factors into a model is a way to specify possible CSD. Chudik,
Pesaran and Tosetti (2011) introduce the concepts of time-specific weak and
strong CSD in panel data models. A factor model allows time effects to interact
with spatial units with different intensity.
Pesaran and Tosetti (2011) investigate the following model with both com-

mon factors and spatial correlation:

yit = α′idt + β′ixit + γ′if t + eit, (119)

where dt is a k × 1 vector of observed common effects, xit is the kx × 1
vector of observed individual specific regressors, f t is an m-dimensional vector
of unobservable common factors, and γi is the m× 1 vector of factor loadings.
The common factors f t simultaneously affect all cross section units, albeit with
different intensity as measured by γ′i. The eit follows some spatial process, either
an SAR or SMA process.
To estimate the parameters of interest (the mean of βi), we can use the mean

group estimator

β̂MG =
1

n

n∑
i=1

β̂i

where β̂i is the OLS estimate of yi regressed on Xi after the orthogonal pro-
jection of data by a T × (k + kx + 1) matrixMD where D consists of observed
common factor and cross sectional average of dependent and independent vari-
ables, e.g.

β̂i =
(
X ′iMDXi

)−1
X ′iMdyi

where Xi is a T × kx vector of regressors for the ith unit, yi is a T × 1 vector
of the dependent variable for the ith unit, and MD = IT − D

(
D′D

)−1
D.

Alternatively, the regression coeffi cient β can be obtained by a pooled estimate:

β̂P =

(
n∑
i=1

X ′iMDXi

)−1 n∑
i=1

X ′iMdyi

Given the spatial structure in eit, Pesaran and Tosetti (2011) derive the asymp-
totic properties of β̂MG and β̂MG under difference scenarios such as whether
the unobserved common factor is present or not and whether the regression pa-
rameters are heterogeneous or not. Pesaran and Tosetti (2011) then consider
the Common Correlated Effects (CCE) estimator advanced by Pesaran (2006),
which continues to yield estimates of the slope coeffi cients that are consistent
and asymptotically normal. Holly, Pesaran, and Yamagata (2010) use (119) to
analyze the changes in real house prices in the US. They have also specified
a spatial process in eit, which is shown to be significant after controlling for
unobserved common factors.
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Chudik, Pesaran, and Tosetti (2011) extend the model by allowing additional
weakly dependent common factors. Their model is

yit = α′idt + β′ixit + γ′ift + λ′int + eit, (120)

where nt, uncorrelated with the regressor xit, is the additional weakly dependent
common factors with dimension of the factor loading coeffi cients λi going to
infinity. They show that the CCE method still yields consistent estimates of
the mean of the slope coeffi cients and the asymptotic normal theory continues
to be applicable.
Holly, Pesaran, and Yamagata (2011) provide a method for the analysis of

the spatial and temporal diffusion of shocks in a dynamic system. They gener-
alize VAR panel models with unobserved common factors to incorporate spatial
elements in the dynamic coeffi cient matrix. With coeffi cients being spatial unit
specific, consistent estimation has emphasized on T tending to infinity while
the number of spatial units can be moderate or large. They use changes in real
house prices within the UK economy, and analyze the effect of shocks using
generalized spatiotemporal impulse responses.
The spatial panel data models assume a time invariant spatial weights ma-

trix. When the spatial weights matrix is constructed with economic/socioeconomic
distances or demographic characteristics, it can be time varying. For example,
Case, Hines, and Rosen (1993) on state spending have weights based on the
difference in the percentage of the population that is black. Lee and Yu (2012b)
investigate the QML estimation of SDPD models where spatial weights matrices
can be time varying. They find that QML estimate is consistent and asymp-
totically normal. Monte Carlo results show that, when spatial weights matrices
are substantially varying over time, a model misspecification of a time invariant
spatial weights matrix may cause substantial bias in estimation.

6.2.1 A Nonlinear Panel Data Model of Cross-Sectional Dependence

Kapetanios, Mitchell and Shin (2014) propose a nonlinear panel data model
which can endogenously generate both ‘weak’and ‘strong’CSD. The model’s
distinguishing characteristic is that a given agent’s behaviour is influenced by
an aggregation of the views or actions of those around them. The model allows
for considerable flexibility in terms of the genesis of this herding or clustering
type behaviour. At an econometric level, the model is shown to nest various
extant dynamic panel data models. These include panel AR models, spatial
models, which accommodate weak dependence only, and panel models where
cross-sectional averages or factors exogenously generate strong CSD. An impor-
tant implication is that the appropriate model for the aggregate series becomes
intrinsically nonlinear, due to the clustering behaviour.
We propose dynamic nonlinear panel data models:

xi,t = ρ

N∑
j=1

wij (x−i,t−1, xi,t−1; γ)xj,t−1 + εi,t, i = 1, ...N, t = 1, ...T, (121)
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where x−i,t = (x1,t, x2,t, ..., xi−1,t, xi+1,t, ..., xNt)
′ and

∑N
j=1 wij (x−i,t−1, xi,t−1; γ) =

1. This form of the model signifies that xi,t depends, possibly in a nonlinear
fashion depending on how wij is parameterised, on weighted averages of past
values of xt = (x1,t, ..., xNt)

′, where the weights depend on xt−1. One particu-
lar motivation is structural and follows from the claim that it mimics structural
interactions between economic units. Another, more econometric, justification
notes that this model can accommodate generic forms of CSD, including evolv-
ing clusters.
The model in (448) encompasses a wide variety of nonlinear specifications.

We place particular emphasis on specifications where the weights depend on xt−1

only through distances of the form |xj,t−1 − xi,t−1|. This type of specification
is easy to analyse, based on a threshold mechanism, to illustrate the class of
models. This model nests a variety of dynamic panel data models, such as panel
data AR models and panel models where cross-sectional averages are used to
pick up CSD (Pesaran, 2006). Interestingly, it is also closely related to factor
or interactive effects models (Bai, 2009).
Our models provide an intuitive means by which many forms of cross-

sectional dependence can arise in a large panel dataset comprised of variables of
a ‘similar’nature that relate to different agents/units. These variables might be
the disaggregates underlying often studied macroeconomic or financial aggre-
gates, such as economy-wide inflation or the S&P500 index. In particular, the
model allows these different economic units to cluster; and for these clusters (in-
cluding their number) to evolve over time. Such clustering also has implications
when modelling and forecasting the aggregate of these units.
The degree of CSD in our models can vary, from a case where it is similar to

standard factor models, for which the largest eigenvalue of the variance covari-
ance matrix of the data tends to infinity at rate N , to the case of very weak or
no factor structure where this eigenvalue is bounded as N →∞. Of course, all
intermediate cases can arise as well. Our model constitutes the first attempt to
introduce endogenous cross-sectional dependence into a panel modelling frame-
work.
Let xi,t denote the variable of interest, such as the agent’s income or the

agent’s view of the future value of some macroeconomic variable, at time t, for
agent i. Then, we specify:

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + εi,t, t = 2, ..., T, i = 1, ..., N,

(122)
where

mi,t =

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r) ,

{εi,t}Tt=1 is an error process, I (.) is the indicator function and −1 < ρ < 1.
Verbally, the above model states that xi,t is influenced by the cross-sectional
average of a selection of xj,t−1 and in particular that the relevant xj,t−1 are those
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that lie closest to xi,t−1. The model involves a K nearest neighbor mechanism
except that it is in the data generating process and not as a technique to estimate
an unknown function. This formalises the intuitive idea that people are affected
more by those with whom they share common views or behaviour. The model
may be equally viewed as a descriptive model of agents’behaviour, reflecting
the fact that ‘similar’agents are affected by ‘similar’effects, or as a structural
model of agents’views whereby agents use the past views of other agents, similar
to them to form their own views. The interaction term in (122) may then be
thought of capturing the (cross-sectional) local average or common component
of their views. This idea of commonality has various clear, motivating and
concrete examples in a variety of social science disciplines, such as psychology
and politics. In economics and finance, the herding could be rational (imitative
herding) or irrational.
A deterministic form of the above model has been analysed previously in

the mathematical and system engineering literature. They have analysed a
continuous form of the restricted version of (122) given by

xi,t =
1

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ 1)xj,t−1, t = 2, ..., T, i = 1, ..., N, (123)

where mi,t =
∑N
j=1 I (|xi,t−1 − xj,t−1| ≤ 1).

By setting r = 0, we obtain a simple panel autoregressive model:

xi,t = ρxi,t−1 + εi,t. (124)

On the other hand, letting r →∞, we obtain the following model

xi,t =
ρ

N

N∑
j=1

xj,t−1 + εi,t, (125)

where past cross-sectional averages of opinions inform, in similar fashions, cur-
rent opinions. Recently, the use of such cross-sectional averages has been advo-
cated by Pesaran (2006) as a means of modelling CSD in the form of unobserved
factors. However, in our case, the use of cross-sectional averages is a limiting
case of a ‘structural’nonlinear model.
Factor models have the property that both the maximum eigenvalue and the

row/column sum norm of the covariance matrix of xt = (x1,t, ..., xN,t)
′ tend to

infinity at rate N , as N →∞. In contrast, for other models such as spatial AR
or MA models, these quantities are bounded, implying that they exhibit much
lower degrees of CSD than factor models. We show that the column sum norm
of the covariance matrix of xt when xt follows (122) is O(N). Thus, the model
is more similar to factor models than spatial models. Interestingly, there are
versions of (122) that resemble spatial models. Another finding is that (125)
implies a covariance matrix for xt with a column sum norm that is O(1). This
is surprising, given the similarity that cross-sectional average schemes have with
factor models as detailed in Pesaran (2006).
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Factor models are intrinsically reduced form; they focus on modelling CSD
using an exogenously given number of unobserved factors. Since our model
nests (125), it can approximate a factor model when r → ∞. On the other
hand, our model has a clear parametric structure, which is a feature shared by
dynamic spatial model. But, our models are more general than spatial mod-
els, in the sense that the weighting schemes are estimated endogenously, rather
than assumed ex ante. It is worth noting that the factor model cannot accom-
modate the weak CSD, in contrast to the extensions of our nonlinear model. The
nonlinear model can be seen to lie between the two extremes characterised by
weakly cross-sectionally dependent spatial models and strongly cross-sectionally
dependent factor models.

Further suggestions on the empirical applications Inflation expecta-
tions: Here, we have considered the basic model with fixed effects:

πi,t = νi +
ρ

mi,t

N∑
j=1

I (|πi,t−1 − πj,t−1| ≤ r)πj,t−1 + εi,t (126)

where π is the one-quarter ahead CPI inflation rate forecast, νi ∼ iid(0, σ2
ν), and

obtained the within estimator of ρ along with the consistent estimator of r. We
can provide some economic interpretations for ρ̂ and r̂ in terms of persistence or
inertia and the relative distance of similarity. Notable exceptions are to estimate
two extreme models, denoted PAR and CSA, respectively:

πi,t = νi + ρπi,t−1 + εi,t (127)

πi,t = νi + ρπ̄t−1 + εi,t (128)

It is interesting to see how the estimates of ρ differ for each of three models.
Assuming that the overall performance of the model, (126), is superior, we then
move to estimate the extensions as discussed in the model of the form:

πi,t = νi + ρ1π̃i,t−1 + ρ2π̃
c
i,t−1 + εi,t (129)

where π̃i,t−1 and π̃ci,t−1 are the respective cross-section averages related to sim-
ilar and dissimilar forecasters given by

π̃i,t−1 =
1

mi,t

N∑
j=1

I (|πi,t−1 − πj,t−1| ≤ r)πj,t−1

π̃ci,t−1 =
1

N −mi,t

N∑
j=1

I (|πi,t−1 − πj,t−1| > r)πj,t−1

We can also test the hypothesis of ρ2 = 0 (informational contents arising from
dissimilar forecasters). If ρ2 6= 0, what’s the prior implication of the sign of ρ2?
In other words, in forming the own forecast, how does each forecaster use any
(past) information from others?
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Next to find a way of decomposing the (partial) aggregate parameter, ρ in
(126) or ρ1in (129) into the own effect and the neighbor effect. One obvious
candidate is to consider:

πi,t = νi + ρ0πi,t−1 + ρ1π̊i,t−1 + εi,t (130)

πi,t = νi + ρ10πi,t−1 + ρ11π̊i,t−1 + ρ2π̃
c
i,t−1 + εi,t (131)

where

π̊i,t−1 =
1

m̊i,t

N∑
j=1,j 6=i

I (|πi,t−1 − πj,t−1| ≤ r)πj,t−1

Anselin et al. (2008) distinguish spatial dynamic models into four categories
based on the following general time-space-dynamic specification:

xi,t = ρ0xi,t−1 + ρ1

∑
j 6=i

wijxj,t−1 + β
∑
j 6=i

wijxj,t + vi + εi,t (132)

Here,
∑
j 6=i wijyjt and

∑
j 6=i wijyjt−1 are a first order spatial lag and its time-

lagged value, respectively. The parameter, ρ0, captures serial dependence of xit,
β represents the intensity of a contemporaneous spatial effect and ρ1 captures
space time autoregressive dependence (diffusion). Most studies focus on the
stable case with ρ0 + ρ1 + β < 1. This specification, (132), includes various
special cases:

• if ρ0 = ρ1 = 0, we obtain a ‘pure-space recursive’model in which de-
pendence results from the neighborhood locations in the previous time
period;

• if β = 0, the model is reduced to a ‘time space recursive’model in which
dependence relates to both the location itself (xi,t−1) and its neighbors in
the previous time period

∑
j 6=i wijxj,t−1;

• if ρ1 = 0, we obtain a ‘time space simultaneous’model which includes the
time lag (xi,t−1) and the spatial lag,

∑
j 6=i wijxj,t;

• if ρ0 = ρ1 = 0, we are dealing with a spatial autoregressive model on panel
data, while if ρ1 = β = 0 we obtain a ‘simple’dynamic model.

According to Anselin (2001) and Abreu et al. (2005), the addition of a
spatially lagged dependent variable causes simultaneity and endogeneity prob-
lems and thus a candidate consistent estimator should lie between the OLS and
within estimates.
Our model, (130), is similar to the time-space recursive model considered in

Korniotis (2010), who apply it to investigate the issue of internal versus external
habit formation using the annual consumption data for the U.S. states, and find
that state consumption growth is not significantly affected by its own (lagged)
consumption growth but it is affected by lagged consumption growth of nearby
states. Notice that the weight wij measures the importance of xj,t−1 on xit.
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The weights are observed quantities, which are known to the econometrician,
and therefore exogenous. Because the spatial-time lag,

∑N
j=1 wijxj,t−1, is a

weighted average of past consumption choices of other cross-sectional units, it
is the measure of the catching-up habit.
There is a trade-off between our model, (130) and the time space recursive

model employed by Korniotis (2010). In (130), the neighbors are selected en-
dogenously but the equal weights are imposed to the selected neighbors. By
contrast, in the Korniotis’s model, the neighbors are selected exogenously, but
the weights are selected in a flexible manner albeit not time-varying. The appli-
cation of the model, (130) to similar issue of the consumption habit formation
will provide an interesting insight.18

Unless ρ2 = 0, the model (131) should be more general, and it is interesting
to find out the potential application, say GVC, upstream and downstream or
asymmetry?
YC: update
It is also interesting to investigate how we relate our approach to the Sias’

(2004) approach to an analysis of herding. The idea is to estimate ρ from (126),
and find a way to decompose:

ρ = ρown + ρneighbor

following the the Sias’approach. But, the analogy is not quite one-to-one. The
potential advantage of this approach is the possible robustness of this measure
which can also be used for a finite T , as well.
We generalise (126) and allow different weights to the selected neighbors as

follows:

xi,t = νi +
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)wijxj,t−1 + εi,t (133)

where we may consider the following weights

wij =
d−2
ij∑N

j=1 d
−2
ij

, dij = |xi,t−1 − xj,t−1| (134)

(then, how we define wii, just normalised to 1?). The estimation can be done
in two steps: first, the consistent estimate of r is obtained from (126). Then,
construct the weights by (134) and the associated cross-section averages, and
estimate the model, (133). Or possibly more complicated due to the grid search
over r. If successful, then our approach is more general than the spatial models.
Next, we may consider the following extension of (126):

xi,t = νi +
ρ

mi,t

N∑
j=1

I
(∣∣xmax

t−1 − xj,t−1

∣∣ ≤ r)xj,t−1 + εi,t (135)

18We can allow the weights to be inversely proportional to the distance once the threshold
parameter is consistently estimated.
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where xmax
t−1 = maxj xj,t−1, such that the distance is measured with respect to

the best performer rather than the unit i. The alternative functional type can
also be considered.
Remark: From the empirical point of view, the following consideration may

be useful: Suppose that the distance between xi,t−1 and xj,t−1 or more generally
between qit and qjt, can be regarded as the sort of similarity measure, and that
the parameter may measure the impact of the certain policy. We then estimate
the value of ρ’s under different values of r, and make a 2-dimensional plot to
investigate whether the relationship between ρ and r is monotonic or nonlinear.
This approach may be related to the recent GMM analytic approach where the
sample moment condition is not equal to zero for over-identified case.

6.2.2 MSS (2015) Approach to Modelling Technical Effi ciency in
Cross Sectionally Dependent Stochastic Frontier Panels

Mastromarco, Serlenga and Shin (2015) propose a unified framework for ac-
commodating both time- and cross-section dependence in modelling technical
effi ciency in stochastic frontier models. The proposed approach enables us to
deal with both weak and strong forms of CSD by introducing exogenously driven
common factors and an endogenous threshold selection mechanism. Using the
dataset of 26 OECD countries over the period 1970-2010, we provide the sat-
isfactory estimation results for the production technology parameters and the
associated effi ciency ranking of individual countries. We find positive spillover
effect on effi ciency, supporting the hypothesis that knowledge spillover is more
likely to be induced by technological proximity. Furthermore, our approach
enables us to identify effi ciency clubs endogenously.
We begin with the standard Cobb-Douglas production function:

yit = β′xit + εit, i = 1, ..., N, t = 1, ..., T, (136)

where yit is a logarithm of output of country i at time t, xit a k × 1 vector of
(logged) production inputs, β a k × 1 vector of structural parameters, and εit
is the composite stochastic errors including the idiosyncratic disturbance (vit)
and time varying (logged) technical ineffi ciency (uit):

εit = vit − uit. (137)

Mastromarco et al. (2013) propose the panel stochastic frontier model with
unobserved factors for modelling the time-varying technical ineffi ciency, uit:

uit = αi + λ′ift, i = 1, ..., N, t = 1, ..., T, (138)

where αi is (unobserved) individual effects, and ft is an r × 1 vector of unob-
served factors that are expected to provide a proxy for nonlinear and complex
trending patterns associated with globalisation and the business-cycle. This
factor approach clearly accommodates strong CSD.
Recent literature emphasises that the individual country’s total factor pro-

ductivity (TFP) is likely to be significantly affected by economic performance of
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neighboring or frontier countries. To allow for such spatial dependence, Ertur
and Koch (2007) develop a growth model in which technological interdepen-
dency is specified through spatial externalities. In particular, the productivity
shocks in SFA are assumed to be spatially correlated:

εt = ρWεt + et, t = 1, ..., T, (139)

where εt = (ε1t, ..., εNt)
′, W = {wij}Ni,j=1 is the N × N spatial weight matrix

with diagonal elements equal to zero, ρ is a spatial autoregressive parameter,
and et = (e1t, ..., eNt)

′ the vector of zero-mean idiosyncratic disturbances. The
elements in W are selected exogenously on the basis of geographic or economic
proximity measures such as contiguity, physical/economic/climatic distances or
dissimilarities.
The spatial models can only control for weak CSD whilst the factor-based

models can allow for strong CSD. In this regard the spatial-based approach is
likely to produce biased estimates in the presence of strong CSD. While spatial
autoregressive models are generally estimated by MLE, Pesaran (2006) and
Bai (2009) develop two alternative consistent estimation methodologies in the
presence of strong CSD. These studies clearly suggest that factors can play an
important role in the cross sectionally correlated panels. Nevertheless, factor-
based models impose an assumption that the strong CSD is mainly driven by
an exogenously given unobserved factors. Recently, KMS propose an alternative
approach that allows the CSD to be determined endogenously.
Suppose that the product of a country i at time t, Yit, is determined by the

levels of labor input and private capital, Lit and Kit. It is also affected by the
Hicks-neutral multi-factor productivity TFP :

Yit = TFPitF (Lit,Kit), (140)

where TFPit depends on the technological progress. The TFPit component can
be decomposed into the level of technology Ait, a measurement error wit, and
the effi ciency measure τ it with 0 < τ it ≤ 1:

TFPit = Aitτ itwit. (141)

By writing (140) in log form:

yit = α+ β1kit + β2lit − uit + vit, (142)

with the two-way error components structure given by

εit = vit − uit, (143)

where vit = lnwit and uit = − ln(τ it) is the term measuring the (time-varying)
technical ineffi ciency.
We propose that innovators consider the behaviour of other agents as:

uit = αi + ρũit(r) + λ′ift. (144)
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where

ũit(r) =
1

mit

N∑
j=1

I
(∣∣u∗t−1 − ujt−1

∣∣ ≤ r)ujt−1, (145)

and r is the threshold parameter that is determined endogenously and u∗t−1 is the

effi ciency of the best performing country and mit =
N∑
j=1

I
(∣∣u∗t−1 − ujt−1

∣∣ ≤ r).
The ũit(r) is an interaction term that may be thought of capturing the cross
sectional local average of the best practices or common technology. The spec-
ification in (144) explicitly allows the dynamics of technical ineffi ciency to be
interacted spatially. A priori, we expect that such externalities can be captured
by a negative ρ. We can also identify the heterogeneous technology clubs that
may vary over time and across cross-section units; the frontier cluster formed by
technology leading countries and the other group substantially below the fron-
tier. We follow Schmidt and Sickles (1984), Kumbhakar (1990) and attempt to
measure individual ineffi ciency:

eit = max
i

(uit)− (uit) = max
i

(
αi + ρũit(r) + λ′ift

)
−
(
αi + ρũit(r) + λ′ift

)
(146)

We discuss how to estimate the proposed model (142-144) by rewriting the
models as follows:

yit = β′xit + εit, i = 1, ..., N, t = 1, ..., T, (147)

εit = vit − uit, (148)

uit = αi + ρũit(r) + λ′ift, (149)

ũit(r) =
1

mit

N∑
j=1

I
(∣∣u∗t−1 − ujt−1

∣∣ ≤ r)ujt−1, (150)

where αi is (unobserved) individual-specific effect, ft is an r × 1 vector of un-
observed factors and λi is an r × 1 vector of the heterogeneous loading, ũit(r)
represents a cluster effect which is equal to the average effi ciency of countries
which are close to the frontier where u∗t−1 = minj (ujt−1) , and vit is an idio-
syncratic disturbance. The distinguishing feature of our model is the use of
unit-specific aggregates, which summaries of past values of effi ciency, and con-
nects the units that are close to the technology frontier (the best units).
To obtain consistent estimate of ineffi ciency in (146), we first estimate β̂ in

(147) by PCCE or IPC, and derive ε̂it = yit−xitβ̂ with v̂it = vit−
(
β̂ − β

)
xit =

vit + op (1). Then, by normalizing with respect to the maximum, we get a first
proxy of ineffi ciency as êit = maxi (ε̂it)− (ε̂it). Next, we consider the threshold
estimation procedure, where a grid of values for r is constructed. For all values
on that grid the model is estimated by least squares to obtain estimates of ρ.
Specifically, we estimate r̂ and ρ̂ jointly by minimising the following criterion
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function:

V (r, ρ) = min
r,ρ

N∑
i=1

T∑
t=1

êit − ρ 1

mit

N∑
j=1

I
(∣∣ê∗t−1 − êjt−1

∣∣ ≤ r) êjt−1

2

. (151)

The time-varying individual technical ineffi ciencies can be consistently estimated
by

êit = max
i

(ûit)− (ûit) = max
i

(
α̂i + ρ̂ũit(r̂) + λ̂

′
ift

)
−
(
α̂i + ρ̂ũit(r̂) + λ̂

′
ift

)
(152)

Finally, we will convert êit to the time-varying individual technical effi ciency by

τ̂ it = exp(−êit). (153)

For empirical implementations, we follow Bailey et al. (2016) who propose
a multi-step procedure to deal with both strong and weak forms of CSD as
follows:

1. Test for the existence of CSD by applying the Pesaran (2015) CD test;

2. If the null of CSD is rejected, we apply the factor-based model to control
for strong CSD.

3. We apply the Pesaran (2015) CD test again to the (de-factored) residuals.

4. If the null of no CSD is rejected, we also apply spatial or network modelling
to the residuals (see (149)).

This extended KMS approach enables us to deal with both strong and weak
forms of CSD by combining the (exogenously driven) factor-based approach
with an endogenous threshold effi ciency regime selection mechanism.

7 Nonlinear Regime Switching Models

In practice, we observe many stylised facts about economic time series as:

1. Business cycles are asymmetric in nature, e.g. Burns and Mitchell (1946);
namely recessions last longer than expansion.

2. Asset pricing model under noise trading and transaction costs arising from
the bid-ask spread: The larger are the pricing errors, the larger is the
expected degree of arbitrage and hence the speedier is the price response
to disequilibrium and vice versa.

3. Asymmetries are intrinsic to microeconomic behavior. For instance, costs
of hiring and firing are asymmetric at the firm level.

4. Asymmetries can result from capital constraints on the goods market.
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5. Imperfect competition and\or government interventions cause rigidities on
credit, goods and labour markets that affect the dynamics of the economy.

However, it is increasingly recognised that the implications of linear modes
are problematic in dealing with the above observations reflected in various eco-
nomics and finance applications. In particular, the followings are questionable:

• Linearity, invariance of dynamic multipliers with respect to the size and
the sign of the shock and the history of the system

• Time invariance of the parameters

Consequently, a great deal of interest has recently been made in modelling
nonlinearities and asymmetries in economic time series.
Most attention has fallen almost exclusively on regime-switching type mod-

els, though there is no established theory suggesting a unique approach for
specifying econometric models that embed various types of change in regimes.

• Regime shifts are not considered as singular deterministic events but the
unobservable regime is assumed to be governed by an exogenous or prede-
termined stochastic processes. Thus regime shifts of the past are expected
to occur in the future in a similar fashion.

• Regime switching models characterise a nonlinear data generating process
as piecewise linear by restricting the process to be linear in each regime.

• The models differ in their assumptions concerning the stochastic process
generating the regime; TAR, STAR, MS-AR, etc.

7.1 Structural break models

Suppose that the structural break occurs at time t = τ and we have

yt =

{
α1 +

∑p
i=1 β1iyt−i + εt for t < τ

α2 +
∑p
i=1 β2iyt−i + εt for t ≥ τ

}
, (154)

where εt ∼ iid
(
0, σ2

)
. Then, (154) can be written as

yt =

(
α1 +

p∑
i=1

β1iyt−i

)
(1− I (t; τ)) +

(
α2 +

p∑
i=1

β2iyt−i

)
I (t; τ) + εt,

where I (t; τ) is the indicator function given by

I (t; τ) =

{
0 for t < τ
1 for t ≥ τ

}
.

Two different assumptions have been made:
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The break point τ is known So break is deterministic. To estimate (154),
split the sample and apply OLS to each regime. Tests of β1i = β2i, i = 1, ..., p,
will follow the standard χ2 distribution asymptotically.
See for example Perron (1989) for unit root tests subject to structural breaks.

The break point τ is unknown So break is stochastic and τ needs to be
estimated as follow:

τ∗ = arg min
τ∈[0.15T,0.85T ]

RSS (τ)

= arg min
τ∈[0.15T,0.85T ]

[
τ σ̂2

1 (τ) + (1− τ) σ̂2
2 (τ)

]
,

where RSS stands for residual sum of squares, and the grid search is over
τ ∈ [0.15T, 0.85T ] in practice.
Notice that tests of β1i = β2i, i = 1, ..., p, does not follow the standard χ2

distribution asymptotically, but has a nonstandard asymptotic distribution due
to the Davies (1987) problem that nuisance parameter (break point τ here) is
not identified under the null. Most solutions to this problem involve integrating
out unidentified parameters from the test statistics. This is usually achieved by
calculating test statistics over a grid set of possible values of nuisance parame-
ter and then constructing the summary statistics such as sup (maximum) and
exponential average, see Andrews and Plobegrer (1994).

7.2 Threshold models

This is a popular class of nonlinear regime-switching models with each regime
determined by observed variables.

Threshold Autoregressive (TAR) model Now the regime shifts are trig-
gered by an observable, exogenous transition variable xt crossing threshold c,
and consider the two-regime TAR model:

yt =

{
α1 +

∑p
i=1 β1iyt−i + εt for xt ≤ c (regime 1)

α2 +
∑p
i=1 β2iyt−i + εt for xt > c (regime 2)

}
, (155)

where εt ∼ iid
(
0, σ2

)
. Alternatively,

yt =

(
α1 +

p∑
i=1

β1iyt−i

)
1 {xt ≤ c}+

(
α2 +

p∑
i=1

β2iyt−i

)
(1− 1 {xt ≤ c}) + εt,

(156)
where 1 {xt ≤ c} is the indicator function.

Self-Exciting Threshold Autoregressive (SETAR) model If we use as
the transition variable a lagged endogenous variable yt−d with delay d ≥ 1, we
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obtain the two-regime SETAR model as follow:

yt =

(
α1 +

p∑
i=1

β1iyt−i

)
1 {yt−d ≤ c}+

(
α2 +

p∑
i=1

β2iyt−i

)
(1− 1 {yt−d ≤ c})+εt,

(157)
where εt ∼ iid

(
0, σ2

)
.

Notice that (157) can be written alternatively as

yt = α (st) +
p∑
i=1

βi (st) yt−i + εt, (158)

where the probability of the unobservable regime 1 is given by

Pr (st = 1|St−1, Yt−1) = 1 {yt−d ≤ c} ,

where St−1 = {st−1, st−2, ...} and Yt−1 = {yt−1, yt−2, ...yt−p}. This shows that
SETAR and MS-AR models can be observationally equivalent, see Carrasco
(1994).

Estimation ML estimation under normality can be carried over the grid
search over d and c: select the pair(d, c) that minimises the residual sum of
squares:

arg min
(d,c)

M∑
m=1

Tmσ̂
2
m,

where Tm and σ̂2
m are the number of observations and the residual variance in

regime m. Usually the grid search is restricted such that minTm ≥ 0.15T.

Three-regime SETAR model We now extend to consider the three-regime
SETAR model:

yt =

(
α1 +

p∑
i=1

β1iyt−i

)
1 {yt−d ≤ c1}+

(
α2 +

p∑
i=1

β2iyt−i

)
1 {c1 < yt−d ≤ c2}

+

(
α3 +

p∑
i=1

β3iyt−i

)
1 {c2 < yt−d}+ εt, (159)

where εt ∼ iid
(
0, σ2

)
, and c1 and c2 are threshold parameters and c1 < c2.

Example 1 Trade Cost Model by Sercu, Uppal and van Hulle (1995, Journal
of Finance).

7.3 Smooth Transition Autoregressive (STAR) Models

If our aim is to distinguish between the effects of negative and positive deviations
(or large and small) from the equilibrium, then TAR models are appropriate.
Recently, STAR models have attracted more attention in finance. The basic

motivation behind it is that prices are expected to adjust more smoothly as is
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predicted by TAT models. One explanation is: nonlinear asymmetric behavior
of heterogeneous market participants will be smoother at the aggregate level.
Granger and Terasvirta (1993) advance the following STAR model:

yt =

(
α1 +

p∑
i=1

β1iyt−i

)
{1− F (zt; θ, c)}+

(
α2 +

p∑
i=1

β2iyt−i

)
F (zt; θ, c) + εt,

(160)
where εt ∼ iid

(
0, σ2

)
. The transition function F (zt; θ, c) is a continuous func-

tion determining the weights of regime and usually bounded between 0 and 1.
c and θ are the threshold and smoothness parameters.

The transition variable zt can be:

• a lagged endogenous variable (zt = yt−d),

• an exogenous variable (zt = xt),

• or a function such as (zt = g (yt−d, xt)).

• For zt = t, we obtain a model with smoothly changing parameters, see
Lin and Terasvirta (1994).

The STAR model exhibits:

• two regimes associated with the extreme values of the transition function:
F (zt; θ, c) = 1 and F (zt; θ, c) = 0;

• transition from one regime to the other is gradual, not abrupt as in TAR;

• the regime occurring at time t is observable and determined by F (zt; θ, c) .

Logistic Smooth Transition Autoregressive (LSTAR) model We con-
sider as the transition function in (160) the logistic CDF:

F (zt; θ, c) =
1

1 + exp {−θ (zt − c)}
. (161)

This model can deal with asymmetric behavior for positive vs negative values
of zt relative to c. We note:

• As θ →∞, LSTAR → TAR, since F (zt; θ, c) = I (zt > c).

• As θ → 0, LSTAR → linear AR, since F (zt; θ, c) = 1/2.

The second order logistic CDF is also considered:

F (zt; θ, c) =
1

1 + exp {−θ (zt − c1) (zt − c2)} . (162)

We note:

• As θ →∞, L2STAR→ 3 regime TAR, since F (zt; θ, c) = 1−I (c1 < zt < c2).

• As θ → 0, L2STAR → linear AR, since F (zt; θ, c) = 1/2.
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Exponential Smooth Transition Autoregressive (ESTAR) model We
consider as the transition function in (160) the exponential function:

F (zt; θ, c) = 1− exp
{
−θ (zt − c)2

}
, (163)

where we assume that θ ≥ 0 for identification. This model can deal with asym-
metric behavior for small vs large deviations of zt from the threshold c.

The exponential transition function is bounded between zero and 1, i.e.
F : R→ [0, 1] has the properties:

F (0) = 0; lim
x→±∞

F (x) = 1,

and is symmetrically U-shaped around zero.
As θ → ∞ and θ → 0, ESTAR → linear AR, since F (zt; θ, c) = 1 and

F (zt; θ, c) = 0, respectively.

Estimation Nonlinear least squares or ML estimation method via numerical
optimisation procedure can be applied, but it also involves the grid search over
(d, c) as in TAR models.
However, the precise estimation of θ is somewhat diffi cult in practice.

• For large value of θ, the shape of the logistic function changes only little.

• Accurate estimation of θ requires many observations in the immediate
neighborhood of c.

• Insignificance of θ should not be interpreted as evidence against the pres-
ence of STAR nonlinearity, see Bates and Watts (1988).

7.4 Markov-Switching Autoregressive (MS-AR) Models

Now the regime st is generated by a hidden discrete-state homogeneous and
ergodic Markov chain:

Pr (st|St−1, Yt−1) = Pr (st|St−1; ρ)

defined by the transition probabilities,

pij = Pr (st+1 = j|st = j) ,

where St−1 = {st−1, st−2, ...}, Yt−1 = {yt−1, yt−2, ...yt−p} and ρ are unknown
parameters.
The conditional process is a AR(p) model with

• shift in mean (MSM-AR): once-and-for-all jump in time series:

yt − µ (st) =
p∑
i=1

βi (st) (yt−i − µ (st−i)) + εt, (164)
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• shift in intercept (MSI-AR): smooth adjustment of time series:

yt = α (st) +
p∑
i=1

βi (st) yt−i + εt. (165)

Example 2 MS-AR models of US GNP. Hamilton (1989) consider the 2-regime
MS-AR model for the quarterly growth rate of US GNP:

∆yt − µ (st) =
4∑
i=1

βi (st) (∆yt−i − µ (st−i)) + εt, (166)

εt|st ∼ iidN
(
0, σ2

)
.

Two regimes are defined by

µ (st) =

{
µ1 > 0 if st = 1 (expansion)
µ2 < 0 if st = 2 (contraction)

}
,

which are generated by an ergodic Markov chain

p12 = Pr (contraction in t|expansion in t− 1)

p21 = Pr (expansion in t|contraction in t− 1)

• The statistical analysis of MS-AR models is based on the state-space form.
Then, general concepts such as the likelihood principle and a recursive
filtering algorithm can be used.

• In contrast to TAR and STAR models MS-AR models include the pos-
sibility that the threshold depends on the last regime, i.e., the threshold
staying in regime 2 is different from the threshold for switching from regime
1 to regime 2.

7.5 Linearity Tests for TAR/STAR Specification

Here the null model is that

H0 : yt = α+
p∑
i=1

βiyt−i + εt, (167)

so the model is linear, whilst the alternative models are either

H1,TAR : TAR model given by (156), (168)

or
H1,STAR : TAR model given by (160). (169)

More specifically, against the TAR model we have

H0 : α1 = α2 and β1i = β2i for all i = 1, ..., p, (170)
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whilst against the STAR model we have

H0 : θ = 0. (171)

However, due to the Davies (1987) problem that nuisance parameters in
transition function - namely, threshold parameter c in TAR and smoothness
parameter θ and threshold parameter in STAR - are not identified under the
null, we could not use the standard asymptotic χ2 distribution.

1. Sup test approach for TAR models: We should obtain a supremum
of a number of dependent test statistics over the grid over c: supF ,
supWald, supLR and supLM tests with nonstandard limiting distribu-
tion. To obtain the p-value, we need to run the bootstrapping simulations.
See Hansen (1997,2000).

2. Taylor approximation approach for STAR models: Approximate
smooth transition function with a first-order expansion around θ = 0.
Then, using the derived auxiliary regression, we obtain the LM-type tests
with a standard χ2 limiting distribution. See Luukkonen, Saikkonen and
Terasvirta (1988) for LSTAR and Saikkonen and Luukkonen (1988) for
ESTAR.

Remark 3 So far the above tests have been developed under the assumption of
stationarity, linear AR model with a unit root (ρ = 1) being excluded.

7.6 Nonlinear Unit Root Tests

Balke and Fomby (1997) have popularised a joint analysis of nonstationarity
and nonlinearity in the context of threshold cointegration. The threshold coin-
tegrating process is defined as a globally stationary process such that it might
follow a unit root in the middle regime, but it is dampened in outer regimes.
Importantly, they have shown via Monte Carlo experiments that the power of
the DF unit root tests falls dramatically with threshold parameters. See also
Pippenger and Goering (1993).
As a response to these problems, there is a growing literature proposing tests

for unit roots against threshold autoregressive (TAR) alternatives, e.g. Enders
and Granger (1998), Caner and Hansen (2001), Kapetanios, Shin and Snell
(2003), Bec, Guay and Guerre (2004) and Kapetanios and Shin (2006).

7.6.1 Unit Root Tests in Two-regime TAR Framework

Enders and Granger (1998) have addressed this issue using a two-regime TAR
model with implicitly known threshold value,

∆yt =

{
β1yt−1 + ut if yt−1 ≤ 0
β2yt−1 + ut if yt−1 > 0

}
, t = 1, 2, ..., T, (172)

and suggested an F-statistic for β1 = β2 = 0 in (172).
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Despite the main aim to derive a more powerful test, their simulation ev-
idence shows that the proposed F test is less powerful than the DF test that
ignores the threshold nature of this two regime alternative. But they also pro-
vided simulation results showing that the F-test may have higher power than
the DF test against the three regime asymmetric TAR models. See also Berben
and van Dijk (1999).
There has also been an alternative line of studies. Caner and Hansen (2001)

have considered the following two-regime TAR model:

∆yt = θ′1xt−11{∆yt−1≤r} + θ′2xt−11{∆yt−1>r} + et, t = 1, 2, ..., T, (173)

where xt−1 = (yt−1, 1,∆yt−1, ...,∆yt−k)
′, r is an unknown threshold parameter,

and et is an iid error. They have first developed tests for threshold nonlinearity
when yt follows a unit root, and then unit root tests when the threshold non-
linearity is either present or absent. Limitation of this approach is that these
tests rely on the stationarity of the transition variable.

7.6.2 Unit Root Tests in Three-regime TAR Framework

Kapetanios and Shin (2006) Suppose that a univariate series yt follows the
three-regime self-exciting threshold autoregressive (SETAR) model:

yt =

 φ1yt−1 + ut if yt−1 ≤ r1

φ0yt−1 + ut if r1 < yt−1 ≤ r2

φ2yt−1 + ut if yt−1 > r2

 , t = 1, 2, ..., T, (174)

where ut is assumed to follow an iid sequence with zero mean, constant variance
σ2
u and finite 4 + δ moments for some δ > 0, r1 and r2 are threshold parameters
and r1 < r2. Here, the lagged dependent variable is used as the transition vari-
able with the delay parameter set to 1 for simplicity. The intuitive appeal of the
scheme in (174) is that it allows the speed of adjustment to vary asymmetrically
with regimes. Suppose that

φ0 ≥ 1, |φ1| , |φ2| < 1. (175)

The series are then locally nonstationary, but globally ergodic.
Following the maintained assumption in the literature, we now impose φ0 = 1

in (174), which implies that yt follows a random walk in the corridor regime.
Then, defining 1{.} as a binary indicator function, (174) can be compactly writ-
ten as

∆yt = β1yt−11{yt−1≤r1} + β2yt−11{yt−1>r2} + ut, (176)

where β1 = φ1 − 1, β2 = φ2 − 1, and yt−11{yt−1≤r1} and yt−11{yt−1>r2} are
orthogonal to each other by construction.
We consider the (joint) null hypothesis of unit root as

H0 : β1 = β2 = 0, (177)
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against the alternative hypothesis of threshold stationarity,

H1 : β1 < 0; β2 < 0. (178)

Then, the joint null hypothesis of linear unit root against the nonlinear threshold
stationarity can be tested using the Wald statistic denoted by W(r1,r2), which
has a nonstandard limiting distribution.
In order to deal with the Davies problem that unknown threshold parameters

r1 and r2 are not defined under the null, we consider the supremum, the average
and the exponential average of the Wald statistic defined respectively by

Wsup = sup
i∈Γ
W(i)

(r1,r2), Wavg =
1

#Γ

#Γ∑
i=1

W(i)
(r1,r2), Wexp =

1

#Γ

#Γ∑
i=1

exp

W(i)
(r1,r2)

2

 ,

(179)
whereW(i)

(r1,r2) is the Wald statistic obtained from the i-th point of the threshold
parameters grid set, Γ and #Γ is the number of elements of Γ.
Unlike the stationary TAR models, the selection of the grid of threshold

parameters needs more attention. The threshold parameters r1 and r2 usually
take on the values in the interval

(r1, r2) ∈ Γ = {(r1,1, r1,2), ..., (ri,1, ri,2), ..., (r#Γ,1, r#Γ,2)},

where rmin ≤ ri,1, i = 1, ...#Γ, and rmax ≥ ri,2, i = 1, ...#Γ. rmin and rmax

are picked so that Pr (yt−1 < rmin) = π1 > 0 and Pr (yt−1 > rmax) = π2 < 1.
The particular choice for π1 and π2 is somewhat arbitrary, and in practice
must be guided by the consideration that each regime needs to have suffi cient
observations to identify the underlying regression parameters.
However, since our approach assumes that the coeffi cient on the lagged de-

pendent variable is set to zero in the corridor regime (r1 ≤ yt−1 < r2), we can
assign arbitrarily small samples (relative to total sample) to the corridor regime.
Notice also that the threshold parameters exist only under the alternative hy-
pothesis in which the process is stationary and therefore bounded in probability.
This observation leads us to make an assumption that the grid for unknown
threshold parameters should be selected such that the selected corridor regime
be of finite width both under the null and under the alternative. Noticing that
a random walk process will stay within a corridor regime of finite width for

Op

(√
T
)
periods only, then setting

π1 = π̄ − c/T δ and π2 = π̄ + c/T δ,

where π̄ is the sample quantile corresponding to zero and δ ≥ 1/2, guarantees
that the grid set will be of finite width under the null hypothesis. In practice, c
can be chosen so as to give a reasonable coverage of each regime in samples of
sizes usually encountered. For example, for T = 100 and δ = 1/2, c can be set
to 3 to give a 60% coverage of the sample for the grid.
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The small sample performance of our suggested tests is compared to that
of the DF test via Monte Carlo experiments. We find that both average and
exponential average tests have reasonably correct size, but the supremum test
tends to display significant size distortions in small samples. As expected, both
average and exponential average tests eventually dominate the power of the DF
test as the threshold band widens.
KS illustrate the usefulness of our proposed tests by examining the station-

arity of bilateral real exchange rates for the G7 countries (excluding France).
In sum, our proposed (asymmetry) Wald tests reject the null three times out of
five cases, while the DF test rejects the null only once.

Bec, Ben Salem and Carrasco (2004) and Bec, Guay and Gurre (2004)
A three-regime SETAR model (174) can be compactly written as

∆yt = β1yt−11{yt−1≤r1} + β0yt−11{r1<yt−1<r2} + β2yt−11{yt−1>r2} + ut, (180)

where 1{.} is a binary indicator function, β1 = φ1− 1, β0 = φ0− 1, β2 = φ2− 1,
and yt−11{yt−1≤r1}, yt−11{r1<yt−1<r2}, yt−11{yt−1>r2} are orthogonal to each
other by construction. BBC and BGG have considered the three-regime SETAR
model (180), and proposed the supremum-based Wald test procedure for the
joint hypothesis of β1 = β0 = β2 = 0 in (180).
BBC take the quantile-based approach, assuming that r =

√
Tλ where

|r1| = |r2| = r (symmetric outer regimes).19 Then they derive the asymp-
totic distribution of the Wald statistic, denoted by WBBC (r), for β1 = β0 = 0
in (180) after imposing β1 = β2, which depends on the nuisance parameter,
λ/σ̂LR, where σ̂LR is the long-run variance of ∆yt obtained under the null. To
avoid the Davies problem, they suggest to use the supremum-based tests defined
by

WBBC
sup = sup

r∈[rmin,rmax]

WBBC
i (r) . (181)

On the other hand, BGG develop an adaptive consistent unit root tests based
on the symmetric three regime TAR model (180) with β1 = β2 and propose an
adaptive choice of the grid set which restricts the grid to remain bounded under
the null but to become unbounded under the alternative. They suggest to use
the following grid set:

rmin = |y|(3) +
σ̂0

`max (1, tADF )
; rmax = |y|(3) + `σ̂0 max (1, tADF ) , (182)

where |y|(j)’s are the ordered variables of |yj |, j = 1, ..., T − 1, ` is a length

parameter to be determined empirically, tADF is the ADF t-statistic, and σ̂
2
0 =

1
T−1

∑T
t=1

(
yt − â− φ̂yt−1

)2

with â and φ̂ being the OLS estimates. This adap-

tive choice of the grid set is aimed to boost the power of the tests. First, if the

19The assumption that r =
√
Tδ guarantees that the probability being in the corridor regime

is always positive. On the other if r is fixed, this probability becomes zero.
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set Γ = [rmin, rmax] is small under the null, then the associated critical values
of the WBBC

sup test statistic will be small too. Second, it will make a larger class
of alternatives including the linear stationary model. Using the simulation evi-
dence BGG argue that the former provides the most important contribution of
the improved power performance of theWBBC

sup test when the grid set is selected
by (182).

Example 4 See Dutta and Leon (2002) for three regime model in exchange rate
dynamics.

7.6.3 Unit Root Tests in ESTAR Framework (Kapetanios, Shin and
Snell, 2003)

Consider a univariate smooth transition autoregressive of order 1, ESTAR(1)
model,

yt = βyt−1 + γyt−1

[
1− exp

(
−θy2

t−d
)]

+ εt, (183)

where εt ∼ iid
(
0, σ2

)
, β and γ are unknown parameters, and we assume that θ ≥

0, and d ≥ 1 is the delay parameter. (183) can be conveniently reparameterised
as:

∆yt = φyt−1 + γyt−1

[
1− exp

(
−θy2

t−d
)]

+ εt, (184)

where φ = β − 1. If θ is positive, then it effectively determines the speed
of mean reversion. The representation (184) makes economic sense in that
many economic models predict that the underlying system tends to display a
dampened behavior towards an attractor when it is (suffi ciently far) away from
it, but that it shows some instability within the locality of that attractor.
We prove under θ > 0 that the condition we need for geometric ergodicity

of the model (183) or (184) is in fact |β + γ| < 1 or |φ+ γ| < 0.

Remark 5 The application that motivates our model is that of Sercu et al.
(1995) and of Michael et al. (1997). These authors analyse nonlinearities in
the PPP relationship. They adopt a null of a unit root for real exchange rates
and have an alternative hypothesis of stationarity i.e. the long run PPP. Their
theory suggests that the larger the deviation from PPP, the stronger the tendency
to move back to equilibrium. In the context of our model, this would imply that
while φ ≥ 0 is possible, we must have γ < 0 and φ+ γ < 0 for the process to be
globally stationary. Under these conditions, the process might display unit root
or explosive behaviour in the middle regime for small y2

t−d, but for large y
2
t−d,

it has stable dynamics and as a result is geometrically ergodic. They claim that
the ADF test may lack power against such stationary alternatives and one of
the contributions of this paper is to provide an alternative test designed to have
a power against such an ESTAR processes.

Imposing φ = 0 and d = 1 gives our specific ESTAR model (184) as

∆yt = γyt−1

{
1− exp

(
−θy2

t−1

)}
+ εt. (185)

86



Our test directly focuses on a specific parameter, θ, which is zero under the null
and positive under the alternative. Hence we test

H0 : θ = 0, (186)

against the alternative
H1 : θ > 0. (187)

Obviously, testing the null hypothesis (198) directly is not feasible, since γ is
not identified under the null.
To overcome this problem we follow Luukkonen et al. (1988), and derive a

t-type test statistic. If we compute a first-order Talyor series approximation to
the ESTAR model under the null we get the auxiliary regression

∆yt = δy3
t−1 + error. (188)

This suggests that we could obtain the t-statistic for δ = 0 against δ < 0 as

tNL = δ̂/s.e.
(
δ̂
)
, (189)

where δ̂ is the OLS estimate of δ and s.e.
(
δ̂
)
is the standard error of δ̂. Our test

is motivated by the fact that the auxiliary regression is testing the significance
of the score vector from the quasi-likelihood function of the ESTAR model,
evaluated at θ = 0.
Unlike the case of testing linearity against nonlinearity for the stationary

process, the tNL test does not have an asymptotic standard normal distribution.
KSS find inter alia that under the alternative of a globally stationary ESTAR

process, our test has better power in cases where the nonlinear adjustment is
relatively important.
KSS also provide an application to ex post real interest rates and bilateral

real exchange rates from eleven major OECD countries, and in particular find
that our proposed test is able to reject a unit root in some cases where the
linear ADF tests fails to do so, providing a limited evidence of of nonlinear
mean-reversion in both real interest and exchange rates.

7.7 Nonlinear Error Correction Models

Clearly, many stylised facts can be evoked to account for the asymmetric ad-
justing behavior. For example, in financial markets prices are constrained to
persistent short-run disequilibria due to information barriers, transaction costs,
noise trading, market segmentation, etc.

• A first strand of the literature is based on a generalisation of the usual con-
cept of cointegration. Notions such as ‘attractors’, ‘transients’, ‘Lyapunov
stability’, ‘equilibration’have been introduced in an attempt to capture
richer dynamics than is allowed by linear cointegration models.
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• Another approach aims to clarify the concept of cointegration. If the two
processes have the same order of integration, they may be cointegrated if
their combination (either linear or nonlinear) is mixing. But, one must
impose the bound conditions on the nonlinear functions.

• A third part of the literature is centred on nonlinear co-trending. Non-
linear trends are modelled as general polynomial functions that allows
multiple representations of nonlinear trends. Co-trending means that the
combination of nonlinear trends provides linear trends.

We assume that the attractor is linear but that the adjustment towards the
long-run equilibrium is nonlinear. The NEC model is written as

∆yt =
p∑
i=1

δ′i∆yt−i +
q∑
i=1

γ′i∆xt−i + λzt−1 + f (zt−1, θ) + ut, (190)

∆yt = vt,

zt = yt − β′xt.
Assume that (i) ut and vt are mixing processes with finite second-order mo-
ments and cross moments; (ii) f is a nonlinear function that is continuously
differentiable and satisfies some regularity condition:

−1 <
∂f (zt−1, θ)

∂zt−1
< 1;

(iii) the roots of
∣∣1−∑p

i=1 δiL
i
∣∣ = 0 all lie outside the unit circle; and (iv) ut

is a martingale difference sequence with zero mean and constant variance.
Under this assumption Escribano and Mira (2002) prove that zt is NED and

yt and xt are cointegrated. The cointegration hypothesis is tested as follows:

H0 : f (zt−1, θ) = 0 against H1 : f (zt−1, θ) 6= 0.

H0 means that the adjustment mechanism is linear. UnderH1: it is not suffi cient
that f (zt−1, θ) 6= 0, but this function must characterize an EC mechanism
(hence the importance of the stability condition of f).

Estimation of (190) can be done in 4-steps:

1. Obtain the OLS estimate of β from the regression of yt on xt. Construct
the estimate of error correction term by ẑt = yt − β̂

′
xt.

2. Substitute ẑt−1 for zt−1 in f (zt−1, θ).

3. Use the NLS method to find an estimate of θ.

4. Estimate other coeffi cients of the model (190) by OLS.

In practice the great diffi culty lies in finding an appropriate function that
satisfies the stability condition defined in Assumption (ii). The following func-
tional forms are employed in Dufrénot and Mignon (2002):
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• Logistic Smooth Transition Regression:

LF (zt−1) = [1 + exp (−θ (zt−1 − c))]

• Cubic Polynomial:

LF (zt−1) = δ1zt−1 + δ2z
2
t−1 + δ3

3zt−1

• Rational Polynomial:

LF (zt−1) =
(zt−1 + γ1)

3
+ γ2

(zt−1 + γ3)
3

+ γ4

.

Example 6 Rational or irrational bubbles? Many empirical studies find that
there is no cointegration between stock prices and dividends. This may imply
that the fluctuations in asset prices are too large to reflect changes occurring
in the fundamentals (here dividends). This excess volatility can be regarded
as a consequence of the presence of a (possibly) nonstationary bubble. This
paves the way for a nonlinear dynamic analysis as to how to add to the usual
arbitrage equation a nonlinear component reflecting the complexity of the short
term dynamics between both variables.

7.7.1 Asymmetric TAR NEC Models

See Balke and Fomby (1997).

7.7.2 Asymmetric STR NEC Models

We begin with the following general nonlinear vector error correction model for
the n× 1 vector of I(1) stochastic processes, zt:

∆zt = αβ′zt−1 + g
(
β′zt−1

)
+

p∑
i=1

Γi∆zt−i + εt, t = 1, 2, ..., T, (191)

where α (n× r), β (n× r) and Γi (n× n) are parameter matrices with α and
β of full column rank and g : Rr → Rn is a nonlinear function. See Saikkonen
(2004).
We aim to analyse at most one conditional long-run cointegrating relation-

ship between yt and xt, and focus on the conditional modelling of the scalar
variable yt given the k-vector xt (k = n− 1) and the past values of zt and Z0,
where we decompose zt = (yt,x

′
t)
′. For this we rewrite (191) as

∆zt = αut−1 + g (ut−1) +

p∑
i=1

Γi∆zt−i + εt, t = 1, 2, ..., T, (192)

where α is an n× 1 vector of adjustment parameters, and

ut = yt − β′xxt, (193)
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with βx being a k × 1 vector of cointegrating parameters.
We now make the following assumption:

• 2(i) Partition α = (φ,α′x)′ and ϕ = (γ,ϕ′x)′ conformably with zt =
(yt,x

′
t)
′. Then, αx = ϕx = 0.

• 2(ii) There is no cointegration among the k-vector of I(1) variables, xt.

• 2(iii) g (•) follows the exponential smooth transition regressive (ESTR)
functional form,1

g (ut−1) = ϕut−1

(
1− e−θ(ut−1−c)

2
)
, (194)

where we assume θ ≥ 0 for identification purpose and c is a transition
parameter.

Assumption 2(i) and (ii) imply that the process xt are weakly exogenous
and therefore the parameters of interest in (196) are variation-free from the
parameters in (197), see Pesaran et al. (2001).

Next, partitioning εt conformably with zt as εt = (εyt, ε
′
xt)
′ and its variance

matrix as Σ =

(
σyy σyx
σxy Σxx

)
, we may express εyt conditionally in terms of

εxt as
εyt = σyxΣ

−1
xx εxt + et, (195)

where et ∼ iid(0, σ2
e), σ

2
e ≡ σyy − σyxΣ−1

xxσxy and et is uncorrelated with
εxt by construction. Substituting (195) and (194) into (192), partitioning
Γi = (γ′yi,Γ

′
xi)
′, i = 1, ..., p, and under Assumption 2, we obtain the follow-

ing conditional nonlinear error correction model for ∆yt and the marginal VAR
model for ∆xt:

∆yt = φut−1 + γut−1

(
1− e−θ(ut−1−c)

2
)

+ ω′∆xt +

p∑
i=1

ψ′i∆zt−i + et, (196)

∆xt =

p∑
i=1

Γxi∆zt−i + εxt, (197)

where ω ≡ Σ−1
xxσxy and ψ

′
i ≡ γyi − ω′Γxi, i = 1, ..., p.

We call (196) the (conditional) nonlinear STR error correction model. The
representation (196) makes economic sense in that many economic models pre-
dict that the underlying system tends to display a dampened behavior towards
an attractor when it is (suffi ciently far) away from it, but shows some instability
within the locality of that attractor.
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7.7.3 Testing for Cointegration under STR ECM

To fix ideas for the motivation of the tests, we follow Kapetanios, Shin and
Snell (2003, hereafter KSS) and impose φ = 0 in (196), implying that ut follows
a unit root process in the middle regime, see also Balke and Fomby (1997) in
the context of threshold error correction models. Note that for the operational
versions of the tests we suggest below we consider both the case φ = 0 and φ 6= 0.
It is then straightforward to show that the test of the null of no cointegration
against the alternative of globally stationary cointegration can be based on the
null hypothesis of no cointegration as

H0 : θ = 0, (198)

against the alternative of nonlinear ESTR cointegration of H1 : θ > 0, where
the positive value of θ determines the stationarity properties of ut.
We propose a number of operational versions of the cointegration test under

the nonlinear STR-ECM framework given by (196). To this end we follow Engle
and Granger (1987) and take a pragmatic residual-based two step approach. In

the first stage, we obtain the residuals, ût = yt − β̂
′
xxt with β̂x being the OLS

estimate of βx. In the second stage and in order to overcome the Davies problem
that γ in (196) is not identified under the null, we follow Luukkonen, Saikkonen
and Teräsvirta (1988) and KSS and approximate (196) by a first-order Taylor

series approximation to
(

1− e−θ(ut−1−c)2
)
, while allowing φ 6= 0 under the

alternative hypothesis, to get

∆yt = δ1ut−1 + δ2u
2
t−1 + δ3u

3
t−1 + ω′∆xt +

p∑
i=1

ψ′i∆zt−i + et. (199)

For this model, we consider an F-type test for δ1 = δ2 = δ3 = 0 given by

FNEC =
(SSR0 − SSR1) /3

SSR0/(T − 4− p) , (200)

where SSR0 and SSR1 are the sum of squared residuals obtained from the
specification with and without imposing the restrictions δ1 = δ2 = δ3 = 0 in
(199), respectively.
There are prior theoretical justifications for restricting the switch point, c to

be zero in many economic and financial applications in the ESTR function (194),
in which case we obtain the following restricted auxiliary testing regression:

∆yt = δ1ût−1 + δ2û
3
t−1 + ω′∆xt +

p∑
i=1

ψ′i∆zt−i + et, (201)

and obtain the following F-type statistic:

F ∗NEC =
(SSR0 − SSR1) /2

SSR0/(T − 3− p) , (202)
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where SSR0 and SSR1 are the sum of squared residuals obtained from the
specification with and without imposing δ1 = δ2 = 0 in (201), respectively.
Finally, under the further assumption that φ = 0 (which is the maintained

assumption made in KSS), (201) is simplified to

∆yt = δu3
t−1 + ω′∆xt +

p∑
i=1

ψ′i∆zt−i + et. (203)

For this model, we propose a t-type statistic for δ = 0 (no cointegration) against
δ < 0 (ESTR cointegration), denoted by tNEC .
The asymptotic distributions of all these tests are nonstandard, and the

associated critical values have been tabulated via stochastic simulations.
The small sample performance of the suggested tests is compared to that of

the linear EG and Johansen (1995) tests via Monte Carlo experiments. We find
that our proposed nonlinear tests have good size and superior power properties
compared to the linear tests. In particular, both FNEC and tNEC tests are
superior to both linear or nonlinear EG tests when the regressors are weakly
exogenous in a cointegrating regression. This supports similar findings made in
linear models that the EG test loses power relative to ECM-based cointegration
tests because of the loss of potentially valuable information from the correlation
between the regressors and the underlying disturbances.
KSS provide an application to investigating the presence of cointegration

of asset prices and dividends for eleven stock portfolios allowing for nonlinear
STR adjustment to equilibrium. Interestingly, our new tests are able to reject
the null of no cointegration in majority cases whereas the linear EG test rejects
only twice. We also estimate adjustment parameters under the alternative, and
find that these estimates are well defined in all cases. We further evaluate the
impulse response functions of the error correction term with respect to initial
impulses of 1-4 standard deviation shocks. The striking finding is that the time
taken to recover one half of a one standard deviation shock varies between five
and twenty years, whereas the time taken to recover one half of larger shocks
varies between just 4 to 18 months. This implies that data periods dominated by
extreme volatility may display substantial reversion of prices towards their NPV
relationship, while in “calmer” times where the error in the NPV relationship
takes on smaller values, the process driving it may well look like a unit root.

7.7.4 MS NEC Models

Psaradakis, Sola and Spagnolo (2004) consider the following single equation-
based MS NEC model:

yt + αxt = zt, zt = φstzt−1 + ε1t, (204)

yt + βxt = ut, ut = ut−1 + ε2t, (205)

where α 6= 0, β ∈ R, φst ∈ (−1, 1] and st are the latent random variables on
{0, 1}. Suppose that

φst = φ0 + (φ1 − φ0) st, |φ0| < 1, φ1 = 1, (206)
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where {st} is a homogeneous irreducible and aperiodic Markov chain of order
1with state-space, S = {0, 1} and transition probabilities

pij = Pr {st = j|st−1 = i} , i, j ∈ S. (207)

Deviations from equilibrium tend to decay to the mean level of 0 as long as
st = 0; otherwise zt behaves like a nonstationary process. Despite the occa-
sional nonstaitoanry behavior of {zt} when st = 1, the eq error can be globally
stationary, provided that p00, p11, φ0 and φ1 satisfy appropriate restrictions. A
necessary and suffi cient condition is given by (Franq and Zakoian, 2001)

p00φ
2
0 + p11φ

2
1 + (1− p00 − p11)φ2

0φ
2
1 < 1 and p00φ

2
0 + p11φ

2
1 < 2. (208)

For an irreducible and aperiodic Markov chain, these conditions are easily sat-
isfied when |φ0| < 1 and φ1 = 1. See an application to the relationship between
stock prices and dividends in Psaradakis, Sola and Spagnolo (2004).
We could also allow for {zt} to evolve according to the Markov switching

ARMA model,

zt = cst +

m∑
i=1

φ(i)
st zt−i + σstξt +

q∑
j=1

ψ(i)
st σst−jξt−j , (209)

where ξt is a white noise with Eξt = 0 and Eξ2
t = 0. A suffi cient condition for

the 2nd order stationarity is that all the eigenvalues of the 2m2 × 2m2 matrix,

Λ =

[
p00 (Φ0 ⊗Φ0) p10 (Φ0 ⊗Φ0)
p01 (Φ1 ⊗Φ1) p11 (Φ1 ⊗Φ1)

]
lie on the open disk where

Φh =


φ

(1)
h φ

(2)
h · · · φ

(m−1)
h φ

(m)
h

1 0 0 0
1 0 0 0

0 0 1 0

 , h ∈ S.
Another useful extension is that it is reasonable to expect that the further away
from the equilibrium of the system is the higher the probability of switching
from an unstable noncorrecting regime to a stable error correcting one. This
allows the transition probabilities of the hidden Markov chain to depend on the
extent to which the system is out of long-run equilibrium. Therefore,

Pr {st = i|st−1 = i, zt−1} =
exp (ai + bizt−1)

1 + exp (ai + bizt−1)
, i ∈ S, (210)

Pr {st = j|st−1 = i, zt−1} = 1− Pr {st = i|st−1 = i, zt−1} , i ∈ S, i 6= j (211)

It is natural to consider testing the null of single-regime/no-coinetgration
against the alternative of cointegration with MEC adjustment. The testing
problem is nonstandard due to the presence of unit roots and the unidentifia-
bility of the transition probabilities under the null.
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8 Regime Switching Panel Data Models

8.1 Panel Threshold Regression Models

This is a summary of the paper by B. Hansen (1999, JOE, 93: 345-368). The
structural equation is

yit = µi + β′1xitI (qit ≤ γ) + β′2xitI (qit > γ) + eit, (212)

which can be written as

yit = µi + β′xit (γ) + eit, (213)

where xit (γ) =

(
xitI (qit ≤ γ)
xitI (qit > γ)

)
and β =

(
β′1, β

′
2

)′
. For identification it is

required that xit are not time invariant. eit is assumed to be iid, which excludes
lagged dependent variables from xit. The analysis is asymptotic with fixed T
as n→∞.

8.1.1 Estimation

Taking averages of (227),

ȳi = µi + β′x̄i (γ) + ēi, (214)

where

ȳi =
1

T

T∑
i=1

yit; x̄i (γ) =
1

T

T∑
i=1

xit (γ) =
1

T

T∑
i=1

(
xitI (qit ≤ γ)
xitI (qit > γ)

)
;

and taking the difference between (228) and (229),

y∗it = β′x∗it (γ) + e∗it, (215)

where
y∗it = yit − ȳi; x∗it (γ) = xit (γ)− x̄i (γ) .

Let

y∗i =

 y∗i2

y∗iT

 ; x∗i (γ) =

 x∗′i2 (γ)

x∗′iT (γ)


denote the stacked data with one time period deleted. Then let Y ∗

Y ∗ =

 y∗1

y∗n

 ; X∗ (γ) =

 x∗1 (γ)

x∗n (γ)

 .
denote the data stacked over all individuals. Then

Y ∗ = X∗ (γ)β + e∗. (216)
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For given γ, β can be estimated by OLS;

β̂ (γ) =
(
X∗ (γ)

′
X∗ (γ)

)−1
X∗ (γ)

′
Y ∗. (217)

Chan (1993) and Hansen (1999) recommend estimation of γ by LS. The LSE of
γ is

γ̂ = arg min
γ
S1 (γ) , (218)

where

S1 (γ) = ê∗ (γ)
′
ê∗ (γ) = Y ∗

′
(
I −X∗ (γ)

(
X∗ (γ)

′
X∗ (γ)

)−1
X∗ (γ)

′
)
Y ∗

(219)
ê∗ (γ) = Y ∗ −X∗ (γ) β̂ (γ) .

Once γ̂ is obtained,
β̂ = β̂ (γ̂) ; ê∗ = ê∗ (γ̂) ;

σ̂2 =
1

n (T − 1)
ê∗′ê∗ =

1

n (T − 1)
S1 (γ̂) . (220)

Since S1 (γ) depends only on γ through the indicator function, the sum of
SSE is a step function with most nT steps with the steps occurring at distinct
values of the observed threshold variable qit. Thus the minimisation problem
can be reduced to searching over the values of γ equalling the (at most nT)
distinct values of qit in the sample.
Sort the distinct values of the observations on qit. Eliminate the smallest

and largest η%. The remaining N values constitute the values of γ which can
be searched for γ̂. Foe each of these N values regression are estimated yielding
the SSE. The smallest value yields the estimate γ̂.

A simplifying shortcut is to restrict search to a smallest set of values of γ.
The search may be limited to specific quintiles, perhaps integer valued. This
reduces the number of regressions performed in the search. The estimation from
such an approximation are likely to be suffi ciently precise. For the empirical
work we used the grid {1%, 1.25%, 1.5%, 1.75%, 2%,...,99% } which contains
393 quantiles.

8.1.2 Inference

The hypothesis of no threshold is:

H0 : β1 = β2.

The FE (230) fall in the class of models considered by Hansen (1996) who
suggested a bootstrap to simulate the asymptotic distribution of the LR test.
Under the null of no threshold, the model is

yit = µi + β′1xit + eit, (221)
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after the FE transformation, we have

y∗it = β′1x
∗
it + e∗it, (222)

from which we obtain: β̃1, ẽ
∗
it and S0 = ẽ∗′ẽ∗. The LR test is based on

F1 =
S0 − S1 (γ̂)

σ̂2 . (223)

Hansen (1996) shows that a bootstrap procedure attains the first-order asymp-
totic distribution, so p-values are asymptotically valid.
Treat xit and qit as given. Take the residuals, ê∗it and group them by indi-

vidual: ê∗i = (ê∗i1, ..., ê
∗
iT ). Treat (ê∗i , ..., ê

∗
n) as the empirical distribution to be

used for bootstrapping. Draw (with replacement) a sample of size n from the
empirical distribution and use these errors to create a bootstrap sample under
H0. Using the bootstrap sample estimate the model under the null and the
alternative and calculate the bootstrap value of the LR test F1. Repeat this
procedure a large number of times and calculate the percentage of draws for
which the simulated statistic exceeds the actual. This is the bootstrap estimate
of the asymptotic p-value for F1 under H0.
Hansen (1999) argues that the best way to form CI for γ is to form the

no-rejection region using the LR test. Toe test H0 : γ = γ0, we have

LR1 (γ) =
S1 (γ)− S1 (γ̂)

σ̂2 . (224)

Note that the statistic (224) is testing a different hypothesis from (223).
Theorem 1. Under Assumptions 1-8 and H0 : γ = γ0

LR1 (γ)→d ξ,

as n→∞, where ξ is a random variable with distribution function,

P (ξ ≤ x) =
{

1− exp
(
−x

2

)}2

. (225)

Since the asymptotic distribution in Theorem 1 is pivotal, it may be used to
form valid asymptotic CIs. The distribution function (225) has the inverse:

c (α) = −2 log
(
1−
√

1− α
)

(226)

from which it is easy to calculate critical values.
To form an asymptotic CI for γ the non-rejection region of CI level 1− α is

the set of values of γ such that LR1 (γ) ≤ c (α). This is a natural by-product
of model estimation. To find LSE of γ the sequence of S1 (γ) were calculated.
LR1 (γ) is a simple renormalization of these numbers and require no further
computation.
Chan and Hansen show that the dependence on the threshold estimate is

not of first-order asymptotic importance, so inference on β can proceed as if γ̂
were true value. Hence,

β̂
a∼ N (β, V ) ,
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where

V̂ =

(
n∑
i=1

T∑
t=1

x∗it (γ̂)x∗it (γ̂)
′
)−1

σ̂2.

If the errors are allowed to be conditional heteroskedastic, then

V̂ =

(
n∑
i=1

T∑
t=1

x∗it (γ̂)x∗it (γ̂)
′
)−1( n∑

i=1

T∑
t=1

x∗it (γ̂)x∗it (γ̂)
′
ê∗ 2
it

)

×
(

n∑
i=1

T∑
t=1

x∗it (γ̂)x∗it (γ̂)
′
)−1

.

8.1.3 Investment and financing constraints

We use the multiple threshold regression model:

Iit = µi + θ1Qit−1 + θ2Q
2
it−1 + θ3Q

3
it−1 + θ4Dit−1 + θ5Qit−1Dit−1

+β1CFit−1I (Dit−1 ≤ γ1) + β2CFit−1I (γ1 < Dit−1 ≤ γ2)

+β3CFit−1I (Dit−1 > γ2) + eit

where Iit is the ratio of investment to capital, Qit is the ratio of total market
value to assets, CFit is the ratio of cash flow to assets and Dit is the ratio of
long term debt to assets, where the stock variables are defined at the end of
year. See Table 5 (What is unexpected is that the firm with the highest debt
levels have the smallest coeffi cient. Also in all three cases the coeffi cients on
cash flows are positive.)

8.2 Panel Smooth Transition Regression Models

See Gonzalez, Terasvirta and van Dijk (2005).

8.3 Threshold Regression in Dynamic Panels

See Dang, Kim and Shin (2012, JEF) and Seo and Shin (2016, JoE).

8.4 PMG Estimation of Threshold Dynamic (Heteroge-
neous) Panels

See Shin (prep...).

8.5 Panel Threshold Regression Models in the Presence
of CSD (Still very preliminary)

Another important issue is how to model the spatial dependence, the spatial
heterogeneity and the spatial nonliearity, simultaneously. Here we provide a
review of the limited studies so far...
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8.5.1 Hacoglu Hoke and Kapetanios (2017)

Consider the panel data model where yit is generated by the following data
generating process (DGP),

yit = βi1xit + βi2xitg (qit : γ, c) + φyi1f1t + φyi2f2t + eit

xit = φi1f1t + φi3f3t + vit

g (qit : γ, c) =
1

1 + exp (−γ (qit − c))
where xit is the observable regressors on the ith cross-sectional dimension at time
t for i = 1, ..., N, t = 1, ..., T ; fjt is the unobserved factors, eit ∼ IIDN(0, 1)
and qit = xit for i = 1, ..., N . We address the non-linear term xitg (qit : γ, c) as
wit.
The function g() is a logistic function used in Gonzalez, Terasvirta, and van

Dijk (2005) and previously by Terasvirta (1994). The slope parameter γ and
the location parameter c are estimated endogenously. Function g() is bounded
between 0 and 1. As γ →∞, g() becomes an indicator function so the smooth
transition model reduces to a threshold model with two regimes as in Hansen
(1999), i.e. higher slope parameter leads to faster transition. When γ → 0,
the model reduces to a linear panel regression with fixed e ffcts. We take the
parameters of g() constant throughout the simulations, and over time and cross
sections, i.e. γ = 1 and c = 0. We discuss the implications of heterogeneous
parameters in Appendix B.
We explore two options for the correction of cross-sectional dependence:
Option 1: correction with ȳ, x̄, and w̄,
Option 2: correction with ȳ, x̄.
We repeat the simulations for each pair of (N,T ) = 20, 50, 100, 200, 400 with

2000 replications. Note that the sample we use for options 1 and 2 is the same
within a replication for each pair of N and T .

8.5.2 Chudik, Mohaddes, Pesaran and Raiss (2017)

To explore the importance of heterogeneities, simultaneous determination of
debt and growth, and dynamics, we begin with the following baseline autore-
gressive distributed lag (ARDL) specification:

∆yit = ci + φ′g (dit, τ) +

p∑
`=1

λi`∆yi,t−` +

p∑
`=0

βi`∆dit−` + vit,

and, following Chudik et al. (2016), we also consider the alternative approach
of estimating the long-run effects using the distributed lag (DL) counterpart,
given by

∆yit = ci + θ′g (dit, τ) + φi∆di,t +

p∑
`=0

αi`∆
2dit−` + vit,
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where g (dit, τ) consists of up to two threshold variables: g1(dit, τ) = I[dit >
ln(τ)] and/or g2(dit, τ) = I[dit > ln(τ)]×max(0,∆dit). The threshold variable
g1(dit, τ) takes the value of 1 if debt-to-GDP ratio is above the given threshold
value of τ and 0 otherwise. The interactive threshold term, g2(dit, τ), is nonzero
only if ∆dit > 0, and dit > ln(τ). As before, yit is the log of real GDP and
dit is the log of debt-to-GDP. In addition to assuming a common threshold,
τ , specifications also assume that the coeffi cients of the threshold variables, φ
and θ, are the same across all countries whose debt-to-GDP ratio is above the
common threshold τ . We test for the threshold effects not only in the full sample
of forty countries but also for the two subsamples of advanced and developing
countries, assuming homogeneous thresholds within each group, but allowing
for the threshold parameters to vary across the country groupings.
Given the strong evidence of error cross-sectional dependence and as shown

in section III, the panel threshold tests based on ARDL and DL regressions that
do not allow for error cross-sectional dependence can yield incorrect inference
regarding the presence of threshold effects. To address this problem, we employ
the CS-ARDL and CSDL approaches, based on Chudik and Pesaran (2015a)
and Chudik et al. (2016), which augment the ARDL and DL regressions with
cross-sectional averages of the regressors, the dependent variable, and their lags.
Specifically, the cross sectionally augmented ARDL (CS-ARDL) specification is
given by

∆yit = ci+φ
′g(dit, τ)+

p∑
`=1

λi`∆yi,t−`+

p∑
`=0

βi∆di,t−`+

p∑
`=0

ωi`,hh̄t−`+ω
′
i,g ḡt(τ)+uit,

where h̄t =
(
∆ȳt,∆d̄t

)
, ∆ȳt and ∆d̄t are defined as averages of output growth

and debt-to-GDP growth across countries and other variables are defined as
before. The cross-sectionally augmented DL (CS-DL) specification is defined by

∆yit = ci + θ′g (dit, τ) + φi∆di,t +

p∑
`=0

αi`∆
2dit−`

+ωi,y∆ȳt +

p∑
`=0

ωi`,d∆d̄t−` + ω′i,g ḡt(τ) + vit,

Compared to the CS-ARDL approach, the CS-DL method has better small sam-
ple performance for moderate values of T , which is often the case in applied work
(see Chudik et al., 2016). Furthermore, it is robust to a number of departures
from the baseline specification, such as residual serial correlation, and possible
breaks in the error processes.

Omay and Kan (2010) Consider the following non-linear model with a single
factor:

yit = µi + β′ixit + F (sit, γ, c) β̃
′
ixit + uit

where
F (sit, γ, c) =

1

1 + exp (−γ (sit − c))
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uit = ϕift + εit

xit = δif̃t + vit

Notice here that ft and f̃t are different factor variables that affect dependent,
independent and state dependent variables, respectively. Now suppose that uit
and xit specifications are plugged into original Eq. (15). Thus, we have:

yit = µi + β′iδif̃t + β′ivit + F (sit, γ, c) β̃
′
iδif̃t + F (sit, γ, c) β̃

′
ivit + ϕift + εit

f̃t can be removed by using proxy variable, x̄t where x̄t = N−1
∑N
i=1 xit which

can be obtained through taking the average of xit:

x̄t = δ̄f̃t + v̄t

which implies that

f̃t =
x̄t − v̄t
δ̄

Substituting this into Eq. (16) we obtain:

yit = µi+β
′
iδi
x̄t − v̄t
δ̄

+β′ivit+F (sit, γ, c) β̃
′
iδi
x̄t − v̄t
δ̄

+F (sit, γ, c) β̃
′
ivit+ϕift+εit

In order to remove the factor ft from Eq. (17), we first take the averages of the
above equation and obtain ft appropriately:

ȳt = µ̄+β′δ
x̄t − v̄t
δ̄

+β′vt+ F̄ (sit, γ, c) β̃
′
iδi
x̄t − v̄t
δ̄

+F (sit, γ, c) β̃
′
ivit+ ϕ̄ft+ ε̄t

then, with some algebra, ȳt can be written as:

ȳt = µ̄+ βx̄t + β′vt + F̄ (sit, γ, c) β̃
′
ix̄t + ϕ̄ft + ε̄t

Hence ft is:

ft =
ȳt − µ̄− βx̄t − β′vt − F̄ (sit, γ, c) β̃

′
ix̄t − ε̄t

ϕ̄

we obtain ft from Eq. (20) and substitute it in Eq. (15):

yit = µi+β
′
ixit+F (sit, γ, c) β̃

′
ixit+

ϕi
ϕ

 ȳt − µ̄− βx̄t − β′vt − F̄ (sit, γ, c) β̃
′
ix̄t − ε̄t

ϕ̄

+ηit

again with relevant algebra, we obtain the auxiliary regression:

yit = µ̃i + β′ixit + F (sit, γ, c) β̃
′
ixit + aiȳt + bix̄t + F (.) cix̄t + ηit

The nonlinear model with a single factor is specified as follows:

yit = µi+β
′
0xit+β

′
1xitF (s1,it, γ1, c1)+β′2xitG (s2,it, γ2, c2)+β′3xitF (s1,it, γ1, c1)G (s2,it, γ2, c2)+uit
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where
F (sit, γ, c) =

1

1 + exp (−γ (sit − c))
uit = ϕift + εit

xit = δif̃t + vit

Notice here that ft and f̃t are different factor variables that affect depen-
dent, independent, and state-dependent variables, respectively. By applying the
relevant algebra, we obtain the auxiliary regression in line with Omay and Kan
(2010) and Omay (2014):

yit = µ̃i + β′0xit + β′1xitF (s1,it, γ1, c1) + β′2xitG (s2,it, γ2, c2) + β′3xitF (s1,it, γ1, c1)G (s2,it, γ2, c2)

+aȳ1 + bx̄t + c1F̄ (.) x̄t + c2Ḡ (.) x̄t + c3F̄ (.) Ḡ (.) x̄t + ηit

Now we can estimate the models by this transformation in order to eliminate
the cross-section dependence.

8.5.3 Eberhardt and Presbitero (2015)

The basic equation of the debt—growth nexus is a log-linearised Cobb—Douglas
production function augmented with a debt stock:

yit = βKi capit + βDi debtit + uit; uit = αi + λ′ift + εit

where y is aggregate GDP, cap is capital stock and debt is the total debt stock
– all variables are in logarithms of per capita terms. The parameter βji (for
j = K,D) heterogeneity is a central feature of our empirical setup as moti-
vated above. Eq. (1) also includes country-specific intercepts (αi) and a set
of unobserved common factors ft with country-specific ‘factor loadings’λi to
account for evolution of unobserved Total Factor Productivity (TFP), respec-
tively. Allowing the common factors to be nonstationary has important
implications, since all observable and unobservable processes are now integrated
and standard inference is invalid (Kao, 1999). These common factors not only
drive output, but also the capital and debt stocks, in line with the standard
assumption of endogenous inputs to production.
We employ an error correction model (ECM) representation. This offers

three advantages over static models and restricted dynamic specifications: (i) we
can readily distinguish short-run from long-run behaviour; (ii) we can investigate
the error correction term and deduce the speed of adjustment for the economy
to the long-run equilibrium; and (iii) we can test for cointegration in the ECM
by closer investigation of the statistical significance of the error correction term.
The ECM representation is as follows:

∆yit = αi+ρi

(
yi,t−1 − βKi capi,t−1 − βDi debti,t−1 − λ′ift−1

)
+γKi ∆capit+γ

D
i ∆debtit+γ

F ′
i ∆ft+εit

⇔
∆yit = π0i+π

EC
i yi,t−1+πKi capi,t−1+πDi debti,t−1+πF ′i ft−1+γKi ∆capit+γ

D
i ∆debtit+γ

F ′
i ∆ft+εit
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where the βji represent the long-run equilibrium relationship between GDP (y)
and the measures for capital and debt in our model, while the γji represent the
short-run relations. The ρi indicate the speed of convergence of the economy to
its long-run equilibrium. We included the common factors f in our long-
run equation, which implies thatwe seek to investigate an equilibrium
relationship between output, capital, debt and TFP. In Eq. (4) we have
relaxed the restrictions between the parameters ρi and βi implicit in Eq. (3)
and reparameterized the model.
Following Pesaran (2006) and Banerjee and Carrion-i-Silvestre (2011)

we employ cross-section averages of all variables in the model to cap-
ture unobservables and omitted elements of the cointegration rela-
tionship. Recent work by Chudik and Pesaran (in press) has highlighted that
in a dynamic panel this approach is subject to small sample bias. They suggest
to include further lags of the cross-section averages in addition to the
cross-section averages of all model variables. Our estimation equation is
thus

∆yit = π0i + πECi yi,t−1 + πKi capi,t−1 + πDi debti,t−1 + γKi ∆capit + γDi ∆debtit

+πCA1i ∆yt + πCA2i yt−1 + πCA3i capt−1 + πCA4i debtt−1 + πCA5i ∆capt + πCA6i ∆debtt

+

p∑
l=2

πCA7il ∆yt−l +

p∑
l=1

πCA8il ∆capt−l +

p∑
l=1

πCA9il ∆debtt−l + εit

Asymmetric dynamic model We follow Shin et al. (2013) and define
the asymmetric long-run regression model:

yit = βKi capit + βD+
i debt+it + βD−i debt−it + λ′ift + εit

where debt stock has been decomposed into

debtit = debti0 + debt+it + debt−it

The latter two terms are partial sums of values above and below a specific
threshold, debti0 has been subsumed into the constant term. The ECM version
of our asymmetric dynamic model is then

∆yit = π0i + πECi yi,t−1 + πKi capi,t−1 + πD+
i debt+i,t−1 + πD−i debt−i,t−1 + πF ′i ft−1

+πki ∆capit + πd+
i ∆debt+it + πd−i ∆debt−it + γF ′i ∆ft + εit

Finally, we obatin the CS augmented model by

∆yit = π0i + πECi yi,t−1 + πKi capi,t−1 + πD+
i debt+i,t−1 + πD−i debt−i,t−1

+πki ∆capit + πd+
i ∆debt+it + πd−i ∆debt−it

+πCA1i ∆yt + πCA2i yt−1 + πCA3i capt−1 + πCA4i debt
+
t−1 + πCA5i debt

−
t−1

+πCA6i ∆capt + πCA7i ∆debt+t + πCA8i ∆debt−t

+

p∑
l=2

πCA9il ∆yt−l +

p∑
l=1

πCA10il∆capt−l +

p∑
l=1

πCA11il∆debt
+
t−l +

p∑
l=1

πCA12il∆debt
−
t−l + εit
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8.5.4 PTAR extensions

Panel Threshold Regression Models This is a summary of the paper
by B. Hansen (1999, JOE, 93: 345-368). The structural equation is

yit = µi + β′1xitI (qit ≤ γ) + β′2xitI (qit > γ) + eit, (227)

which can be written as

yit = µi + β′xit (γ) + eit, (228)

where xit (γ) =

(
xitI (qit ≤ γ)
xitI (qit > γ)

)
and β =

(
β′1, β

′
2

)′
. eit is assumed to be iid,

which excludes lagged dependent variables from xit. The analysis is asymptotic
with fixed T as n→∞.
Estimation: Taking averages of (227),

ȳi = µi + β′x̄i (γ) + ēi, (229)

where

ȳi =
1

T

T∑
i=1

yit; x̄i (γ) =
1

T

T∑
i=1

xit (γ) =
1

T

T∑
i=1

(
xitI (qit ≤ γ)
xitI (qit > γ)

)
;

and taking the difference between (228) and (229),

y∗it = β′x∗it (γ) + e∗it, (230)

where
y∗it = yit − ȳi; x∗it (γ) = xit (γ)− x̄i (γ) .

Let

y∗i =

 y∗i2
...
y∗iT

 ; x∗i (γ) =

 x∗′i2 (γ)
...

x∗′iT (γ)


denote the stacked data with one time period deleted. Then let Y ∗

Y ∗ =

 y∗1
...
y∗n

 ; X∗ (γ) =

 x∗1 (γ)
...

x∗n (γ)

 .
denote the data stacked over all individuals. Then

Y ∗ = X∗ (γ)β + e∗. (231)

For given γ, β can be estimated by OLS;

β̂ (γ) =
(
X∗ (γ)

′
X∗ (γ)

)−1
X∗ (γ)

′
Y ∗. (232)
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Chan (1993) and Hansen (1999) recommend estimation of γ by LS. The LSE of
γ is

γ̂ = arg min
γ
S1 (γ) , (233)

where

S1 (γ) = ê∗ (γ)
′
ê∗ (γ) = Y ∗

′
(
I −X∗ (γ)

(
X∗ (γ)

′
X∗ (γ)

)−1
X∗ (γ)

′
)
Y ∗

(234)
ê∗ (γ) = Y ∗ −X∗ (γ) β̂ (γ) .

Once γ̂ is obtained,
β̂ = β̂ (γ̂) ; ê∗ = ê∗ (γ̂) ;

σ̂2 =
1

n (T − 1)
ê∗′ê∗ =

1

n (T − 1)
S1 (γ̂) . (235)

Since S1 (γ) depends only on γ through the indicator function, the sum of
SSE is a step function with most nT steps with the steps occurring at distinct
values of the observed threshold variable qit. Thus the minimisation problem
can be reduced to searching over the values of γ equalling the (at most nT )
distinct values of qit. A simplifying shortcut is to restrict search to a smallest
set of values of γ. The search may be limited to specific quintiles, perhaps
integer valued. This reduces the number of regressions performed in the search.
Inference to follow:
We now extend the model and allow for the unobserved factors such that

yit = β′1xitI (qit ≤ γ) + β′2xitI (qit > γ) + uit, (236)

uit = µi + λ′ift + eit

where eit is assumed to be iid. Consider the following (linear) data generating
process for xit:

xit = µxi + λ′xift + vit, (237)

where vit is the generic stationary process, assumed to be uncorrelated with uit.
Define

x1,it (γ) = xitI (qit ≤ γ) and x2,it (γ) = xitI (qit > γ)

such that
xit = x1,it (γ) + x2,it (γ)

x1,it =
(
µxi + λ′xift + vit

)
I (qit ≤ γ) = µx1i (γ) + λ′x1i (γ) ft + vi1t (γ)?? (238)

x2,it =
(
µxi + λ′xift + vit

)
I (qit > γ) = µx2i (γ) + λ′x2i (γ) ft + vi2t (γ)?? (239)

Combining (286), (238) and (239), we have:

zit =

 yit
x1,it

x2,it

 = µi + Φif t + εit (240)

104



where

µi =

 µi + β′1µx1i (γ) + β′2µx2i (γ)
µx1i (γ)
µx2i (γ)

 , Φi =

 λ′i + β′1λx1i (γ) + β′2λx2i (γ)
λ′x1i (γ)
λ′x2i (γ)



εit =

 eit + β′1vi1t (γ) + β′2vi2t (γ)
vi1t (γ)
vi2t (γ)


Taking CS average of (340), we have:

z̄t =

 ȳt
x̄1,t

x̄2,t

 = µ̄+ Φ̄f t + ε̄t (241)

Suppose that the rank condition holds. Then, from (241), we have:

f t =
(
Φ̄
′
Φ̄
)−1

Φ̄ (z̄t − µ̄− ε̄t)

As N →∞,
ε̄t = Op

(
1

N

)
+Op

(
1√
NT

)
,

hence

f t −
(
Φ̄
′
Φ̄
)−1

Φ̄ (z̄t − µ̄) = Op

(
1

N

)
+Op

(
1√
NT

)
.

This suggests that we can use z̄t as observable proxies for f t. Then, we can
consistently estimate the individual slope coeffi cients, β1 and β2 (or β1i and
β2i as well as their means) by augmenting the regression, (286) with the cross-
section averages z̄t.
Alternatively, we apply the within transformation to (286) first and obtain:

y∗it = β′1x
∗
1,it (γ) + β′2x

∗
2,it (γ) + λ′if

∗
t + e∗it, (242)

where

y∗it = yit − ȳi, x∗1,it (γ) = x1,it (γ)− x̄1i (γ) , x∗2,it (γ) = x2,it (γ)− x̄2i (γ) ,

f∗t = ft − f̄ , e∗it = eit − ēi.
Applying the within transformation to (339), we have:

x∗it = λ′xif
∗
t + v∗it, (243)

where v∗it = vit − v̄i. Then,

x∗1,it =
(
λ′xif

∗
t + v∗it

)
I (qit ≤ γ) = λ′x1i (γ) f∗t + v∗i1t (γ)?? (244)

x∗2,it =
(
λ′xif

∗
t + v∗it

)
I (qit > γ) = λ′x2i (γ) f∗t + v∗i2t (γ)?? (245)
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Combining (242), (244) and (245), we have:

z∗it =

 y∗it
x∗1,it
x∗2,it

 = Φif
∗
t + ε∗it (246)

where

Φi =

 λ′i + β′1λx1i (γ) + β′2λx2i (γ)
λ′x1i (γ)
λ′x2i (γ)

 , ε∗it =

 eit + β′1v
∗
i1t (γ) + β′2v

∗
i2t (γ)

v∗i1t (γ)
v∗i2t (γ)


Taking CS average of (246), we have:

z̄∗t =

 ȳ∗t
x̄∗1,t
x̄∗2,t

 = Φ̄f
∗
t + ε̄∗t (247)

Suppose that the rank condition holds. Then, from (247), we have:

f∗t =
(
Φ̄
′
Φ̄
)−1

Φ̄ (z̄∗t − ε̄∗t )

As N →∞,
ε̄∗t = Op

(
1

N

)
+Op

(
1√
NT

)
,

hence

f∗t −
(
Φ̄
′
Φ̄
)−1

Φ̄z̄
∗
t = Op

(
1

N

)
+Op

(
1√
NT

)
.

This suggests that we can use z̄∗t as observable proxies for f
∗
t . Then, we can

consistently estimate the individual slope coeffi cients, β1 and β2 (or β1i and
β2i as well as their means) by augmenting the regression, (242) with the cross-
section averages z̄∗t .

Dynamic Panel Threshold Regression Models to follow:

8.5.5 Spatial TAR or STAR models

Surprisingly limited number of studies, e.g. Pede, Florax and Lambert (2014)...
The spatial STARmodel with a spatially lagged exogenous variable in the transi-
tion function, combined with a spatially lagged dependent variable and spatially
autoregressive errors is:

y = ρWy +Xα+Xδ ◦G (Wx, γ, c) + ε

ε = λWε+ µ

where ρ and λ are spatial autoregressive parameters pertaining to the lag and/or
the error, µ are independent and identically distributed disturbances, and the
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other symbols are as defined before. Three different spatial STAR models are
nested in the general ARAR STAR model depending on the value of the spatial
autoregressive parameters. The restriction λ = 0 leads to the spatial lag STAR
model, ρ = 0 to the spatial error STAR model, and ρ = λ = 0 to the basic
spatial STAR model. Each model can be estimated with maximum likelihood
(ML).

9 Multi-dimensional Panel Data Modelling in
the Presence of Cross Sectional Dependence

Given the growing availability of the dataset which contain information on multi-
ple dimensions, the recent literature has focused more on extending the two-way
fixed effects models to the multidimensional setting. The ‘triple-way specifica-
tion’has been popularised by Mátyás (1997), where time, source (exporter) and
destination (importer) fixed effects are specified respectively as unobservable.
Baltagi et al. (2003) propose an extended specification with fixed exporter-time,
importer-time, and country-pair effects. The triple-index models can be applied
to the number of bilateral flows between countries or regions such as trade, FDI,
capital or migration flows (e.g. Feenstra, 2005; Bertoli and Fernandez-Huertas
Moraga, 2013; Gunnella et al., 2015), but also to a variety of matched dataset
which may link the employer-the employee and pupils-teachers (e.g. Abowd et
al., 1999; Kramarz et al., 2008).
Balazsi, Mathyas and Wansbeek (2015, BMW) introduce the 3D within esti-

mators and analyse the behavior of these estimators in the cases of no self-flow
data, unbalanced data, and dynamic autoregressive models.20 Consider the 3D
country-time fixed effects panel data model:

yijt = β′xijt + γ′sit + δ′djt + κ′qt +ϕ′zij + uijt, (248)

for i = 1, ..., N1, j = 1, ..., N2, t = 1, ..., T , with errors:

uijt = µij + vit + ζjt + εijt (249)

where yijt is the dependent variable across 3 indices (e.g. the import of country
j from country i at period t); xijt, sit, djt, qt, zij are the kx× 1, ks× 1, kd× 1,
kq × 1, kz × 1 vectors of covariates covering all measurements across 3indices;
The multi-error components contain pair-fixed effects

(
µij
)
as well as origin and

destination CTFEs, vit and ζjt.
Unobserved fixed effects, µij , vit and ζjt, can be modelled by adding the

following N2T × (N2 + 2NT ) matrix of the dummies:

D = ((IN ⊗ IN ⊗ lT ) , (IN ⊗ lN ⊗ IT ) , (lN ⊗ IN ⊗ IT ))
(
N2T × (N2 + 2NT )

)
20See also Balazsi Mathyas and Pus (2015) for the random effect approach and Baltagi et

al. (2015) for the host of issues related to the panel data gravity models of trade.
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where IN is the N × N identity matrix and lN is the N × 1 vector of ones
(similarly for IT and lT ). To remove all unobserved FEs, BMW derive the 3D
within transformation:

ỹijt = yijt − ȳij· − ȳ·jt − ȳi·t + ȳ··t + ȳ·j· + ȳi·· − ȳ··· (250)

where ȳij· = T−1
∑T
t=1 yijt, ȳ·jt = N−1

∑N
i=1 yijt, ȳi·t = N−1

∑N
j=1 yijt, ȳ••t =

N−2
∑N
i=1

∑N
j=1 yijt, ȳ•j• = (NT )

−1∑N
i=1

∑T
t=1 yijt, ȳi•• = (NT )

−1∑N
j=1

∑T
t=1 yijt

and ȳ··· =
(
N2T

)−1∑N
i=1

∑N
j=1

∑T
t=1 yijt.

We can estimate consistently β from the transformed regression:

ỹijt = β′x̃ijt + ε̃ijt, (251)

where x̃ijt = xijt − x̄ij. − x̄.jt − x̄i.t + x̄..t + x̄.j. + x̄i.. − x̄.... We write (251)
compactly as

Ỹij = X̃ijβ + Ẽij (252)

Ỹij
T×1

=

 ỹij1
...

ỹijT

 , X̃ij
T×kx

=

 x̃′ij1
...

x̃′ijT

 , Ẽij
T×1

=

 ε̃ij1
...

ε̃ijT

 .
The 3D-within estimator of β is obtained by

β̂W =

(
N1∑
i=1

N2∑
j=1

X̃′ijX̃ij

)−1(
N1∑
i=1

N2∑
j=1

X̃′ijỸij

)
. (253)

As (N1, N2, T )→∞,√
N1N2T

(
β̂W − β

)
(254)

a∼ N

0, σ2
ε lim

(N1,N2,T )→∞

(
1

N1N2T

N1∑
i=1

N2∑
j=1

X̃′ijX̃ij

)−1
 .

The 3D within transformation wipes out all other covariates, xit, xjt, xt,
and xij . It would be worthwhile to develop an extension of the Hausman-
Taylor (1981) estimation, popular in the 2D panels in the presence of CSD (e.g.
Serlenga and Shin, 2007). Balazsi, Bun, Chan and Harris (2017) develop an
extended HT estimator for multi-dimensional panels.

9.1 Research Extensions

We now propose a number of important research extensions.

• First, the 3D within transformation, (250) wipes out the regressors xit,
xjt, xt and xij . But, we are also interested in uncovering the effects of
those covariates, e.g. the impacts of measured trade costs in the structural
gravity model. In order to recover these coeffi cients, we wish to develop an
extension of the Hausman-Taylor type estimation or the Mundlak trans-
formations.
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• Second and more importantly, we aim to introduce the cross-section de-
pendence (CSD) explicitly within the three-way error component specifi-
cations. This makes the timely contribution to the literature, given the
massive development of modelling CSD in the 2D panels, e.g. Pesaran
(2006) and Bai (2009, 2014).

—What’s the nature of CSD, strong, semi-strong or weak? As αit and
α∗jt in the CTFE model (??) are related to the local time factors,
their CSD may be semi-strong.

—To introduce the strong CSD, we may add the common unobserved
global factor, λt:

uijt = µij + vit + ζjt + λt + εijt (255)

However, the 3D-within transformation also removes λt, because λt

is proportional to
N1∑
i=1

vit or
N2∑
j=1

ζjt.

—Consider the following error components:

uijt = µij + πijλt + εijt (256)

which is the two-way version of the factor model considered by Ser-
lenga and Shin (2007). More generally, we will examine:

uijt = µij + vit + ζjt + πijλt + εijt (257)

—Kapetanios, Serlenga and Shin (2017) model the error components,
uijt to follow the hierarchical multi-factor structure:

uijt = γ′ijf t + γ′◦jf i◦t + γ′i◦f◦jt + εijt, (258)

where f t, f◦jt and f i◦t are respectively mf × 1, m◦• × 1 and m•◦ ×
1 vectors of unobserved common effects, and εijt are idiosyncratic
errors. Exporter i reacts heterogeneously to the common import
market condition f◦jt and importer j reacts heterogeneously to the
common export market condition f i◦t. Both exporter i and importer
j reacts heterogeneously to the common global market condition f t.
Within this model, we can distinguish between three types of CSD:
(i) the strong global factor, f t which influences the (ij) pairwise
interactions (of N2 dimension); (ii) the semi-strong local factors, f i◦t
and f◦jt, which influence origin or destination separately (each of N
dimension); and (iii) the weak CSD idiosyncratic errors, εijt.

• We expect that this kind of generalisation would be most natural within
the 3D panel data models.

• In such a case, the 3D within estimator is unable to estimate β’s consis-
tently due to the nonzero correlation between omitted interactive effects
(πijλt) and the regressors.
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• The full estimation of (??) with (256), (257) or (338) can be feasible by
combining the Pesaran or the Bai type estimation procedures with the
Hausman-Taylor extension.

• Finally, there are a few studies which attempt to develop a general ap-
proach that can accommodate both weak and strong CSD in modelling
cross-sectionally correlated panels.

—Bailey et al. (2015) develop the multi-step estimation procedure that
can distinguish the relationship between spatial units that is purely
spatial from that which is due to the effect of common factors.

—Kapetanios et al. (2014) advance a flexible nonlinear panel data
model, which can generate strong and/or weak CSD endogenously.
Furthermore, Mastromarco et al. (2015) propose the novel technique
for allowing weak and strong CSD in modelling technical effi ciency
of stochastic frontier panels by combining the exogenously driven
factor-based approach by SS and an endogenous threshold regime
selection by KMS. See also Gunella et al. (2015).

—Bai and Li (2015) and Shi and Lee (2017) develop the framework
for jointly modelling spatial effects and interactive effects. See also
Kuersteiner and Prucha (2015).

—Hence, the extension of such joint modelling to the multidimensional
data would be challenging but shed further lights on the understand-
ing the complex structure of CSD.

9.2 The Econometrics of Multi-dimensional Panel Data
Modelling in the Presence of Cross-sectional Error
Dependences by Kapetanios, Mastromarco, Serlenga
and Shin (2017, KMSS)

There has been no study to address an issue of controlling cross-section (error)
dependence (CSD) in 3D or higher-dimensional data, despite strong CSD evi-
dence in 2D panels (Pesaran, 2015). Two main approaches in modelling CSD
in 2D panels are: (i) the factor-based approach (Pesaran, 2006; Bai, 2009) and
(ii) the spatial econometrics techniques (Baltagi, 2005; Behrens et al., 2012).
The factor-based models exhibit strong CSD while the spatial models weak

CSD only (Chudik et al., 2011). See also Bailey et al. (2016), Le Gallo and
Pirotte (2017), and Baltagi, Egger and Erhardt (2017).
We develop the 3D models with strong CSD.We generalise the multi-dimensional

error components by incorporating unobserved heterogeneous global factors.
The country-time fixed (CTFE) and random effects (CTRE) estimators fail
to remove heterogenous global factors; inconsistent in the presence of nonzero
correlation between the regressors and unobserved global factors.
We develop the 2-step estimation procedure. Following Pesaran (2006), we

augment the 3D model with cross-section averages of dependent variable and re-
gressors, as proxies for unobserved global factors. We then apply the 3D-within
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transformation to the augmented specification and obtain consistent estimators
(the 3D-PCCE estimator). Our approach is the first attempt to accommodate
strong CSD in multi-dimensional panels.
We discuss the extent of CSD under 3 different error components with CTFE,

with 2-way heterogeneous factor, and with both. We develop a diagnostic test
for the null of (pairwise) residual cross-section independence or weak depen-
dence, which is a modified CD test in 2D panels proposed by Pesaran (2015).
We also provide extensions into unbalanced panels and 4D models.
Monte Carlo studies confirm that the 3D-PCCE estimators perform well

when the 3D panels are subject to heterogeneous global factors. On the contrary
CTFE displays severe biases and size distortions. We apply the 3D PCCE
estimation, together with the 2-way FE and CTFE estimators, to the dataset
over 1960-2008 for 91 country-pairs amongst 14 EU countries. Based on the CD
test results, and the predicted signs and statistical significance of the coeffi cients,
we find that the 3D PCCE estimation results are most reliable and satisfactory.
The trade effect of currency union is rather modest. This suggests that the
trade increase within the Euro area may reflect a continuation of a long-run
historical trend linked to the broader set of EU’s economic integration policies.
Throughout we adopt the following standard notations. IN is an N × N

identity matrix, JN the N ×N identity matrix of ones, and ιN the N ×1 vector
of ones, respectively. MA projects the N ×N matrix A into its null-space, i.e.,
MA = IN −A(A′A)−1A′. Finally, y.jt = N−1

1

∑N1

i=1 yijt, yi.t = N−1
2

∑N2

j=1 yijt

and yij. = T−1
∑T
t=1 yijt denote the average of y over the index i, j and t,

respectively, with the definition extending to other quantities such as y..t, y.j.,
yi.. and y....

9.2.1 The 3D Models with CSD

We first consider the following error components specification:

uijt = µij + πijλt + εijt. (259)

Similar to the 2-way heterogeneous factor model by Serlenga and Shin (2007).
We apply the cross-section averages of (248) over i and j:

ȳ..t = β′x̄..t + γ′s̄.t + δ′d̄.t + κ′qt +ϕ′z̄..+ µ̄.. + π̄..λt + ε̄..t (260)

Hence, we have:

λt =
1

π̄..

{
ȳ..t −

(
β′x̄..t + γ′s̄.t + δ′d̄.t + κ′qt +ϕ′z̄.. + µ̄.. + ε̄..t

)}
We augment the model (248) with the cross-section averages:

yijt = β′xijt + γ′sit + δ′djt +ψ′ijft + τ ij + µ∗ij + ε∗ijt, (261)

where

ψ′ij =

(
πij
π̄..

,
−πijβ′

π̄..
,
−πijγ′
π̄..

,
−πijδ′

π̄..
,

(
1− πij

π̄..

)
κ′
)
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ft =
(
ȳ..t, x̄

′
..t, s̄

′
.t, d̄

′
.t,q

′
t

)′
(262)

τ ij = ϕ′zij −
−πij
π̄..

ϕ′z.., µ
∗
ij = µij −

πijµ..
π̄..

, ε∗ijt = εijt −
πij
π̄..

ε̄..t.

We write (261) compactly as

Yij = Wijθ + Hψ∗ij + E∗ij , i = 1, ..., N1, j = 1, ..., N2 (263)

Yij
T×1

=

 yij1
...

yijT

 , Xij
T×kx

=

 x′ij1
...

x′ijT

 , Si
T×ks

=

 s′i1
...

s′iT

 ,

Dj
T×kd

=

 d′j1
...

d′jT

 , F
T×kf

=

 f ′1
...

f ′T

 , E∗ij
T×1

=

 ε∗ij1
...

ε∗ijT

 ,
Wij =

(
Xij ,Si,Dj

)
, θ =

(
β′ γ′ δ′

)′
, ψ∗ij =

(
ψ′ij ,

(
τ ij + µ∗ij

))′
and H =

[F, ιT ].
We derive the 3D-PCCE estimator of θ by

θ̂PCCE =

(
N1∑
i=1

N2∑
j=1

W′
ijMHWij

)−1(
N1∑
i=1

N2∑
j=1

W′
ijMHYij

)
(264)

whereMH = IT−H (H′H)
−1

H′.Following Pesaran (2006), it is straightforward
to show that as (N1, N2, T )→∞,√

N1N2T
(
θ̂PCCE − θ

)
a∼ N (0,Σθ) , (265)

where the (robust) consistent estimator of Σθ is given by

Σ̂θ =
1

N1N2
S−1
θ RθS

−1
θ , (266)

Rθ =
1

N1N2 − 1

N1∑
i=1

N2∑
j=1

(
W′

ijMHWij

T

)(
θ̂ij − θ̂MG

)(
θ̂ij − θ̂MG

)′(W′
ijMHWij

T

)
,

Sθ =
1

N1N2

N1∑
i=1

N2∑
j=1

(
W′

ijMHWij

T

)
, θ̂MG =

1

N1N2

N1∑
i=1

N2∑
j=1

θ̂ij ,

where θ̂ij is the (ij) pairwise OLS estimator obtained from the individual re-
gression of Yij on (Wij ,H) in (263).
Next, we consider the 3D model (248) with the general errors:

uijt = µij + vit + ζjt + πijλt + εijt. (267)
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The 3D-within transformation fails to remove πijλt, because

ũijt = π̃ij λ̃t + ε̃ijt

where λ̃t = λt − λ̄ with λ̄ = T−1
∑T
t=1 λt and π̃ij = πij − π.j − πi. + π.. with

π.j = N−1
1

∑N1

i=1 πij and πi. = N−1
2

∑N2

j=1 πij .
21 In the presence of the nonzero

correlation between xijt and λt, the 3D-within estimator of β is biased.
We develop the two-step consistent estimation procedure. First, taking the

cross-section averages of (??) over i and j,

ȳ..t = β′x̄..t + γ′s̄.t + δ′d̄.t + κ′qt +ϕ′z.. + µ.. + v̄.t + ζ̄ .t + π̄..λt + ε̄..t (268)

where v̄.t = N−1
1

∑N1

i=1 vit, ζ̄ .t = N−1
2

∑N2

j=1 ζjt. We augment the model (248)
with the cross-section averages:

yijt = β′xijt + γ′sit + δ′djt +ψ′ijft + τ ij + µ∗ij + v∗ijt + ζ∗ijt + ε∗ijt, (269)

where v∗ijt = vit − πij v̄.t
π̄..

, ζ∗ijt = ζjt −
πij ζ̄.t
π̄..

.
We rewrite (269) as

yijt = β′xijt + γ′sit + δ′djt +ψ′ijft + τ ij + µ∗ij + vit + ζjt + ε∗∗ijt, (270)

where ε∗∗ijt = εijt − πij
π̄..
ε̄..t − πij v̄.t

π̄..
− πij ζ̄.t

π̄..
. As N1, N2 →∞, ε∗∗ijt →p εijt.

We apply the 3D-within transformation (250) to (270):

ỹijt = β′x̃ijt + ψ̃
′
ij f̃t + ε̃∗∗ijt, (271)

where ψ̃ij = ψij − ψ.j − ψj. + ψ.., f̃t = ft − f̄ with f̄ = T−1
∑T
t=1 ft.Rewriting

(271) compactly as

Ỹij = X̃ijβ + F̃ψ̃ij + Ẽ∗∗ij , i = 1, ..., N1, j = 1, ..., N2 (272)

Ỹij
T×1

=

 ỹij1
...

ỹijT

 , X̃ij
T×kx

=

 x̃′ij1
...

x̃′ijT

 , F̃
T×kf

=

 f̃ ′1
...

f̃ ′T

 , Ẽ∗∗ij =

 ε̃∗∗ij1
...

ε̃∗∗ijT

 .
The 3D-PCCE estimator of β is obtained by

β̂PCCE =

(
N1∑
i=1

N2∑
j=1

X̃′ijMF̃ X̃ij

)−1(
N1∑
i=1

N2∑
j=1

X̃′ijMF̃ Ỹij

)
(273)

whereMF̃ = IT−F̃
(
F̃′F̃

)−1

F̃′ is the T×T idempotent matrix.As (N1, N2, T )→
∞, √

N1N2T
(
β̂PCCE − β

)
a∼ N (0,Σβ) , (274)

21Unless π̃ij = 0,ũijt 6= ε̃ijt. This holds only if factor loadings, πij are homogeneous.
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where the (robust) consistent estimator of Σβ is given by

Σ̂β =
1

N2
S−1
β RβS−1

β , (275)

Rβ =
1

N1N2 − 1

N1∑
i=1

N2∑
j=1

(
X̃′ijMF̃ X̃ij

T

)(
β̂ij − β̂MG

)(
β̂ij − β̂MG

)′(X̃′ijMF̃ X̃ij

T

)
,

Sβ =
1

N1N2

N1∑
i=1

N2∑
j=1

(
X̃′ijMF̃ X̃ij

T

)
, β̂MG =

1

N1N2

N1∑
i=1

N2∑
j=1

β̂ij ,

where β̂ij is the (ij) pairwise OLS estimator from the individual regression of

Ỹij on
(
X̃ij , F̃

)
in (272).

We extend to the 3D panels with heterogeneous slope parameters:

yijt = β′ijxijt + γ′jsit + δ′idjt + κ′ijqt +ϕ′zij + uijt (276)

We develop the mean group estimators:

β̂W,MG =
1

N1N2

N1∑
i=1

N2∑
j=1

(
X̃′ijX̃ij

)−1 (
X̃′ijYij

)
(277)

θ̂MGCCE =
1

N1N2

N1∑
i=1

N2∑
j=1

(
W′

ijMHWij

)−1 (
W′

ijMHYij

)
(278)

β̂MGCCE =
1

N1N2

N1∑
i=1

N2∑
j=1

(
X̃′ijMF̃ X̃ij

)−1 (
X̃′ijMF̃ Ỹij

)
(279)

9.2.2 Cross-section Dependence (CD) Test

The extent of CSD is captured by non-zero covariance between uijt and ui′j′t,

which relates to rate at which 1
N1N2

N1∑
i=1

N2∑
j=1

σijt,u declines with N1N2. CTFE

accommodates non-zero covariance locally, but imposes the same covariance for
all i = 1, ..., N1 and j = 1, ..., N2. Such restrictions are too strong. Our proposed
error components (267) accommodates non-zero covariances both locally and
globally.
The diagnostic test for the null hypothesis of residual cross-section inde-

pendence in the 3D panels using the residuals, eij = (eij1, ..., eijT )
′. We have

eij = Ỹij − X̃ijβ̂W for the model (252), eij = MHYij −MHWij θ̂PCCE for
(263), and eij = MF̃ Ỹij −MF̃ X̃ijβ̂PCCE for (272). The cross-section depen-
dence (CD) test is a modified counterpart of an existing CD test by Pesaran
(2015).
We compute the pair-wise residual correlations between n and n′ cross-

section units by

ρ̂nn′ =
e′nen′√

(e′nen) (e′n′en′)
, n, n′ = 1, ..., N1N2 and n 6= n′,
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where we represent eij as the (ij) pair using the single index n = 1, ..., N1N2.
We construct the CD statistic by

CD =

√
2

N1N2 (N1N2 − 1)

N1N2−1∑
n=1

N1N2∑
n′=n+1

√
T ρ̂nn′ (280)

CD test has the limiting N(0, 1) distribution under the null H0 : ρ̂nn′ = 0 for
all n, n′ = 1, ..., N1N2 and n 6= n′ (Pesaran, 2015).

9.2.3 Monte Carlo Study

We construct DGP1 by

yijt = β′xijt + µij + πijλt + εijt, (281)

xijt = µxij + µij + πxijλt + vijt, (282)

for i = 1, ..., N1, j = 1, ..., N2, and t = 1, ..., T . The global factor, λt and
idiosyncratic errors, εijt and vijt are generated independently as iid processes

λt ∼ iidN (0, 1) , εijt ∼ iidN (0, 1) , vijt ∼ iidN (0, 1) .

We generate pairwise individual effects independently as

µij ∼ iidN (0, 1) , µxij ∼ iidN (0, 1) .

Factor loadings, πij and πxij , are independently generated from U [1, 2].
Next, we construct DGP2 by

yijt = β′xijt + µij + vit + ζjt + πijλt + εijt. (283)

xijt = µxij + µij + πxijλt + vijt, , (284)

for i = 1, ..., N1, j = 1, ..., N2, and t = 1, ..., T . In addition, we generate vit and
ζjt independently as:

vit ∼ U (−1, 1) and ζjt ∼ U (−1, 1)

In both DGP1 and DGP2 we set β = 1.
In Table 1 biases of the 2D PCCE and 3D PCCE estimators of β are mostly

negligible even for (N1, N2, T ) = (25, 25, 50). The CTFE estimator displays
substantial biases. RMSE results are qualitatively similar to the bias pattern.
CTFE over-rejects the null in all cases and tends to 1 even as N1 (N2) or T
rises. The size of the 2D PCCE is close to the nominal 5% while 3D PCCE
slightly over-rejects when N1 or N2 is small. Overall performance of the 2D
PCCE estimator is the best under DGP1.
Simulation results in Table 2 are qualitatively similar to those in Table 1.

Biases of PCCE are almost negligible and their RMSEs decrease rapidly with
N1 (N2) or T . Empirical sizes are still close to the nominal 5% level. CTFE
suffers from substantial biases and size distortions, and its performance does
not improve in large samples. Good performance of the 2D PCCE is rather
surprising as the 3D PCCE estimator is expected to dominate. Overall simu-
lation results support the simulation findings reported under the 2D panels by
Kapetanios and Pesaran (2005) and Pesaran (2006).
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9.2.4 The Gravity Model of the Intra-EU Trade

Anderson and van Wincoop (2003): “The gravity equation tells us that bilat-
eral trade, after controlling for size, depends on the bilateral trade barriers but
relative to the product of their Multilateral Resistance Indices (MTR).”Omit-
ting MTR induces severe bias (e.g. Baldwin and Taglioni, 2006). Subsequent
research focused on estimating the model with directional country-specific fixed
effects to control for unobservable MTRs (e.g. Feenstra, 2004).
A large number of studies established an importance of taking into account

multilateral resistance and bilateral heterogeneity in the 2D panels. Serlenga
and Shin (2007) is the first to develop the panel gravity model by incorporat-
ing observed and unobserved factors. Behrens et al. (2012) develop the spatial
econometric specification, to control for multilateral cross-sectional correlations
across trade flows. Mastromarco et al. (2015) compare the factor- and the
spatial-based gravity models to investigate the Euro impact on intra-EU trade
flows over 1960-2008 for 190 country-pairs of 14 EU and 6 non-EU OECD coun-
tries. The CD test confirms that the factor-based model is more appropriate for
controlling for CSD.
For the 3D models, we should control for source of biases presented by un-

observed time-varying MTRs. Baltagi et al. (2003) propose the 3D model (251)
with CTFE specification (??). This approach popular in measuring the impacts
of MTRs of the exporters and the importers in the structural gravity studies (e.g.
Baltagi et al., 2015). CTFE or CTRE estimators fail to accommodate (strong
and heterogeneous) CSD. The presence of CSD across (ij) pairs suggests that
the appropriate econometric techniques be required.
We apply our approach to the dataset covering the period 1960-2008 (49

years) for 182 country-pairs amongst 14 EUmember countries (Austria, Belgium-
Luxemburg, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Nether-
lands, Portugal, Spain, Sweden, United Kingdom).
Consider the generalised panel gravity specification:

lnEXPijt = β0 + β1CEEijt + β2EMUijt + β3SIMijt + β4RLFijt (285)

+ β5 lnGDPit + β6 lnGDPjt + β7RERt

+ γ1DISij + γ2BORij + γ3LANij + uijt

The dependent variable EXPijt is the export flow from country i to country
j at time t; CEE and EMU are dummies for European Community member-
ship and European Monetary Union; SIM and RLF measure similarity in size
and difference in relative factor endowments; RER represents the logarithm of
common real exchange rates; GDPit and GDPjt are logged GDPs of exporter
and importer; The logarithm of geographical distance (DIS) and the dummies
for common language (LAN) and for common border (BOR) represent time-
invariant bilateral barriers.
We report the CD test results for the residuals and the estimates of the CSD

exponent (α). Our focus is on the impacts of tij that contain both barriers and
incentives to trade. We focus on the two dummy variables; CEE (one when both
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countries belong to the European Community); EMU (one when both adopt the
same currency). Both are expected to exert a positive impact on bilateral export
flows.
The empirical evidence is mixed. Rose (2001), Frankel and Rose (2002),

Glick and Rose (2002) and Frankel (2008), document a huge positive effect; A
number of studies report negative or insignificant effects (Persson, 2001, Pakko
and Wall, 2002, De Nardis and Vicarelli, 2003). Recent studies by Serlenga
and Shin (2007), Mastromarco et al. (2015) and Gunnella et al. (2015) finding
a small but significant effect (7 to 10%) of the euro on intra-EU trade, after
controlling for strong CSD.
Table 3 reports the estimation results. The two-way FE estimation results

are statistically significant except RER. The impacts of home and foreign GDPs
on exports are positive, but surprisingly, the former is twice larger than the lat-
ter. The impact of SIM is negative and significant, inconsistent with a priori
expectations. CEE and EMU significantly boost exports, but their magnitudes
seem to be too high. The CD test rejects the null of no or weak CSD con-
vincingly. α̂ is 0.99 with CI containing unity; the residuals strongly correlated
and the FE results biased and unreliable. This supports our main concern that
upward trends in omitted trade determinants may cause them to be upward-
biased.
We turn to the CTFE estimation results. CD test results indicate that the

CTFE residuals do not suffer from any strong CSD. This rather surprising
result is not supported by α̂ = 0.91 (pretty close to 1). All the coeffi cients
become insignificant except for CEE. The CEE is still substantial (0.29) while
the EMU turns negligible (-0.011). Overall CTFE results are unreliable.
The 2D PCCE results are significant with the expected signs except for

EMU. The impact of foreign GDP on exports is substantially larger than home
GDP. The RER is positive, confirming that a depreciation of the home currency
increases exports. The CEE is smaller (0.186), but EMU is insignificant and
negligible (0.017). The 2D PCCE suffers from strong CSD residuals with α̂ =
0.87.
Finally, the 3D PCCE results show that all the coeffi cients are significant

with the expected signs. The CD test fails to strongly reject the null, sup-
ported by the smaller estimate of α̂ = 0.77, close to a moderate range of weak
CSD.22 CEE still substantial (0.335) while the EMU modest at 0.081, close to
the consensus reported in the 2D panel studies (e.g. Baldwin, 2006, Gunnella
et al., 2015). The 3D PCCE results are mostly reliable, suggesting that the
trade-boosting effect of the Euro should be viewed in the long-run historical
and multilateral perspectives rather than simply focusing on the formation of a
monetary union as an isolated event.

The CTFE estimator is proposed to capture (unobserved) multilateral re-
sistance terms and trade costs, but it fails to accommodate strong CSD among
MTRs, clearly present in our sample of the EU countries (confirmed by CD

22BHP show that the values of α ∈ [1/2, 3/4) represent a moderate degree of CSD.
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Table 1: 3D panel gravity model estimation results for bilateral export flows
FE CTFE
Coeff se t-ratio Coeff se t-ratio

gdph 2.185 0.041 52.97
gdpf 1.196 0.041 28.98
sim -0.263 0.052 -5.069 -0.055 0.074 -0.754
rlf 0.031 0.006 5.011 0.006 0.005 1.294
rer 0.005 0.007 0.791 0.031 0.072 0.436
cee 0.302 0.014 22.05 0.290 0.017 16.99
emu 0.204 0.019 10.71 -0.011 0.036 -0.315

CD stat 620.1 -2.676
α0.05 α α0.95 α0.05 α α0.95

CSD exponent 0.925 0.992 1.059 0.865 0.914 0.963
2D PCCE 3D PCCE
Coeff se t-ratio Coeff se t-ratio

gdph 0.289 0.095 3.033
gdpf 1.491 0.095 15.69
sim 0.042 0.105 0.401 1.032 0.111 9.290
rlf 0.007 0.005 1.420 -0.004 0.005 -0.748
rer 0.144 0.019 7.427 0.168 0.114 1.471
cee 0.187 0.014 13.20 0.335 0.022 15.10
emu 0.018 0.015 1.160 0.081 0.045 1.793

CD stat 76.11 -4.19
α0.05 α α0.95 α0.05 α α0.95

CSD exponent 0.837 0.867 0.897 0.724 0.775 0.826

Notes: Using the annual dataset over 1960-2008 for 182 country-pairs amongst 14 EU member

countries, we estimate the generalised panel gravity specification, (335). FE stands for the

standard two-way fixed effects estimator with country-pair and time fixed effects. CTFE refers

to the 3D within estimator given by (252). 2D PCCE is the PCCE estimator given by (263)

with factors ft =
{
gdp.t, sim..t, rlf ..t, cee..t, rert, t

}
. 3D PCCE is the PCCE estimator given

by (272) with factors ft =
{
sim..t, rlf ..t, rert

}
. CD test refers to testing the null hypothesis of

residual cross-sectional error independence or weak dependence and is defined in (280). CSD

exponent denotes the point estimate of the exponents of CSD α and the 90% level confidence

bands.
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tests and CSD exponent estimates). We should model the time-varying interde-
pendency of bilateral export flows in a flexible manner than simply introducing
deterministic country-time specific dummies. MTRs arise from the bilateral
country-pair specific reactions to global shocks or the local spillover effects or
both.

9.2.5 Conclusion

We propose novel estimation techniques to accommodate CSD within the 3D
panel data models. Our framework is a generalisation of the multidimensional
country-time fixed and random effects estimators. Our approach is the first
attempt to introduce strong CSD into the multi-dimensional error components.
We develop the two-step estimation procedure, the 3D-PCCE estimator. The
empirical usefulness of the 3D-PCCE estimator is demonstrated via the Monte
Carlo studies and the empirical application to the gravity model of the intra-EU
trade.
Extensions and generalisations. First, we develop the multi-dimensional

heterogenous panel data models with hierarchical multi-factor error structure
(KSS). Next, we aim to develop the challenging models by combining the spatial-
and the factor-based techniques. Bailey et al. (2016) develop the multi-step es-
timation procedure that can distinguish the relationship between spatial units
from that which is due to the effect of common factors. Mastromarco et al.
(2015) propose the technique for allowing weak and strong CSD in stochastic
frontier panels by combining the exogenously driven factor-based approach and
an endogenous threshold regime selection by Kapetanios et al. (2014, KMS).
Bai and Li (2015) and Shi and Lee (2014,5) developed the framework for jointly
modelling spatial effects and interactive effects. See also Gunnella et al. (2015)
and Kuersteiner and Prucha (2015).

9.3 TheMulti-dimensional Heterogeneous Panel Data with
the Hierarchical Multi-factor Error Structure by Kapetan-
ios, Serlenga and Shin (2017, KMS)

9.3.1 The Model

Consider the triple-index heterogeneous panel data model:

yijt = β′ijxijt + δ′ijdt + uijt, i, j = 1, ..., N, t = 1, ..., T, (286)

where yijt is the dependent variable observed across 3 indices, i the origin, j
the destination at period t (say, the export from country i to j at t); xijt is the
mx × 1 vector of covariates; dt is the md × 1 vector of observed common effects
such as constants and trends. βij and δij are the mx× 1 and md× 1 vectors of
parameters.
We allow uijt to follow the hierarchical multi-factor structure:

uijt = γ′ijf t + γ′◦jf i◦t + γ′i◦f◦jt + εijt (287)
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where f t, f◦jt and f i◦t are mf × 1, m◦• × 1 and m•◦ × 1 vectors of unob-
served common effects; εijt are idiosyncratic errors distributed independently of
(xijt,dt).
f t are the global factors affecting all of the bilateral pairs; f i◦t and f◦jt

are local origin i and destination j factors. They are designed to account for
commonality in yijt; CSD between a given flow and a flow from the exporting
region’s commonality to the importing region (exporting-based dependence) and
another flow from the exporting region to the importing region’s commonality
(importing-based dependence). This can provide a natural alternative to the
existing literature. Business cycles can be decomposed into world, region and
country-specific factors (Kose et al. 2003). See also Choi et al. (2016).
To deal with the general case where f t, f◦jt and f i◦t, are correlated with

(xijt,dt), we consider the following DGP for xijt:

xijt = Dijdt + Γijf t + Γ◦jf i◦t + Γi◦f◦jt + vijt, (288)

where Dij is the (mx ×md) parameter matrix, Γij , Γ◦j and Γi◦ are (mx ×mf ),
(mx ×m•◦), (mx ×m◦•) factor loading matrices, and vijt are the idiosyncratic
errors.
Combining (286)-(339), we have:

zijt =

(
yijt
xijt

)
= Ξijdt + Φijf t + Φ◦jf i◦t + Φi◦f◦jt + uijt (289)

Ξij =

(
δ′ij + β′ijDij
Dij

)
,Φij =

(
γ′ij + β′ijΓij

Γij

)
,Φi◦ =

(
γ′i◦ + β′ijΓi◦

Γi◦

)
,

(290)

Φ◦j =

(
γ′◦j + β′ijΓ◦j

Γ◦j

)
,uijt =

(
εijt + β′ijvijt

vijt

)
.

The ranks of Φij , Φi◦ and Φ◦j determined by the ranks of

Γ̃ij
(mx+1)×mf

=

(
γ′ij
Γij

)
, Γ̃i◦

(mx+1)×m◦•
=

(
γ′i◦
Γi◦

)
, Γ̃◦j

(mx+1)×m•◦
=

(
γ′◦j
Γ◦j

)
.

Rewrite (286) and (340) in the matrix notation:

yij = Xijβij +Dδij + Fγij + F i◦γ◦j + F ◦jγi◦ + εij , (291)

zij = DΞij + FΦij + F i◦Φ◦j + F ◦jΦi◦ + uij , (292)

where

yij
T×1

=

 yij1
...

yijT

 , Xij
T×mx

=

 x′ij1
...

x′ijT

 , D
T×md

=

 d′1
...
d′T

 , zij
T×(mx+1)

=

 z′ij1
...

z′ijT

 ,
(293)

F
T×mf

=

 f ′1
...
f ′T

 , F i◦
T×m•◦

=

 f ′i◦1
...

f ′i◦T

 , F ◦j
T×m◦•

=

 f ′◦j1
...

f ′◦jT

 , εij
T×1

=

 εij1
...

εijT

 , uij
T×(mx+1)

=

 u′ij1
...

u′ijT
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Assumption 1. Common Effects: The (md +mf +m•◦ +m◦•) × 1 vec-
tor of common factors gt =

(
d′t,f

′
t,f
′
i◦t,f

′
◦jt
)′
, is covariance stationary with

absolute summable autocovariances, distributed independently of εijt′ and vijt′
for all i, j, t and t′.
Assumption 2. Individual-specific Errors: εijt and vijt′ are distributed

independently for all i, j, t and t′, and they are distributed independently of
xijt and dt.
Assumption 3. Factor Loadings: Unobserved factor loadings are indepen-

dently and identically distributed across (i, j), and of εijt, vijt, gt for all i, j, t,
with finite means and variances. In particular,

γij = γ◦◦ + ηij , γi◦ = γ•◦ + ηi◦, γ◦j = γ◦• + η◦j , (294)

Γij = Γ◦◦ + ξij , Γi◦ = Γ•◦ + ξi◦, Γ◦j = Γ◦• + ξ◦j , (295)

where ηij ∼ iid
(
0,Ωη◦◦

)
, ξij ∼ iid

(
0,Ωξ◦◦

)
, ηi◦ ∼ iid

(
0,Ωη•◦

)
, ξi◦ ∼

iid
(
0,Ωξ•◦

)
, η◦j ∼ iid

(
0,Ωη◦•

)
and ξ◦j ∼ iid

(
0,Ωξ◦•

)
. Further, ‖γ◦◦‖ < K,

‖γ•◦‖ < K, ‖γ◦•‖ < K, ‖Γ◦◦‖ < K, ‖Γ•◦‖ < K, and ‖Γ◦•‖ < K for positive
constant K <∞.

Assumption 4. Random Slope Coeffi cients:

βij = β+νi◦+ν◦j+νij ,νi◦ ∼ iid (0,Ων•◦) ,ν◦j ∼ iid (0,Ων◦•) ,νij ∼ iid (0,Ων◦◦)
(296)

where ‖β‖ < K and νij , νi◦, ν◦j are distributed independently of one another,
and of γij , Γij , εijt, vijt and gt for all i, j and t.

Assumption 5. Identification of βij and β: Construct the cross-section
averages of zijt by

z̄t =
1

N2

N∑
i=1

N∑
j=1

zijt, z̄i◦t =
1

N

N∑
j=1

zijt and z̄◦jt =
1

N

N∑
i=1

zijt (297)

Let Z̄ij =
(
Z̄, Z̄i◦, Z̄◦j

)
and H̄ij =

(
D, Z̄ij

)
, where

Z̄
T×(mx+1)

=

 z̄′1
...
z̄′T

 , Z̄i◦
T×(mx+1)

=

 z̄′i◦1
...

z̄′i◦T

 , Z̄i◦
T×(mx+1)

=

 z̄′◦j1
...

z̄′◦j1

 ,
and construct the idempotent matrix:

M̄ ij = IT − H̄ij

(
H̄
′
ijH̄ij

)−1

H̄
′
ij (298)

(i) Identification of βij : The mx×mx matrices, Ψ̄ij,T = T−1
(
X ′ijM̄ ijXij

)
are

nonsingular, and Ψ̄
−1
ij,T have finite second-order moments.

(ii) Identification of β: The mx × mx matrix, Ψ̄ = N−2
∑N
i=1

∑N
j=1 Ψ̄ij,T is

nonsingular.
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Remark 1: It is challenging to develop an appropriate model for accommo-
dating CSD within the multilevel dataset. LeSage and Llano (2015) propose a
spatial econometric methodology that introduces spatially-structured origin and
destination effects, in such a way that regions treated as origins (destinations)
exhibit similar effects to neighbors of the origins (destinations). Choi et al.
(2016) develop a multilevel factor model with global and country factors, and
propose a sequential principal component estimation procedure. KMSS address
an important issue of controlling CSD in 3D panels by adding unobserved het-
erogeneous global factors to the CTFE specification, and propose the 3D PCCE
estimator. The hierarchical multi-factor error model is more parsimonious and
structural.
Remark 2: The weights are not necessarily unique. One could use the equal

weight, 1/N for reasonably large N . Alternatively, the economic distance-based
or time-varying measures could be considered.
Remark 3: The number of observed factors and the number of individual-

specific regressors are fixed and known. The number of unobserved factors,
m = mf +m•◦ +m◦•, is assumed fixed, but needs not to be known.
Represent hierarchical cross-section averages as follows:

z̄t = Ξ̄◦◦dt + Φ̄◦◦f t + Φ̄◦•f•◦t + Φ̄•◦f◦•t + ūt, (299)

z̄i◦t = Ξ̄i◦dt + Φ̄i◦f t + Φ̄◦•f i◦t + Φi◦f◦•t + ūi◦t, (300)

z̄◦jt = Ξ̄◦jdt + Φ̄◦jf t + Φ◦jf•◦t + Φ̄•◦f◦jt + ū◦jt, (301)

Ξ̄◦◦ =
1

N2

N∑
i=1

N∑
j=1

Ξij , Ξ̄i◦ =
1

N

N∑
j=1

Ξij , Ξ̄◦j =
1

N

N∑
i=1

Ξij ,

Φ̄◦◦ =
1

N2

N∑
i=1

N∑
j=1

Φij , Φ̄i◦ =
1

N

N∑
j=1

Φij , Φ̄◦j =
1

N

N∑
i=1

Φij , (302)

Φ̄◦• =
1

N2

N∑
i=1

N∑
j=1

Φ◦j =
1

N

N∑
j=1

Φ◦j , Φ̄•◦ =
1

N2

N∑
i=1

N∑
j=1

Φi◦ =
1

N

N∑
i=1

Φi◦,

(303)

ūt =
1

N2

N∑
i=1

N∑
j=1

uijt, ūi◦t =
1

N

N∑
j=1

uijt, ū◦jt =
1

N

N∑
i=1

uijt

f◦•t =
1

N

N∑
j=1

f◦jt, f•◦t =
1

N

N∑
i=1

f i◦t

Combining (299)-(301), we have:

z̄ijt = Ξ̄ijdt + Φ̄ijf ijt + ūijt, (304)
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where

z̄ijt
3(mx+1)×1

=

 z̄t
z̄i◦t
z̄◦jt

 , f ijt
m×1

=

 f t
f i◦t
f◦jt

 , ūijt =

 ūt + Φ̄◦•f•◦t + Φ̄•◦f◦•t
ūi◦t + Φi◦f◦•t
ū◦jt + Φ◦jf•◦t


Ξ̄ij

3(mx+1)×md
=

 Ξ̄◦◦
Ξ̄i◦
Ξ̄◦j

 , Φ̄ij
3(mx+1)×m

=

 Φ̄◦◦ 0 0
Φ̄i◦ Φ̄◦• 0
Φ̄◦j 0 Φ̄•◦

 , (305)

with m = mf +m◦• +m•◦.
Using (290) and (346), Φ̄ij can be represented as follows:

Φ̄◦◦
(k+1)×mf

= B̃Γ̃◦◦ +

(
1
N2

∑N
i=1

∑N
j=1 (νi◦ + ν◦j + νij)

′
Γij

0

)
(306)

Φ̄◦•
(k+1)×m◦•

= B̃Γ̃◦• +

(
1
N

∑N
j=1 (νi◦ + ν◦j + νij)

′
Γ◦j

0

)
(307)

Φ̄•◦
(k+1)×m•◦

= B̃Γ̃•◦ +

(
1
N

∑N
=1 (νi◦ + ν◦j + νij)

′
Γi◦

0

)
(308)

Φ̄i◦
(k+1)×mf

= B̃Γ̃i◦ +

(
1
N

∑N
j=1 (νi◦ + ν◦j + νij)

′
Γij

0

)
(309)

Φ̄◦j
(k+1)×mf

= B̃Γ̃◦j +

(
1
N

∑N
i=1 (νi◦ + ν◦j + νij)

′
Γij

0

)
(310)

B̃ =

(
1 β′

0 Ik

)
, Γ̃◦◦=

(
γ̄′◦◦
Γ̄◦◦

)
, Γ̃◦•=

(
γ̄′◦•
Γ̄◦•

)
, Γ̃•◦=

(
γ̄′•◦
Γ̄•◦

)
, Γ̃i◦=

(
γ̄′i◦
Γ̄i◦

)
, Γ̃◦j=

(
γ̄′◦j
Γ̄◦j

)
and Γ̄◦◦, γ̄◦◦, Γ̄◦•, γ̄◦•, Γ̄•◦, γ̄•◦, Γ̄i◦, γ̄i◦, Γ̄◦j and γ̄◦j are defined similarly to
Φ̄◦◦, Φ̄i◦, Φ̄◦j , Φ̄◦• and Φ̄•◦.
Suppose that the rank condition holds:

Rank
(
Φ̄ij

)
= m for all (ij) . (311)

Then, we obtain from (304):

f ijt =
(
Φ̄
′
ijΦ̄ij

)−1

Φ̄
′
ij

(
z̄ijt − Ξ̄ijdt − ūijt

)
(312)

It is easily seen that

ūijt = Op

(
1

N

)
+Op

(
1√
NT

)
for each t, as N →∞.

Therefore,

f ijt −
(
Φ̄
′
ijΦ̄ij

)−1

Φ̄
′
ij

(
z̄ijt − Ξ̄ijdt

)
= Op

(
1

N

)
+Op

(
1√
NT

)
.

We can use h̄ijt =
(
d′t, z̄

′
ijt

)′
as observable proxies for f ijt, and consistently

estimate βij and their mean β by augmenting the regression, (286) with dt and
z̄ijt. These are referred to as the 3DCCE estimators.
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9.3.2 3D Common Correlated Effects Estimator

Individual Specific Coeffi cients The 3DCCE estimator of βij is given by

b̂ij =
(
X ′ijM̄ ijXij

)−1
X ′ijM̄ ijyij (313)

We show the dependence of b̂ij on the unobserved factors as:

b̂ij − βij =

(
XijM̄ ijXij

T

)−1 X ′ijM̄ ijF ij

T
γ∗ij +

(
X ′ijM̄ ijXij

T

)−1
X ′ijM̄ ijεij

T

(314)

=

(
XijMQ,ijXij

T

)−1 X ′ijMQ,ijF ij

T
γ∗ij +

(
X ′ijMQ,ijXij

T

)−1
X ′ijMQ,ijεij

T

+Op

(
1

N

)
+Op

(
1√
NT

)
where F ij = (F ,F i◦,F ◦j), γ∗ij =

(
γ′ij ,γ

′
i◦,γ

′
◦j
)′
andMQ,ij = IT−Qij

(
Q′ijQij

)−1
Q′ij

with Qij =
(
F Φ̄

′
◦◦,F i◦Φ̄

′
◦•,F ◦jΦ̄

′
•◦

)
.

Suppose that the rank condition (311), is satisfied. Then,

Theorem 7 Consider the triple-index heterogeneous panel data model, (286)-
(339). Suppose that Assumptions 1-4 and 5(a) hold. Then, the 3DCCE estima-
tor of the individual slope coeffi cients given by (313) is consistent. Further, as
N,T →∞ and T/N → K <∞,

√
T
(
b̂ij − βij

)
→d N(0,V ij), (315)

where V ij = Σ−1
v,ijΣijεΣ

−1
v,ij, Σv,ij = V ar(vijt), Σijε = p limT→∞

[
X′ijMF,ijΩijεMF,ijXij

T

]
,

and Ωijε = E
(
ε′ijεij

)
.

Remark: If the rank condition (311) does not hold, we need to show that
1
TX

′
ijM̄ ij

(
Fγij + F i◦γ◦j + F ◦jγi◦

)
converges to zero. We can establish that

b̂ij − βij =

(
X ′ijMQ,ijXij

T

)−1
X ′ijMQ,ijεij

T
+ op (1) .

√
T
(
b̂ij − βij

)
will be asymptotically normal if

√
T/N → 0 as N,T →∞.

3D Common Correlated Effects Mean Group Estimator The 3DC-
CEMG estimator is an average of the individual b̂ij :

b̂MG =
1

N2

N∑
i=1

N∑
j=1

b̂ij , (316)
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Under Assumption 4 and using (314), we decompose
√
N
(
b̂MG − β

)
and analyse

each terms to obtain the following Theorem.

Theorem 8 Consider the 3D model, (286)-(339). Suppose that Assumptions
1-4 and 5(a) hold. Then, the 3D CCEMG, b̂MG is consistent. As N,T →∞,
√
N
(
b̄MG − β

)
→d N(0,V MG),V MG = Ων•◦ + Ωη•◦ + Ων◦• + Ωη◦• (317)

Ων•◦= lim
N,T→∞

1

N

N∑
i=1

E
(
A1,i,NTΩνi◦A

′
1,i,NT

)
,Ωη•◦= lim

N,T→∞

1

N

N∑
i=1

E
(
A2,i,NTΩηi◦A

′
2,i,NT

)
Ων◦•= lim

N,T→∞

1

N

N∑
j=1

E
(
A1,j,NTΩν◦jA

′
1,j,NT

)
,Ωη◦•= lim

N,T→∞

1

N

N∑
j=1

E
(
A2,j,NTΩη◦jA

′
2,j,NT

)
V MG can be consistently estimated by

V̂MG=
1

N − 1

N∑
i=1

(
b̂i − b̂MG

)(
b̂i − b̂MG

)′
+

1

N − 1

N∑
j=1

(
b̂j − b̂MG

)(
b̂j − b̂MG

)′
,

(318)
where b̂i = 1

N

∑N
j=1 b̂ij and b̂j = 1

N

∑N
i=1 b̂ij.

An important finding is that the dominant terms of
√
N
(
b̄MG − β

)
are those

that involve νi◦, νi◦, ηi◦ and η◦j only, because the terms associated with νij and
ηij are asymptotically negligible. This explains the N

1/2 rate of convergence.

The nonparametric variance estimator 1
N2

∑N
i=1

∑N
j=1

(
b̂ij − b̂MG

)(
b̂ij − b̂MG

)′
used by Pesaran (2006), is not consistent since it gives equal weights to the terms
containing νi◦, νi◦, ηi◦ and η◦j , and those containing νij and ηij . The con-
sistent nonparametric estimator, V̂ MG in (318) ensures that νij and ηij are
averaged out by the use of b̂i and b̂j .
Remark Theorem 2 does not require the rank condition to hold as long as

the number of unobserved factors m is fixed. We do not require any restriction
on the relative rate of N and T .

3D Common Correlated Effects Pooled Estimator Consider the special
case where βij are homogeneous, where effi ciency gains from pooling can be
achieved. We still allow the coeffi cients on observed and unobserved common
effects to differ across (ij). We derive the pooled estimator of β, referred to as
the 3D CCEP estimator by

b̂P =

 N∑
i=1

N∑
j=1

X ′ijM̄ ijXij

−1
N∑
i=1

N∑
j=1

X ′ijM̄ ijyij , (319)

125



Theorem 9 Consider the 3D model, (286)-(339). Suppose that Assumptions
1-4 and 5(b) hold. Then,

√
N
(
b̂P − β

)
→d N(0,Ψ−1RΨ−1) (320)

Ψ = lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Ψij with Ψij = E

[(
XijM̄ ijXij

T

)−1
]

(321)

R = Ω̃ν•◦ + Ω̃η•◦ + Ω̃ν◦• + Ω̃η◦•. (322)

Ω̃ν•◦= lim
N,T→∞

1

N

N∑
i=1

E
(
Ã1,i,NTΩ′νi◦Ã

′
1,i,NT

)
, Ω̃η•◦= lim

N,T→∞

1

N

N∑
i=1

E
(
Ã2,i,NTΩ′ηi◦Ã2,i,NT

)
Ω̃ν◦•= lim

N,T→∞

1

N

N∑
j=1

E
(
Ã1,j,NTΩν◦jA

′
1,j,NT

)
, Ω̃η◦•= lim

N,T→∞

1

N

N∑
j=1

E
(
Ã2,j,NTΩη◦jÃ

′
2,j,NT

)
where Ã1,i,NT , Ã2,i,NT , Ã1,j,NT and Ã2,j,NT are defined in (??)-(??). The

variance Ψ−1RΨ−1 can be consistently estimated by Ψ̂
−1
R̂Ψ̂

−1
where

Ψ̂ =
1

N2

N∑
i=1

N∑
j=1

X ′ijM̄ ijXij

T
, (323)

and

R̂=
1

N

N∑
i=1

 1

N

N∑
j=1

(
X ′ijM̄ ijXij

T

)(
b̂ij − b̂MG

) 1

N

N∑
j=1

(
b̂ij − b̂MG

)′(X ′ijM̄ ijXij

T

)
+

1

N

N∑
j=1

[
1

N

N∑
i=1

(
X ′ijM̄ ijXij

T

)(
b̂ij − b̂MG

)][ 1

N

N∑
i=1

(
b̂ij − b̂MG

)′(X ′ijM̄ ijXij

T

)]

Remark The asymptotic variance matrix of b̂P depends on unobserved
factors and loadings, but it is possible to estimate it consistently along lines
similar to 3DCCEMG.

The Special Cases Better convergence rates can be achieved if the hierar-
chical structure is simplified. We focus on two special cases:

Condition S1 : ηi◦ = η◦j = νi◦ = ν◦j = 0

Condition S2 : F i◦ = F ◦j = 0.

S2 is more restrictive and considered by KMSS.
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Under Condition S2, the setup is similar to that of Pesaran (2006) because
there is no hierarchical factor structure. We can treat the dataset as a T ×N2

panel by amalgamating the two cross-section dimensions into one and applying
the 2D CCE estimation procedure. The

√
N rate will be replaced by N , and all

the results of Pesaran (2006) and others analysing CCE estimator hold.
Next, consider the case where S1 holds but not S2. Then,

√
N
(
b̂MG − β

)
=

1

N3/2

N∑
i=1

N∑
j=1

νij +
1

N2

N∑
i=1

N∑
j=1

Ψ−1
ijT

(√
NX ′ijMQ,ijεij

T

)
(324)

+
1

N3/2

N∑
i=1

N∑
j=1

χij,◦• +Op

(
1

N

)
+Op

(
1√
NT

)

From the proof of Theorem 2, the magnitude of all terms on the RHS of (324) is
stillN as long as N/T → 0, since 1√

NT
= o

(
1
N

)
. Normality does not follow since

the Op
(

1
N

)
term in RHS of (324) is not negligible. In this case, the asymptotic

variance estimators in Pesaran (2006) become relevant only if normality holds.
In particular,

V̂ MG =
1

N2

N∑
i=1

N∑
j=1

(
b̂ij − b̂MG

)(
b̂ij − b̂MG

)′
, (325)

for the mean group estimator, and

R̂ =
1

N2

N∑
i=1

N∑
j=1

(
X ′ijM̄ ijXij

T

)(
b̄ij − b̄MG

) (
b̄ij − b̄MG

)′(X ′ijM̄ ijXij

T

)
,

(326)
for the pooled estimator.
If Condition S1 is considered too restrictive - as it implies homogeneity for

the coeffi cients of the factors in eijt, we may entertain the more general setup:

γi◦ = γij◦ = γ•◦ + ηij◦, γ◦j = γ◦ij = γ◦• + η◦ij .

Because of the double cross-sectional averaging, ηij◦ and η◦ij are negligible
since terms associated with χij,•◦ and χij,◦• decay suffi ciently fast to give the
same fast convergence rate as under S1.

9.3.3 Monte Carlo Study

We generate yijt and xijt as follows:

yijt = βijxijt+γ1,ijf1,t+γ2,ijf2,t+γ1,◦jf1,i◦t+γ2,◦jf2,i◦t+γ1,i◦f1,◦jt+γ2,i◦f2,◦jt+εijt,
(327)
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xijt = Γ1,ijf1,t+Γ2,ijf2,t+Γ1,◦jf1,i◦t+Γ2,◦jf2,i◦t+Γ1,i◦f1,◦jt+Γ2,i◦f2,◦jt+vijt,
(328)

We set md = 0, mx = 1 and mf = m◦• = m•◦ = 2.
f t, f◦jt, f i◦t are generated independently as stationary AR processes with

zero mean and unit variance:

fh,t = ρfhfh,t−1 + υfht with υfht ∼ iidN
(
0, 1− ρ2

fh

)
for h = 1, 2

fh,i◦t = ρfh,i◦fh,i◦,t−1 + υfh,i◦t with υfh,i◦t ∼ iidN
(

0, 1− ρfh,i◦
)
for h = 1, 2

fh,◦jt = ρfh,◦jfh,◦j,t−1 + υfh,◦jt with υfh,◦jt ∼ iidN
(

0, 1− ρ2
fh,◦j

)
for h = 1, 2

εijt and vijt, are generated independently as

εijt = ρεεij,t−1 + eε,ijt with eε,ijt ∼ iidN
(
0, 1− ρ2

ε

)
vijt = ρvvij,t−1 + ev,ijt with ev,ijt ∼ iidN

(
0, 1− ρ2

v

)
We set ρfh = ρfh,i◦ = ρfh,◦j = ρε = ρv = {0, 0.5}.
2 experiments: Experiment A with the full rank and Experiment B with the

rank condition (311) violated. For xijt in (328), we draw the factor loadings
independently by

Γ1,ij ∼ iidN (0.5, 0.5) and Γ2,ij ∼ iidN (0, 0.5) for i, j = 1, ..., N

Γ1,◦j ∼ iidN (0.5, 0.5) and Γ2,◦j ∼ iidN (0, 0.5) for j = 1, ..., N

Γ1,i◦ ∼ iidN (0.5, 0.5) and Γ2,i◦ ∼ iidN (0, 0.5) for i = 1, ..., N

For yijt in (327), we consider two experiments. For experiment A,

γ1,ij ∼ iidN (1, 0.2) and γ2,ij ∼ iidN (1, 0.2) for i, j = 1, ..., N

γ1,◦j ∼ iidN (1, 0.2) and γ2,◦j ∼ iidN (1, 0.2) for j = 1, ..., N

γ1,i◦ ∼ iidN (1, 0.2) and γ2,i◦ ∼ iidN (1, 0.2) for i = 1, ..., N.

For experiment B, we generate:

γ1,ij ∼ iidN (1, 0.2) and γ2,ij ∼ iidN (0, 1) for i, j = 1, ..., N

γ1,◦j ∼ iidN (1, 0.2) and γ2,◦j ∼ iidN (0, 1) for j = 1, ..., N

γ1,i◦ ∼ iidN (1, 0.2) and γ2,i◦ ∼ iidN (0, 1) for i = 1, ..., N

Consider Case 1 with the heterogeneous slopes:

βij = β + νi◦ + ν◦j + νij , νi◦ ∼ iidN (0, 1) , ν◦j ∼ iidN (0, 1) , νij ∼ iidN (0, 1)

and Case 2 with the homogeneous slopes βij = β = 1.
We consider the two-way within estimator with uijt = αij + θt + εijt, and

the three versions of 3D estimators: the 3DCCEG with uijt = αij +γ′ijf t+εijt
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where we approximate the heterogenous global factors only by z̄t = (ȳt, x̄t)
′; the

3DCCEL estimator with uijt = αij +γ′◦jf i◦t+γ′i◦f◦jt+ εijt where we approx-
imate the heterogenous local factors only by z̄i◦t and z̄◦jt and the 3DCCEGL
estimator with uijt = αij+γ

′
◦jf i◦t+γ

′
i◦f◦jt+γ

′
ijf t+εijt where we approximate

the heterogenous global and local factors by z̄t, z̄i◦t and z̄◦jt. We consider both
mean group and pooled estimators. We report the bias, the root mean squared
error and coverage rates at the 95% confidence with 1,000 replications for (N,T )
pairs with N = {10, 25, 100} and T = {50, 100} .
Table 1: simulation results for Experiment A (the full rank) with heteroge-

neous coeffi cients (Case 1). The biases of 3DCCEGL are mostly negligible even
for the relatively small samples. The performance of both pooled and mean
group estimators is almost identical. Both FE and 3DCCEG estimators suffer
from severe biases. The biases of the 3DCCEL are much smaller than those of
the 3DCCEG, showing that the local factor approximations seem to be more
effective than the global counterpart, though they are still non-negligible even
for large N and T . The CCE estimator advanced by Pesaran (2006) in 2D
panels fail to remove correlations between local factors and regressors. These
provide strong support for our theoretical predictions that the joint approxima-
tions of the heterogenous global and local factors can only provide consistent
estimation of E (β) in the presence of the hierarchical multifactors. We find the
similar patterns of RMSE. The RMSEs of 3DCCEL and 3DCCEGL estimators
are significantly lower than those of FE and 3DCCEG estimators. The differ-
ence between 3DCCEL and 3DCCEGL is mostly negligible, but the RMSEs
of 3DCCEGL tends to decline slightly faster with sample sizes. Turning to the
coverage rates, 3DCCEL and the 3DCCEGL estimators perform better than
FE and 3DCCEG estimators. Coverage rates of 3DCCEGL estimator only
tend to the nominal 95% as N or T rises.
Table 2 presents simulation results for Experiment A (the full rank) with

homogeneous coeffi cients (Case 2). We find qualitatively similar results for the
biases to Table 1, confirming that the 3DCCEGL estimator is most reliable.
RMSEs of FE and 3DCCEG estimators are significantly higher than those of
3DCCEL and 3DCCEGL estimators. RMSEs of 3DCCEGL is significantly
lower than those of 3DCCEL, but they also fall sharply with sample sizes. The
relative performance of both pooled and mean group estimators is qualitatively
similar. Surprisingly, all the estimators produce unsatisfactory coverage rates.
FE, 3DCCEG and 3DCCEL estimators tend to under-estimate coverage sub-
stantially even as N rises whilst 3DCCEGL over-estimate it.
Table 3 presents simulation results for Experiment B (the rank deficiency)

with heterogeneous coeffi cients (Case 1). We find qualitatively similar results
to Table 1; the performance of the estimators are not affected significantly by
the rank deficiency; confirming that the 3DCCEGL estimator is most reliable.
Table 4 presents simulation results for Experiment B (the rank deficiency) with
homogeneous coeffi cients (Case 2). We find qualitatively similar results to Table
2, and conclude that the 3DCCEGL estimator is still most reliable, though it
tends to over-estimate coverage rates.
We conduct the additional simulations under Conditions S1 and S2 described
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in Section 3.4 We find the results confirming that the faster convergence rates
are achieved in both cases (available on online supplement).
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Table 2: Simulation results for Case 1 - Full Rank (Experiment A)
FE 3DCCEG 3DCCEL 3DCCELG

Panel A: Bias
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.203 0.216 0.232 0.251 0.064 0.079 -0.006 0.008

0 25 0.250 0.217 0.263 0.272 0.062 0.07 -0.004 0.004
50 0.227 0.220 0.285 0.279 0.077 0.072 0.008 0.002
100 0.222 0.224 0.282 0.285 0.074 0.076 0.002 0.003
10 0.233 0.210 0.302 0.253 0.115 0.067 0.04 -0.008

0.5 25 0.220 0.236 0.265 0.289 0.049 0.074 -0.022 0.004
50 0.251 0.251 0.301 0.29 0.079 0.068 0.005 -0.006
100 0.244 0.245 0.300 0.300 0.077 0.078 -0.002 -0.001

Mean Group Estimator
10 0.201 0.212 0.219 0.239 0.046 0.063 0.001 0.017

0 25 0.242 0.211 0.249 0.258 0.053 0.061 0.003 0.012
50 0.219 0.213 0.268 0.264 0.067 0.062 0.011 0.007
100 0.214 0.216 0.265 0.268 0.062 0.065 0.002 0.005
10 0.227 0.205 0.292 0.247 0.103 0.056 0.053 0.006

0.5 25 0.214 0.230 0.254 0.276 0.041 0.063 -0.012 0.010
50 0.241 0.241 0.287 0.276 0.068 0.056 0.009 -0.003
100 0.236 0.237 0.286 0.287 0.064 0.065 -0.001 0.000

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.522 0.524 0.544 0.53 0.488 0.474 0.483 0.468

0 25 0.377 0.361 0.389 0.396 0.293 0.296 0.286 0.287
50 0.300 0.292 0.348 0.345 0.213 0.216 0.198 0.203
100 0.263 0.262 0.316 0.316 0.160 0.156 0.141 0.137
10 0.518 0.511 0.557 0.536 0.479 0.475 0.466 0.469

0.5 25 0.366 0.373 0.390 0.412 0.290 0.300 0.288 0.291
50 0.325 0.322 0.369 0.353 0.225 0.211 0.211 0.200
100 0.283 0.284 0.332 0.332 0.162 0.163 0.142 0.143

Mean Group Estimator
10 0.513 0.520 0.528 0.523 0.480 0.469 0.478 0.464

0 25 0.370 0.356 0.379 0.385 0.289 0.292 0.284 0.286
50 0.293 0.288 0.333 0.332 0.208 0.212 0.197 0.203
100 0.256 0.255 0.301 0.301 0.154 0.151 0.141 0.137
10 0.507 0.503 0.544 0.525 0.466 0.463 0.458 0.460

0.5 25 0.360 0.369 0.382 0.400 0.287 0.297 0.285 0.290
50 0.317 0.314 0.356 0.340 0.220 0.207 0.209 0.199
100 0.275 0.277 0.319 0.320 0.155 0.157 0.141 0.143

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.973 0.969 0.965 0.953 0.903 0.903 0.895 0.886

0 25 0.960 0.965 0.951 0.947 0.924 0.919 0.924 0.929
50 0.941 0.948 0.911 0.898 0.922 0.919 0.94 0.932
100 0.881 0.876 0.792 0.775 0.917 0.924 0.947 0.959
10 0.977 0.968 0.965 0.973 0.898 0.912 0.892 0.890

0.5 25 0.963 0.957 0.96 0.952 0.925 0.931 0.935 0.927
50 0.932 0.928 0.899 0.907 0.914 0.927 0.935 0.945
100 0.855 0.836 0.790 0.745 0.915 0.912 0.952 0.947

Mean Group Estimator
10 0.943 0.934 0.951 0.939 0.891 0.900 0.888 0.891

0 25 0.914 0.910 0.931 0.928 0.923 0.914 0.925 0.931
50 0.818 0.810 0.876 0.863 0.933 0.925 0.946 0.931
100 0.842 0.830 0.724 0.713 0.929 0.929 0.947 0.961
10 0.942 0.945 0.954 0.954 0.904 0.908 0.903 0.901

0.5 25 0.912 0.904 0.936 0.926 0.932 0.934 0.935 0.936
50 0.799 0.798 0.849 0.850 0.917 0.937 0.933 0.949
100 0.805 0.779 0.691 0.677 0.926 0.920 0.949 0.946

Notes:FE is the the two-way within estimator, 3DCCEG is the 3D CCE estimator with the global

factors approximation only, 3DCCEL is the 3D CCE estimator with the local factors approximation

only, and 3DCCEGL is the 3D CCE estimator with both global and local factors approximation.

3DCCE estimators are defined in (316) and (319). We consider both mean group and pooled

estimators. The variance of 3DCCEG is estimated by (325) for the mean group and (326) for the

pooled estimator. The variances of 3DCCEL and 3DCCEGL are given by (318) for the mean group

and (323)-(??) for the pooled estimator.
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9.3.4 Empirical Application

Anderson and van Wincoop (2003) show that bilateral trade depends on the
bilateral trade barriers but relative to the product of their Multilateral Re-
sistance Indices: bilateral barrier relative to average trade barriers that both
regions face with all their trading partners. They derive the following system of
the structural gravity equations:

Xij =
YiYj
Y

(
tij

ΠiPj

)1−σ
(329)

Π1−σ
i =

∑
j

(
tij
Pj

)1−σ
Yj
Y
and P 1−σ

j =
∑
i

(
tij
Πi

)1−σ
Yi
Y

(330)

where Xij are exports from i to j, Yi, Yj and Y are GPD for i (exporter),
j (importer) and the world, tij (> 1) is one plus the tariff equivalent of trade
costs of imports of j from i, σ (> 1) is the elasticity of substitution with CES
preference, Πi is ease of access of exporter i, and Pj is the ease of access of
importer j. Pj and Πi are called inward and outward multilateral resistance.
Omitting MTR induces potentially severe bias.
Consider the log-linearised specification of (329):

lnXij = β0 + β1 lnYi + β2 lnYj + β3 ln tij + β4 lnPi + β5 lnPj + εij (331)

where Pi and Pj are unobservable MTRs, and tij contain both barriers and in-
centives to trade between i and j. Subsequent research has focused on estimat-
ing (331) with replacing unobservable MTRs by N country-specific dummies,
µi and µj . We extend (331) into 3D panels:

lnXijt = β0 +β1 lnYit +β2 lnYjt +β3 ln tijt +β4 lnPit +β5 lnPjt + εijt, (332)

where we should allow MTRs to vary over time. Baltagi et al. (2003) propose:

uijt = αij + θit + θ∗jt + εijt, (333)

which contains bilateral pair-fixed effects αij as well as origin (exporter) and
destination (importer) country-time fixed effects (CTFE) θit and θ∗jt. This
approach popular in measuring the impacts of MTRs of exporters and importers
in the structural gravity studies.
The main drawback of the CTFE approach lies in the assumption that bi-

lateral trade flows are independent of what happens to the rest of the trading
world. Recently, KMSS extend the 3D panel data model (286) with the more
general error components:

uijt = αij + θit + θ∗jt + πijθt + εijt, (334)

that attempts to model residual CSD via unobserved heterogeneous global fac-
tor θt in addition to CTFEs. The CTFE estimator is biased because it fails
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Table 3: Simulation Results for Experiment A (Full Rank) with Homogeneous
Coeffi cients

FE 3DCCEG 3DCCEL 3DCCELG
Panel A: Bias

Pooled Estimator
ρ N/T 50 100 50 100 50 100 50 100

10 0.204 0.199 0.240 0.246 0.067 0.073 -0.001 0.006
0 25 0.214 0.215 0.269 0.270 0.068 0.068 0.001 0.002

50 0.218 0.219 0.278 0.278 0.071 0.070 0.001 0.001
100 0.220 0.220 0.281 0.282 0.074 0.074 0.000 0.000
10 0.228 0.225 0.267 0.261 0.076 0.072 0.002 -0.003

0.5 25 0.240 0.245 0.292 0.292 0.075 0.075 0.003 0.004
50 0.245 0.245 0.300 0.299 0.077 0.076 0.002 0.002
100 0.248 0.248 0.304 0.303 0.081 0.080 0.001 0.000

Mean Group Estimator
10 0.202 0.198 0.230 0.235 0.057 0.062 0.005 0.011

0 25 0.207 0.208 0.255 0.256 0.059 0.060 0.006 0.006
50 0.211 0.212 0.262 0.262 0.060 0.060 0.002 0.003
100 0.212 0.212 0.265 0.265 0.061 0.062 0.000 0.001
10 0.224 0.223 0.256 0.252 0.067 0.064 0.010 0.006

0.5 25 0.233 0.236 0.279 0.278 0.066 0.065 0.008 0.008
50 0.236 0.237 0.286 0.286 0.066 0.066 0.004 0.004
100 0.239 0.239 0.289 0.289 0.068 0.067 0.002 0.001

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.236 0.230 0.268 0.273 0.129 0.136 0.110 0.112

0 25 0.220 0.220 0.274 0.274 0.083 0.082 0.045 0.044
50 0.219 0.220 0.279 0.279 0.074 0.074 0.022 0.021
100 0.221 0.220 0.282 0.282 0.075 0.075 0.010 0.010
10 0.257 0.256 0.293 0.289 0.136 0.137 0.113 0.114

0.5 25 0.245 0.250 0.296 0.296 0.090 0.088 0.046 0.045
50 0.247 0.247 0.301 0.300 0.081 0.080 0.022 0.022
100 0.249 0.249 0.304 0.303 0.082 0.081 0.011 0.010

Mean Group Estimator
10 0.230 0.225 0.255 0.259 0.118 0.121 0.103 0.104

0 25 0.212 0.212 0.259 0.260 0.073 0.073 0.042 0.042
50 0.212 0.213 0.263 0.263 0.063 0.064 0.020 0.021
100 0.213 0.212 0.265 0.265 0.062 0.063 0.010 0.010
10 0.249 0.249 0.279 0.276 0.123 0.122 0.103 0.103

0.5 25 0.238 0.240 0.283 0.282 0.078 0.077 0.042 0.041
50 0.237 0.238 0.286 0.287 0.070 0.069 0.021 0.021
100 0.239 0.239 0.289 0.289 0.069 0.068 0.011 0.010

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.997 1.000 1.000 1.000 0.947 0.940 0.964 0.971

0 25 0.994 0.997 1.000 1.000 0.866 0.864 0.985 0.985
50 0.686 0.661 0.988 0.987 0.376 0.363 0.992 0.993
100 0.812 0.760 0.001 0.000 0.000 0.000 0.999 0.995
10 0.998 1.000 1.000 1.000 0.944 0.938 0.976 0.973

0.5 25 0.993 0.992 1.000 1.000 0.838 0.839 0.986 0.990
50 0.666 0.584 0.970 0.955 0.314 0.284 0.990 0.990
100 0.326 0.162 0.000 0.000 0.000 0.000 0.989 0.995

Mean Group Estimator
10 0.999 0.998 1.000 1.000 0.958 0.949 0.963 0.970

0 25 0.992 0.994 1.000 1.000 0.886 0.870 0.987 0.987
50 0.438 0.427 0.973 0.973 0.426 0.416 0.989 0.995
100 0.488 0.460 0.000 0.000 0.001 0.000 0.999 0.991
10 0.996 0.997 1.000 1.000 0.949 0.944 0.976 0.971

0.5 25 0.988 0.984 1.000 1.000 0.853 0.853 0.989 0.987
50 0.344 0.264 0.892 0.861 0.331 0.315 0.985 0.991
100 0.049 0.028 0.000 0.000 0.000 0.000 0.992 0.991

Notes: See notes to Table 1.
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Table 4: Simulation results for Case 1 - Rank Deficiency- (Experiment A)
FE 3DCCEG 3DCCEL 3DCCELG

Panel A: Bias
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.227 0.213 0.220 0.242 0.077 0.099 -0.005 0.018

0 25 0.214 0.222 0.223 0.239 0.050 0.066 -0.017 -0.001
50 0.217 0.208 0.248 0.246 0.061 0.061 0.002 0.001
100 0.232 0.222 0.260 0.249 0.067 0.057 0.012 0.001
10 0.227 0.208 0.242 0.249 0.076 0.084 -0.004 0.003

0.5 25 0.246 0.227 0.273 0.274 0.076 0.079 0.009 0.012
50 0.247 0.241 0.258 0.266 0.049 0.058 -0.012 -0.003
100 0.246 0.245 0.272 0.271 0.056 0.055 0.000 -0.002

Mean Group Estimator
10 0.223 0.210 0.211 0.234 0.040 0.062 0.008 0.030

0 25 0.204 0.217 0.214 0.228 0.028 0.043 -0.006 0.009
50 0.209 0.202 0.237 0.235 0.047 0.046 0.009 0.008
100 0.224 0.214 0.248 0.238 0.057 0.046 0.010 0.005
10 0.227 0.207 0.230 0.241 0.041 0.054 0.006 0.019

0.5 25 0.241 0.220 0.263 0.263 0.059 0.060 0.023 0.024
50 0.239 0.234 0.247 0.254 0.038 0.045 -0.003 0.005
100 0.237 0.236 0.260 0.259 0.047 0.046 0.003 0.002

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.497 0.498 0.509 0.520 0.467 0.469 0.461 0.460

0 25 0.357 0.359 0.364 0.362 0.294 0.279 0.290 0.271
50 0.292 0.290 0.313 0.322 0.202 0.216 0.192 0.208
100 0.273 0.263 0.297 0.286 0.158 0.152 0.144 0.141
10 0.520 0.502 0.517 0.520 0.461 0.463 0.454 0.457

0.5 25 0.388 0.368 0.397 0.396 0.298 0.297 0.289 0.285
50 0.317 0.312 0.326 0.335 0.205 0.212 0.199 0.205
100 0.283 0.284 0.306 0.306 0.151 0.152 0.140 0.143

Mean Group Estimator
10 0.490 0.488 0.503 0.510 0.459 0.457 0.457 0.454

0 25 0.352 0.356 0.358 0.354 0.288 0.274 0.286 0.270
50 0.286 0.285 0.304 0.313 0.197 0.211 0.191 0.207
100 0.266 0.256 0.287 0.276 0.154 0.148 0.144 0.141
10 0.513 0.493 0.501 0.509 0.447 0.452 0.444 0.450

0.5 25 0.383 0.361 0.388 0.388 0.291 0.291 0.286 0.285
50 0.310 0.304 0.317 0.326 0.202 0.208 0.198 0.203
100 0.275 0.275 0.295 0.295 0.146 0.149 0.139 0.142

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.984 0.973 0.967 0.957 0.896 0.893 0.891 0.894

0 25 0.972 0.970 0.967 0.971 0.927 0.944 0.925 0.951
50 0.953 0.944 0.936 0.909 0.938 0.920 0.949 0.927
100 0.844 0.870 0.801 0.833 0.922 0.930 0.941 0.952
10 0.969 0.978 0.967 0.971 0.901 0.912 0.897 0.902

0.5 25 0.965 0.967 0.954 0.955 0.912 0.931 0.926 0.938
50 0.943 0.929 0.943 0.912 0.937 0.926 0.942 0.934
100 0.847 0.851 0.815 0.795 0.932 0.935 0.958 0.942

Mean Group Estimator
10 0.939 0.927 0.956 0.949 0.905 0.907 0.898 0.909

0 25 0.903 0.905 0.948 0.949 0.934 0.951 0.935 0.953
50 0.824 0.801 0.904 0.879 0.946 0.928 0.953 0.932
100 0.788 0.831 0.742 0.768 0.932 0.933 0.949 0.952
10 0.951 0.948 0.962 0.965 0.922 0.923 0.919 0.922

0.5 25 0.886 0.895 0.926 0.928 0.931 0.941 0.931 0.944
50 0.818 0.792 0.898 0.869 0.940 0.937 0.940 0.935
100 0.787 0.781 0.727 0.724 0.937 0.936 0.957 0.943

Notes: See notes to Table 1.
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Table 5: Simulation results for Case 2 - Rank Deficiency - (Experiment B)
FE 3DCCEG 3DCCEL 3DCCELG

Panel A: Bias
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.209 0.205 0.231 0.223 0.076 0.072 0.003 -0.001

0 25 0.215 0.214 0.243 0.243 0.063 0.063 0.002 0.002
50 0.219 0.219 0.247 0.248 0.056 0.058 0.000 0.001
100 0.220 0.220 0.250 0.251 0.054 0.054 0.000 0.001
10 0.227 0.230 0.250 0.250 0.078 0.078 0.004 0.004

0.5 25 0.241 0.242 0.270 0.266 0.067 0.064 0.004 0.001
50 0.246 0.247 0.272 0.271 0.059 0.059 0.001 0.001
100 0.249 0.248 0.276 0.275 0.056 0.056 0.001 0.000

Mean Group Estimator
10 0.204 0.201 0.222 0.215 0.053 0.047 0.012 0.006

0 25 0.209 0.208 0.232 0.234 0.048 0.049 0.008 0.009
50 0.211 0.212 0.236 0.237 0.046 0.047 0.005 0.005
100 0.212 0.213 0.238 0.239 0.045 0.046 0.002 0.003
10 0.224 0.227 0.242 0.246 0.057 0.060 0.013 0.016

0.5 25 0.233 0.234 0.258 0.256 0.054 0.052 0.011 0.010
50 0.236 0.238 0.261 0.260 0.051 0.050 0.007 0.006
100 0.239 0.239 0.264 0.264 0.049 0.049 0.004 0.004

Panel B: RMSE
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.240 0.235 0.258 0.251 0.136 0.132 0.111 0.110

0 25 0.220 0.220 0.248 0.247 0.078 0.077 0.045 0.044
50 0.220 0.220 0.249 0.249 0.061 0.062 0.023 0.023
100 0.220 0.221 0.250 0.251 0.055 0.056 0.012 0.011
10 0.258 0.258 0.278 0.276 0.138 0.137 0.115 0.112

0.5 25 0.246 0.246 0.275 0.271 0.082 0.079 0.047 0.046
50 0.247 0.248 0.273 0.273 0.064 0.064 0.024 0.024
100 0.249 0.248 0.276 0.276 0.058 0.057 0.012 0.012

Mean Group Estimator
10 0.230 0.228 0.245 0.239 0.116 0.112 0.103 0.101

0 25 0.213 0.213 0.236 0.238 0.063 0.064 0.042 0.042
50 0.213 0.213 0.237 0.238 0.051 0.051 0.021 0.021
100 0.212 0.213 0.238 0.239 0.047 0.047 0.011 0.010
10 0.248 0.249 0.264 0.266 0.118 0.118 0.105 0.103

0.5 25 0.237 0.238 0.261 0.259 0.068 0.066 0.042 0.042
50 0.238 0.239 0.262 0.261 0.055 0.054 0.022 0.021
100 0.239 0.239 0.264 0.264 0.050 0.050 0.011 0.011

Panel C: Coverage rate at 95 confidence level
Pooled Estimator

ρ N/T 50 100 50 100 50 100 50 100
10 0.998 1.000 1.000 1.000 0.945 0.953 0.978 0.965

0 25 0.997 0.996 1.000 1.000 0.893 0.876 0.989 0.983
50 0.613 0.511 0.999 0.996 0.605 0.555 0.991 0.987
100 0.701 0.612 0.075 0.035 0.041 0.017 0.993 0.992
10 0.999 0.999 1.000 1.000 0.945 0.948 0.966 0.976

0.5 25 0.998 0.994 1.000 1.000 0.871 0.887 0.991 0.987
50 0.532 0.431 0.988 0.984 0.557 0.557 0.991 0.990
100 0.170 0.079 0.004 0.000 0.034 0.024 0.993 0.992

Mean Group Estimator
10 0.999 1.000 1.000 1.000 0.962 0.969 0.978 0.973

0 25 0.989 0.991 1.000 0.999 0.938 0.938 0.984 0.983
50 0.301 0.209 0.992 0.992 0.691 0.661 0.988 0.982
100 0.342 0.246 0.005 0.003 0.063 0.040 0.987 0.992
10 0.996 1.000 1.000 1.000 0.953 0.960 0.969 0.980

0.5 25 0.983 0.979 1.000 1.000 0.913 0.912 0.989 0.983
50 0.161 0.124 0.938 0.949 0.586 0.612 0.985 0.991
100 0.007 0.007 0.000 0.000 0.031 0.029 0.989 0.988

Notes: See notes to Table 1.
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to remove heterogenous global factors that would be correlated with covari-
ates. KMSS develop the two-step consistent 3D-PCCE estimation procedure by
approximating global factors with double cross-section averages of dependent
variable and regressors and applying the 3D-within transformation. Following
this research trend, in this paper, we develop the hierarchical multi-factor er-
ror components specification, (338), which is more structural and parsimonious
than (334).

The data We collect the dataset over the period 1970-2013 (44 years), and
consider two control groups: the 210 country-pairs of the EU15 member coun-
tries with 11 Euro countries (Austria, Belgium-Luxemburg, Finland, France,
Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain) and 4 control
countries (Denmark, Norway, Sweden, the UK); the 320 country-pairs among
19 countries with the EU15 countries and 4 non-EU OECD countries (Australia,
Canada, Japan and the US).
We collect the bilateral export flow from IMF. The Data starts from 1970 as

the German data are unavailable in the 60s. There are no missing data so we
consider the balanced panel. Our sample period consists of several important
economic integrations, such as the European Monetary System in 1979 and the
Single Market in 1993, all of which can be regarded as promoting intra-EU
trades.

Empirical specification: We consider the 3D panel gravity specification:

lnEXPijt = β0 + β1CEEijt + β2EMUijt + β3SIMijt + β4RLFijt + β5 lnGDPit
(335)

+ β6 lnGDPjt + β7RERt + γ1DISij + γ2BORij + γ3LANij + uijt

the dependent variable, EXPijt is the export flow from country i to country j
at time t; CEE and EMU are dummies for European Community membership
and for European Monetary Union; SIM is the logarithm of an index that
captures the relative size of two countries and bounded between zero (absolute
divergence) and 0.5 (equal size); RLF is the logarithm of the absolute value of
the difference between per capita GDPs of trading countries; RER represents
the logarithm of common real exchange rates; GDPit and GDPjt are logged
GDPs of exporter and importer; the logarithm of geographical distance (DIS)
and the dummies for common language (LAN) and for common border (BOR)
represent time-invariant bilateral barriers.
We apply the four estimators considered in the MC simulations, namely the

two-way within estimator and the three versions of 3D CCEP estimators. We
also report the CD results applied to the residuals and the estimates of the CSD
exponent (α). We focus on investigating the impacts of tij that contain both
barriers and incentives to trade; the two dummy variables CEE (equal to one
when both countries belong to the European Community) and EMU (equal to
one when both trading partners adopt the same currency). Both are expected
to exert a positive impact on export flows. The empirical evidence is mixed,
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though recent studies by Mastromarco et al. (2015), and Gunnella et al. (2015)
that control for strong CSD in 2D panels, find modest but significant effects (7
to 10%) of the euro on intra-EU trade flows. KMSS (2017) apply a 3D PCCE
estimator, finding that the EMU impact on exports is about 8%.

The Estimation Results for the EU15 Countries Table 5 reports the
panel gravity estimation results for the 210 country-pairs among the EU15 mem-
ber countries over the period 1970-2013 (44 years). The FE estimator suffers
from strong CSD while the 3DCCEP estimators display lower degree CSD. CD
diagnostic test by Pesaran (2015) fails to reject the null of weak CSD for both
3DCCEPL and 3DCCEPGL. This is also supported by the smaller estimates
of α for 3DCCEPL (0.624) and 3DCCEPGL (0.609), close to a moderate range
of weak CSD.
Factor approximations
Theoretically, we should employ the entire set of cross-section averages to

approximate heterogeneous global and local factors. In practice, this may raise
an issue of multicollinearity. Further, to avoid the curse of dimensionality, we
search for an optimal subset of cross sectional averages. In the aftermath of the
global financial crisis, export flows display a negative average growth as shown
below:

Export Growth 70/80 80/90 90/00 00/10 10/13
EU15 + 4 OECD 7.06 6.25 4.35 2.16 -0.34
EU15 8.86 7.37 3.92 2.82 -2.05

Hence, we also add t2 as an observed factor, which helps to capture the con-
founding effect of the crisis.
We focus on the 3DCCEPGL estimation results with the lowest degree of

CSD. All the coeffi cients are significant and their signs are consistent with our a
priori expectations. The effect of the foreign GDP is substantially higher than
the home GDP. The effects of SIM and RER are positive while a depreciation
of the home currency leads to a significant increase in exports. SIM boosts real
export flows, which suggests that the intra-industry trade is the main part of
the trade in the EU. Importantly, the impacts of EMU and CEE are significant,
but substantially smaller than the potentially biased FE estimates. Both Euro
and CEE impacts drop sharply from 0.099 and 0.074 to 0.03 and 0.05. Other
estimators provide rather unreliable results.23

The 3DCCEP estimator wipes out the time invariant regressors. Following
the 2-step approach as in Serlenga and Shin (2007), we can estimate γ by the
between estimator:

dijt = αij + γ1DISij + γ2BORij + γ3LANij + uijt (336)
23For example, the impacts of home GDP on exports is surprisingly larger than the foreign

impact while both Euro and CEE impacts seem to be rather high for the FE. The RER
coeffi cient is significantly negative for the CCEP with the global approximation only whereas
the CEE impact is insignificant and the Euro impact is almost negligible for the CCEP with
the local approximation only.
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Table 6: Table 5: Estimation Results for 15 EU Countries
FE 3DCCEPG 3DCCEPL 3DCCEPGL

gdph 1.517 0.230 0.023 0.342
(0.044) (0.036) (0.037) (0.124)

gdpf 0.953 1.478 0.779 1.498
(0.044) (0.037) (0.057) (0.031)

sim -0.045 0.639 -0.012 0.197
(0.060) (0.069) (0.056) (0.075)

rlf 0.030 -0.002 0.002 0.006
(0.006) (0.005) (0.002) (0.004)

rer 0.012 -0.046 0.016 0.103
(0.008) (0.007) (0.004) (0.010)

euro 0.099 0.030 0.012 0.030
(0.016) (0.003) (0.003) (0.003)

cee 0.074 0.066 0.007 0.050
(0.014) (0.007) (0.007) (0.013)

CD stat 206.6 4.67 2.33 2.72

α 0.91 (0.90-0.93) 0.78 (0.72-0.84) 0.62 (0.59-0.66) 0.61 (0.57-0.65)

Notes: FE is the two-way fixed effect estimator. 3DCCEPG is the CCEP estimator

with only the global factors approximated by ft =
{
export..t, gdp..t, sim..t, rlf ..t, cee..t, t, t

2
}

3DCCEPL is the CCEP estimator with only the local factors approximated by ft = fiot ={
yi.t, gdpi.t

}
and fojt =

{
sim.jt, rlf .jt

}
. 3DCCEPGL is the CCEP estimator with both

global and local factors approximated by ft =
{
export ..t, gdp..t, sim..t, rlf ..t, cee..t, t, t

2
}
and

fiot =
{
simi.t, rlf i.t, reri.t

}
. * and ** stand for significance at 5% and 10% level. CD test

refers to testing the null hypothesis of residual cross-section independence or weak depen-

dence (Pesaran, 2015). α is the estimate of CSD exponent with 90% confidence bands inside

parenthesis.
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where dijt = yijt − β̂
′
xijt with β̂ being the 3D CCEP estimator. We test the

validity of the hypothesis: if the Euro had a positive effect on the EU trade by
reducing bilateral barriers and eliminating exchange-related uncertainties and
transaction costs, this caused a decrease in trade impacts of bilateral barriers
(e.g. Cafiso, 2010). A declining trend after 1999 will support the hypothesis
that the Euro helps to promote more EU integration. To this end we estimate
(336) by the cross-section regression at each period, and produce time-varying
coeffi cients of γ.
Figure 1 shows the time varying estimates of γ in (336), using the CCEP es-

timator with both local and global factors approximation. The border effect has
been declining until the mid 1980’s, and quite stable except the slight dip during
the global financial crisis albeit statistically insignificant. The language effect
steadily decreasing until the end of 1980’s, reflecting the progressive lessening
of restrictions on labor mobility within the EU, that encouraged migration and
reduced the relative importance of trade costs and cultural difference. Since the
introduction of the Euro in 1999, both language and border effects became flat,
suggesting that the EU integration may reach near-completion stage. This is
consistent with the currency union formation hypothesis by Frankel (2005) that
countries, which decide to join a currency union, are self-selected on the basis
of distinctive features shared by EU members. The effect of distance has been
on a declining trend from the mid 80’s, but started to rise slightly after 1999.

The Estimation Results for the EU15 plus 4 OECD Countries Table
3 reports the estimation results for an enlarged sample of the 342 country-
pairs among the EU15 member countries plus four more countries (Australia,
Canada, Japan and the US). Again we focus on the estimation results for the
3DCCEPGL, which shows the lowest degree of CSD. The results are qualita-
tively similar to those reported in Table 2. All the coeffi cients are significant
with expected signs. The effect of the foreign GDP is substantially higher than
the home GDP effect. The effects of SIM is slightly higher (from 0.2 to 0.22)
but RLF becomes negligibly negative. The impact of RER is stronger (from
0.10 to 0.18), implying a stronger terms of trade effect.
The impacts of EMU and CEE are significant, though their magnitudes

become smaller than those with the EU15 countries, namely from 3% to 1.5%
and from 5% to 3%. The smaller effects for the enlarged sample might reflect
the trade diversion between the Euro and non-Euro area. The effects of the
EMU on trade will differ with respect to the selected control group and depend
on the composition of treatment and control groups (e.g. Baier and Bergstrand,
2009). Other estimators provide rather misleading results. In particular, the
FE estimation provides an opposite result that both Euro and CEE impacts
increase substantially, from 0.099 and 0.074 to 0.258 and 0.161.

Figure 2 displays time varying estimates of γ, using the CCEP estimator
with both local and global factors approximation. Both border and language
effect show similar pattern to the case with the EU15 countries. Again, we
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Table 7: Table 6: Estimation Results for 15 EU plus 4 OECD countries
FE 3DCCEPG 3DCCEPL 3DCCEPGL

gdph 1.066 0.531 0.069 0.169
(0.019) (0.016) (0.010) (0.055)

gdpf 0.904 1.419 1.262 1.417
(0.020) (0.020) (0.015) (0.017)

sim 0.332 0.109 0.100 0.220
(0.029) (0.021) (0.013) (0.023)

rlf 0.027 -0.008 0.010 -0.004
(0.004) (0.002) (0.001) (0.002)

rer 0.058 0.086 0.074 0.179
(0.008) (0.004) (0.002) (0.005)

euro 0.258 0.012 0.012 0.014
(0.009) (0.003) (0.001) (0.002)

cee 0.161 0.021 0.007 0.030
(0.028) (0.017) (0.001) (0.012)

CD stat 243.33 3.272 2.331 3.201

α 0.90 (0.88-0.920) 0.74 (0.69-0.76) 0.65 (0.61-0.69) 0.62 (0.57-0.66)

Notes: FE is the two-way fixed effect estimator. 3DCCEPG is the CCEP estimator

with only the global factors approximated by ft =
{
export..t, gdp..t, sim..t, rlf ..t, cee..t, t

}
.

3DCCEPL is the CCEP estimator with only the local factors approximated by ft = fiot ={
yi.t, gdpi.t

}
and fojt =

{
sim.jt, rlf .jt

}
. 3DCCEPGL is the CCEP estimator with both

global and local factors approximated by ft =
{
export ..t, gdp..t, sim..t, rlf ..t, cee..t, t

}
and

fiot =
{
simi.t, rlf i.t, reri.t

}
. * and ** stand for significance at 5% and 10% level. CD test

refers to testing the null hypothesis of residual cross-section independence or weak depen-

dence (Pesaran, 2015). α is the estimate of CSD exponent with 90% confidence bands inside

parenthesis.
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do not observe any evidence in favour of the Euro effect on trade integration,
consistent with the currency union formation hypothesis by Frankel (2005).
The effect of distance has been slightly increasing over the whole period. This
is consistent with the meta-study by Disdier and Head (2008), who document
that the trade elasticity with respect to distance has not declined, but rather
increased recently.

10 The 3D Panels with Regional/Global factor
specification

We consider the 3D heterogeneous panel data model given by

yijt = β′ijxijt + δ′ijdt + eijt, i = 1, ..., R, j = 1, ..., Ni, t = 1, ..., T, (337)

where yijt is the dependent variable observed across three indices, i = 1, ..., R
denotes the ith region, j = 1, ..., ni denotes the j’th individual variable of region
i (say, the GDP growth of country j in the region i), xijt is the mx × 1 vector
of covariates and dt is the md × 1 vector of observed common effects including
deterministic components such as constants and trends. βij and δij are mx× 1
and md × 1 vectors of parameters.
We allow eijt to follow the multi-level factor structure:

eijt = γg′ijgt + γi′ijf
i
t + εijt, (338)

where gt =
(
g1t, ..., gmgt

)′
is amg×1 vector of global factors, f it =

(
f i1t, ..., f

i
mit

)′
collects the mi × 1 vector of local factors in region i = 1, ..., R, γgij and γ

i
ij are

mg × 1 and mi × 1 vectors of heterogenous loadings, and εijt are idiosyncratic
errors. Define the total observation by N =

∑R
i=1Ni.

Extensions here...

10.0.5 The plans

Here we may develop and make the multiple projects and papers.

• Consider the simpler model given by (337) and (338). Here we may develop
the 3D CCE and/or the 3D PCA extensions (see below).

• An extension to the general case

yijt = β′ijxijt + β′jxit + β′ixjt + δ′ijdt + uijt

would be straightforward, though we stick to the simpler setting for tractabil-
ity.
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• Consider the different hierarchical factor structure, (358) (say, source-
destination countries) considered by KMS (2018) and Lu and Su (2018)
and/or the three level or overlapping factor structure, (381) analysed by
Breitung and Eickmeier (2016). Here we may also develop the 3D CCE
and/or the 3D PCA extensions by developing different modelling tech-
niques.

• Eventually, we wish to develop alternative approaches by combining the
(local) spatial effects and global (or multi-level) factors. Indeed, this would
make my ultimate goal. I consider extending the QML-EM algorithms
proposed by Bai and Li in a sequence of papers (all published in top
journals).

• There will be abundant empirical topics in Economics, Finance, Social
Science and so on. One of my ph.d students, Rui has been working on this
application in extending the 2D CAPM model into 3D CAPM or APT
models.

10.1 The CCE extensions

bla bla

10.2 The KMS CCE extension

Unobserved factors, fgt and f
i
it, are likely to be correlated with xijt. Thus, we

consider the data generating process for xijt as follows:

xijt = Dijdt + Γgijgt + Γiijf
i
t + vijt, (339)

where Dij is the (mx ×md) parameter matrix on observed common effects, Γgij
and Γiij are (mx ×mg) and (mx ×mi) factor loading matrices, and vijt are the
idiosyncratic errors.
Combining (337)-(339), we have:

zijt =

(
yijt
xijt

)
= Ξijdt + Φg

ijgt + Φi
ijf

i
t + uijt (340)

where

Ξij =

(
δ′ij + β′ijDij
Dij

)
,Φg

ij =

(
γg′ij + β′ijΓ

g
ij

Γgij

)
,Φr

ij =

(
γi′ij + β′ijΓ

i
ij

Γiij

)
,uijt =

(
εijt + β′ijvijt

vijt

)
The ranks of Φg

ij and Φi
ij are determined by the ranks of the following matrices:

Γ̃
g

ij
(mx+1)×mg

=

(
γg′ij
Γgij

)
, Γ̃

r

ij
(mx+1)×mi

=

(
γi′ij
Γiij

)
.
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For each (i, j), we rewrite (337) and (340) in matrix notation:

yij = Xijβij +Dδij +Gγgij + F iγiij + εij , (341)

zij = DΞij +GΦg
ij + F iΦi

ij + uij , (342)

where

yij
T×1

=

 yij1
...

yijT

 , Xij
T×mx

=

 x′ij1
...

x′ijT

 , D
T×md

=

 d′1
...
d′T

 , zij
T×(mx+1)

=

 z′ij1
...

z′ijT

 ,
(343)

G
T×mg

=

 g′1
...
g′T

 , F i
T×mi

=

 f i′1
...
f i′T

 , εij
T×1

=

 εij1
...

εijT

 , uij
T×(mx+1)

=

 u′ij1
...

u′ijT


We develop the estimation and inference theory for E

(
βij
)

= β as well as
individual coeffi cients, βij . We make the following assumptions:

• Check the assumptions??

Assumption 1. Common Effects: The
(
md +mg +

∑R
i=1mi

)
× 1 vector

of common factors
(
d′t, g

′
t,f

1′
t , ...,f

R′
t

)′
, is covariance stationary with absolute

summable autocovariances, distributed independently of εijt′ and vijt′ for all

N, i, j, t and t′.
(
g′t,f

1′
t , ...,f

R′
t

)′ (
fg′t ,f

r′
1t, ...,f

r′
Rt

)′
are zero mean process and

are mutually uncorrelated.
Assumption 2. Individual-specific Errors: εijt and vijt′ are distributed

independently for all i, j, t and t′, and they are distributed independently of
xijt and dt.
Assumption 3. Factor Loadings: The factor loadings are independently

and identically distributed across (i, j), and of the individual- specific errors
εijt and vijt, the common factors for all i, j and t, with finite means and finite
variances. In particular, we have:

γgij = γg + ηgij , γ
i
ij = γii + ηii or γ

i
ij = γii + ηiij , (344)

Γgij = Γg + ξgij , Γrij = Γri + ξri or Γrij = Γri + ξrij (345)

where ηgij ∼ iid (0,Ωηg ), ξgij ∼ iid (0,Ωξg ), ηri ∼ iid
(
0,Ωηi

)
, ?? ξi◦ ∼

iid
(
0,Ωξ•◦

)
, η◦j ∼ iid

(
0,Ωη◦•

)
and ξ◦j ∼ iid

(
0,Ωξ◦•

)
. Further, ‖γ◦◦‖ < K,

‖γ•◦‖ < K, ‖γ◦•‖ < K, ‖Γ◦◦‖ < K, ‖Γ•◦‖ < K, and ‖Γ◦•‖ < K for some
positive constant K <∞.
Assumption 4. Random Slope Coeffi cients: βij follow the random coeffi -

cient specification: {??}

βij = β+νi◦+ν◦j+νij with νi◦ ∼ iid (0,Ων•◦) , ν◦j ∼ iid (0,Ων◦•) , νij ∼ iid (0,Ων◦◦)
(346)
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or
βij = β + ν◦j + νij with ν◦j ∼ iid (0,Ων◦•) , νij ∼ iid (0,Ων◦◦)

where ‖β‖ < K and νij , νi◦, ν◦j are distributed independently of one another,
and of γij , Γij , εijt, vijt and gt for all i, j and t.

Assumption 5. Identification of βij and β: Let

z̄t =
1

R

R∑
i=1

1

Ni

Ni∑
j=1

zijt, z̄i·t =
1

Ni

Ni∑
j=1

zijt, i = 1, ..., R (347)

and Z̄ij =
(
Z̄, Z̄i·

)
and H̄ij =

(
D, Z̄ij

)
, where

Z̄
T×(1+mx)

=

 z̄′1
...
z̄′T

 , Z̄i·
T×(1+mx)

=

 z̄′i·1
...
z̄′i·T

 ,
Further,

M̄ ij = IT − H̄ij

(
H̄
′
ijH̄ij

)−1

H̄
′
ij . (348)

(i) Identification of βij : The mx×mx matrices, Ψ̄ij,T = T−1
(
X ′ijM̄ ijXij

)
are

nonsingular, and Ψ̄
−1
ij,T have finite second-order moments for all (i, j).

(ii) Identification of β: The mx ×mx matrix, N−2
∑N
i=1

∑N
j=1 Ψ̄ij,T is nonsin-

gular.

Remark 10 The factors are assumed to have zero mean for simplicity. Any
means can be subsumed in δij. Further, they are assumed mutually uncorrelated
to ensure that cross-sectional averages of local factors converge to zero. This
is another simplifying assumption, since some weak cross-sectional dependence
across local factors could be allowed, in exact analogy to weak cross sectional
dependence across idiosyncratic shocks.

Remark 11 The weights are not necessarily unique, but they do not affect the
asymptotic results advanced in this paper (see also (?)). We focus, for simplicity,
on equal weights, 1/N . Alternatively, economic distance-based or time-varying
measures such as trade weights or input-output shares could be considered (e.g.
(?); (?)). The number of observed factors, md and the number of individual-
specific regressors, mx are assumed fixed. The number of unobserved factors,
m = mg +mi, is assumed fixed, but need not to be known.

Using (340), we represent the hierarchical cross-section averages in (347) as
follows:

z̄i·t =
1

Ni

Ni∑
j=1

(
Ξijdt + Φg

ijgt + Φi
ijf

i
t + uijt

)
(349)

= Ξ̄i·dt + Φ̄
g
i·gt + Φ̄

i
i·f

i
t + ūi·t = Ξ̄i·dt +

(
Φ̄
g
i·, Φ̄

i
i·

)( gt
f it

)
+ ūi·t
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where

Ξ̄i· =
1

Ni

Ni∑
j=1

Ξij , Φ̄
g
i· =

1

Ni

Ni∑
j=1

Φg
ij , Φ̄

i
i· =

1

Ni

Ni∑
j=1

Φi
ij , ūi·t =

1

Ni

Ni∑
j=1

uijt

and

z̄t =
1

R

R∑
i=1

1

Ni

Ni∑
j=1

(
Ξijdt + Φg

ijgt + Φi
ijf

i
t + uijt

)
(350)

= Ξ̄··dt + Φ̄
g
··gt +

(
1

R

R∑
i=1

Φ̄
i
i·f

i
t

)
+ ū··t

where

Ξ̄·· =
1

R

R∑
i=1

1

Ni

Ni∑
j=1

Ξij , Φ̄
g
·· =

1

R

R∑
i=1

1

Ni

Ni∑
j=1

Φg
ij , ū··t =

1

R

R∑
i=1

1

Ni

Ni∑
j=1

uijt

Combining (349) and (350), we have:

z̄it = Ξ̄ijdt + Φ̄ijht + ūijt, (351)

where

z̄it
2(mx+1)×1

=

[
z̄t
z̄i·t

]
, ht

(mg+mi)×1
=

[
gt
f it

]
, ūijt

2(mx+1)×1

=

[
ū··t + 1

R

∑R
i=1 Φ̄

r
i·f

r
it

ūi·t

]

Ξ̄ij
3(mx+1)×md

=

[
Ξ̄··
Ξ̄i·

]
, Φ̄ij

2(mx+1)×(mg+mi)

=

[
Φ̄
g
·· 0

Φ̄
g
i· Φ̄

i
i·

]
.

Then, we obtain from (351):

ht =
(
Φ̄
′
ijΦ̄ij

)−1

Φ̄
′
ij

(
z̄it − Ξ̄ijdt − ūijt

)
(352)

It is easily seen, by applying Lemma 1 of (?), to ū··t, ūi·t and 1
R

∑R
i=1 Φ̄

i
i·f

i
t,
24

24Alternatively, do we assume 1
R

∑R
i=1 Φ̄

r
i·f

r
it = 0 for identification?? How to make it sure

under the zero mean assumption for f it? If
1
R

∑R
i=1 Φ̄

r
i·f

r
it 6= 0, then

1

R

R∑
i=1

Φ̄
i
i·f

i
t =

1

R

(
Φ̄
i
1·, ..., Φ̄

i
R·

)
f1t
...
fRt

 . (353)

In this case, instead of (351), we have

z̄it =

(
Φ̄
g
·· Φ̃

i
1· · · · Φ̃

i
i· · · · Φ̃

i
R·

Φ̄
g
i· 0 · · · Φ̄

r
i· · · · 0

)
fgt
f1t
...
fRt

+ ūijt, (354)

where Φ̃
i
i· = 1

R
Φ̄
i
i·. And the analysis will be more complicated.
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that for each t, as N →∞,

ūijt = Op

(
1√
N

)
??

Therefore, we establish that

ht −
(
Φ̄
′
ijΦ̄ij

)−1

Φ̄
′
ij

(
z̄it − Ξ̄ijdt

)
= Op

(
1√
N

)
??

This suggests that we can use h̄i◦t =
(
d′t, z̄

′
it

)′
as observable proxies for ht.

Then, we can consistently estimate the individual slope coeffi cients, βij and
their means β by augmenting the regression, (337) with dt and the cross-section
averages z̄it. This estimator is referred to as the 3D CCE estimator??

• Remark: The multi-level factor structure in (338) is different from KMS,
and it is more suitable for an analysis of the nested multi-level panel data
(here 2-level).

• ??Further, the local factors are allowed to have the loadings heterogeneous
across (i, j). Consider the special case with the within-region homogeneity:

eijt = γg′ijgt + γi′i f
i
t + εijt (355)

In this case we have (351) with

ūijt =

[
ū··t + 1

R

∑R
i=1 Φr

i·f
i
t

ūi·t

]
, Φ̄ij =

[
Φ̄
g
·· 0

Φ̄
g
i· Φi

i·

]
or see the footnote.

10.3 Panel Data with Cross-Sectional Dependence Char-
acterized by aMulti-Level Factor Structure by Rodríguez-
Caballero (2016)

This is also the CCE extension.
Consider the linear heterogeneous panel data model for i = 1, ..., N , t =

1, ..., T , r = 1, ..., R: (NB: abuse of notations)

yr,it = αr,idr,t + β′r,ixr,it + er,it

er,it = µ′r,iGt + λ′r,iFr,t + εr,it

where dr,t is a RN × 1 vector of observed common effects in the block r, xr,it is
a k× 1 vector of observed individual-specific regressors, Gt is the rG × 1 vector
of unobserved global factors, Fr,t is the rF × 1 vector of unobserved regional
factors, and εr,it are the individual-specific idiosyncratic errors. Assume the
number of blocks, R, to be fixed.
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I adopt the following specification for the individual specific regressors:

xr,it = A′r,idr,t +M ′r,iGt + Λ′r,iFr,t + vr,it

where Ar,i, Mr,i and Λr,i are N × k, rG× k, and rf × k matrices, vr,it are errors
of xr,it distributed independently of the factor structure and across i and r.
The model can be re-written for the specific block r as

zr,it
(k+1)×1

= B′r,i
(k+1)×N

dr,t
N×1

+ C′r,i
(k+1)×rG

Gt
rG×1

+ D′r,i
(k+1)×rF

Fr,t
rF×1

+ ur,it

where

zr,it =

(
yr,it
xr,it

)
, Br,i = (αr,i, Ar,i)

(
1 0
βr,i Ik

)
Cr,i =

(
µr,i,Mr,i

)( 1 0
βr,i Ik

)
,Dr,i = (λr,i,Λr,i)

(
1 0
βr,i Ik

)
ur,it =

[
εr,it + β′r,ivr,it

vr,it

]
The rank of matrices Cr,i andDr,i are determined by the rank of the rG×(k+1)
and rF × (k + 1) matrices of the unobserved top-level and block-specific factor
loadings, respectively.
The model simplifies to that proposed by Pesaran (2006) and Bai (2009): i)

When R = 1. ii) When there are no block-specific factors, i.e.
∑R
r=1 rFr = 0.

Assumption A. Observed Common Effects:
The RN × 1 vector of observed common effects dr,t is covariance station-

ary with absolute summable autocovariances, distributed independently of the
individual specific errors εr,it and vr,it. Each dr is orthogonal to G.
Assumption B. Unobserved Common Factors:
B1 Block-specific factors Fr,t are covariance stationary such that

E ‖Fr,t‖4 ≤M <∞ with T−1
T∑
t=1

Fr,tF
′
r,t →p ΣFr

for some rF × rF positive definite matrix ΣFr , r = 1, ..., R.
B2 The pervasive top-level factor Gt is covariance stationary such that

E ‖Gt‖4 ≤M <∞ with T−1
T∑
t=1

GtG
′
t →p ΣG

for some rG × rG positive definite matrix ΣG.
B3 Define Ht =

[
G′t, F

′
r,t

]′
. For a fixed r, assume that

T−1
T∑
t=1

HtH
′
t →p ΣH
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for some positive-definite matrix ΣH with rank rG + r1 + · · ·+ rR.
B4 Factors have zero mean, and

T∑
t=1

GtF
′
r,t = 0 for r = 1, ..., R

Assumption C. Individual-specific Errors:
C1 εr,it, r = 1, ..., R, i = 1, ..., N, t = 1, ..., T , are independently across r, i,

and t with zero mean and variance σ2
i , and have a finite fourth-moment.

C2 vr,it, r = 1, ..., R, i = 1, ..., N, t = 1, ..., T , are independently across r, i,
and t with zero mean and variance Σi > 0, and supr;itE ‖vr,it‖

4
<∞.

C3 εr,it and vr,jt′ are distributed independently for all r, i, j, t and t′. For
each r and i, εr,it and vr,it follow linear stationary processes with absolute
summable autocovariances.
Assumption D. Factor loadings:
The unobserved factor loadings µr,i, λr,i Mr,i and Λr,i are independently and

identically distributed across r, i, and of the individual specific errors εr,it and
vr,jt, the common observable factors dr,t and the unobserved common factors
(Gt, Fr,t) for all r, i, j, and t with fixed means µ, λ,M and Λ, and finite variances.
In particular,
D1 λr,i is either deterministic such that ‖λr,i‖ ≤M <∞, or it is stochastic

such that E ‖λr,i‖4 ≤M <∞. In the latter case,

N−1
r Λ′rΛr →p ΣΛr > 0

for an rF × rF non-random matrix ΣΛr for all r = 1, ..., R with a positive
constant M .

D2 µr,i is either deterministic such that
∥∥µr,i∥∥ ≤M <∞, or it is stochastic

such that E
∥∥µr,i∥∥4 ≤M <∞ with

N−1
r µ′rµr →p Σµr > 0

for an rG × rG non-random matrix Σµr for all r = 1, ..., R.
Assumption E. Random Slope Coeffi cients:
The slope coeffi cients βr,i follow the random coeffi cient model

βr,i = β + vr,i, vr,i ∼ iid (0,Ωv)

for i = 1, ..., N and r = 1, ..., R where ‖β‖ < K, ‖Ωv‖ < K, Ωv is k × k
symmetric nonnegative definite matrix, and vr,i are distributed independently
of µr,j , λr,j Mr,j and Λr,j , εr,jt, vr,jt, dr,t, Fr,t, and Gt for all r, i, j and t.

Assumption F. Identification of βr,i:
Identification of the slope coeffi cients are given by a two-step procedure of

cross-sectional averages. In the first step, consider the cross-sectional averages of
the individual-specific variables zr,it in each one of R blocks separately. Define
by

z̄r,it =
1

N

N∑
j=1

zr,jt
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and let

Wr = IT −Hr

(
Hr
′
Hr

)−
Hr
′

WFr = IT − Fr (F′rFr)
− F′r

where
Hr =

(
Dr, Zr

)
with Dr

T×N
= (dr,1, ..., dr,T )′

and Zr = (z̄r,1, ..., z̄r,T )
′ is the T × (k + 1) matrix of time observations on the

cross-sectional averages for each region r and

Fr = (Dr, Fr)

where Fr = (Fr,1, ..., Fr,T )′ is T×rFr data matrices on unobserved block specific
factors.
For the second step,

Z∗
(k+1)RN×T

=

[(
Z1

(k+1)N×T
W1
T×T

)′
,
(
Z2W2

)′
, ...,

(
ZRWR

)′]′

and consider the cross-sectional average of the complete panel and let

W
∗

= IT −H
∗ (
H
∗′
H
∗)−

H
∗′

W̄G = IT −G (G′G)
−1
G′

where H
∗

= Z∗, with Z∗ = (z̄∗1, ..., z̄
∗
T )
′ is the T × (k+1) matrix of observations

on the cross-sectional averages. denote W̄r,tG
′
t as G

∗
t , then G

∗ = (G∗1, ..., G
∗
T )′

is T × rG data matrix on unobserved top-level factors.
F1 Identification of βr,i:

The k × k matrix Ψ̂r,iT =
(

X∗′r.iW
∗
X∗r.i

T

)
and Ψ̂r,iG =

(
X∗′r.iWGX∗r.i

T

)
are

nonsingular, and Ψ̂r,iT , Ψ̂r,iG have finite second-order moments for all r and i.
Assumption E can be relaxed allowing for βr,i = βr + vr,i, vr,i ∼ IID(0,Ωv)

implying that the slope can vary among regions but being the same within the
specific block r. Assumption F details the identification strategy of the slope
coeffi cients.
I propose an extended CCE procedure to filter out the full factor space

involved in a model whose cross-sectional dependence is driven by a multi-level
factor structure. TheMulti-Level Common Correlated Effect Estimators
(MLCCE) consists of two steps.
In the first step, consider each of the zr,it vectors for each block r = 1, ..., R.

Note that the cross-sectional dependence in block r is only driven by the block-
specific observable common factors, dr,t as well as the unobservable common
factors Fr,t. The pervasive common factors Gt do not play a role hith-
erto since none of the remaining blocks are considered {why??}. In
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this sense, µr,i = 0 and Mr,i = 0 lead to Cr,i = 0 for all i = 1, ..., N . Then, we
have

zr,it = B′r,idr,t + D′r,iFr,t + ur,it

The cross-sectional averages of the observables of z̄r,it can work as a proxy for
these block-specific factors:

z̄r,t = B̄′rdr,t + D̄′rFr,t + ūr,t

where

z̄r,t =
1

N

N∑
i=1

zr,it; B̄r =
1

N

N∑
i=1

Br,i; D̄r =
1

N

N∑
i=1

Dr,i; ūr,t =
1

N

N∑
i=1

ur,it

Assuming
rk
(
D̄
)

= rFr < k + 1

then
Fr,t =

(
D̄rD̄

′
r

)−1
D̄r

(
z̄r,t − B̄′rdr,t − ūr,t

)
Lemma 1 in Pesaran (2006) shows that ūr,t →qm 0 as N →∞, for each t, which
implies

Fr,t =
(
DD′

)−1
D
(
z̄r,t − B̄′rdr,t

)
→qm 0

where

D = lim
N→∞

D̄r = Λ̃

(
1 0
βr,i Ik

)
Λ̃ = E (λr,i,Λr,i) = (λr,i,Λr,i) and βr = E

(
βr,i
)
.

Therefore, the block-specific factors, Fr,t, can be approximated by a linear com-
bination of dr, the cross-sectional averages of the dependent variable, ȳr,t =
1
N

∑N
i=1 yr,it, and of the individual-specific regressors, x̄r,t = 1

N

∑N
i=1 xr,it.

Let Z∗ as

Z∗
(k+1)RN×T

=


Z1

(k+1)N×T
W1
T×T

Z2W2

...
ZRWR


where

W̄r
T×T

Z ′r
T×(k+1)N

=

(
IT −Hr

(
Hr
′
Hr

)−
Hr
′
)
Z ′r

which is the residual from the regression of Z ′r on Hr =
(
Dr, Zr

)
. And similarly,

G∗ =
(
GW̄r

)′
=

{
IT −Hr

(
Hr
′
Hr

)−
Hr
′
}
G′; U∗ =

[(
U1W̄1

)′
, ...,

(
URW̄R

)′]′
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where Wr = IT −Hr

(
Hr
′
Hr

)−
Hr
′
. Then, we have:

z∗it = C′iG
∗
t + u∗it (356)

after partialing out the effects of the block-specific factors from all the blocks
r = 1, ..., R by using the orthogonal projection matrix Wr. The cross-section
averages will result in

z̄∗t = C̄′G∗t + ū∗t

where

z̄∗t =
1

RN

RN∑
i=1

z∗it

In the second step, H̄∗ = Z̄∗ becomes an observable proxy for unobserved global
factor Gt.
The Common Correlated Effects Mean Group (CCEMG) is an average of

the individual MLCCE estimators, β̂r,i,

β̂CCEMG =
1

R

R∑
r=1

1

N

N∑
i=1

β̂r,i

where
β̂r,i =

(
X∗′r,iW̄

∗X∗r,i
)−1

X∗′r,iW̄
∗y∗r,i (357)

X∗r,i =
(
xr,i1W̄r,1,xr,i2W̄r,2, ...,xr,iT W̄r,T

)
y∗r,i =

(
yr,i1W̄r,1, yr,i2W̄r,2, ..., yr,iT W̄r,T

)
Theorem 4.1. Under Assumptions A-C, and F1, as (N,T )j → ∞ and

the rank conditions, then β̂r,i is a consistent estimator of βr,i. Furthermore,

assuming
√
T
N → 0 as (N,T )j →∞ in the block r, then

√
T
(
β̂r,i − βr,i

)
→d N

(
0,Σβr,i

)
where

Σβr,i = σ2
r,i

Σ−1
r,iv (0) Σ−1

r,iv (0)

It is possible to consider a CCEMG estimator either for the specific block r
or for the full panel. I focus on the more general setting.
Theorem 4.2. Under Assumptions A-E, and F1, then β̂CCEMG is as-

ymptotically unbiased for fixed R, and T and as N → ∞. Furthermore,
as(N,T )j →∞ with R fixed,

√
RN

(
β̂CCEMG − β

)
→d N (0,ΣCCEMG)

where ΣCCEMG can be consistently estimated non-parametrically by

ΣCCEMG =
1

R− 1

R∑
r=1

1

N − 1

N∑
i=1

(
β̂r,i − β̂CCEMG

)(
β̂r,i − β̂CCEMG

)′
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Note that the block-specific and global rank conditions are necessary in the
Theorem 4.1 but not in 4.2 (how??).
When βr,i = β for all r and i, pooled estimators would gain effi ciency. Sim-

ilar asymptotic analysis can be done. I avoid these details to focus only on
the heterogeneity assumption which seems to be more appropriate in macroeco-
nomics and financial applications.

• Remark: The MLCCE first augment the regional block regression with
Hr =

(
Dr, Zr

)
, where Zr are designed to approximate the local factors,

see the regression (356). Then, augment the global regression (356) with
z̄∗t , where z̄∗t are designed to approximate the global factors. He showed
via MC that the performance of the MLCCE is satisfactory... See MC
section and we may consider similar designs?

• First, I wonder whether this 2-step approach in (357) is equivalent
to our algorithm developed in the previous section ?? Does this
cover the model in (351) or in (??)? which is more effi cient?

10.4 The Multi-level PCA approach

• What about applying the PCA following the international BC
literature, say Breitung and Eickmeier (2016) and Choi et al.
(2016)? This is quite feasible and worthwhile along with de-
veloping the information criteria for determining the number
of both global and local factors, though I prefer the approach
not affected by the consistent estimation of the number of true
factors...

Here we aim to adopt and extend the approaches advanced by Breitung and
Eickmeier (2016) and Choi et al. (2017). We first review a couple of existing
approaches (incomplete or not rigorous yet).

10.5 Three-Dimensional Panel Data Models with Factor
Structures by Lu and Su (2018)

We consider general three-dimensional panel data models with factor structures,
which include both global factors and local factors. This type of model can be
applied to many fields in economics, such as international trade, macroeconomics
and finance, among others. We will propose a method to determine the number
of factors and provide estimators for the factors and factor loadings. We will
study the asymptotic properties of our methods, show the consistency and derive
the asymptotic distribution of our estimators. Monte Carlo simulations will be
used to demonstrate the finite sample performance of our methods. Empirical
applications to international trade will also be provided.
Latent factor models have received considerable attention in econometrics.

Most factor models have been applied to two-dimensional (2D) panel data. How-
ever, more three-dimensional (3D) panel datasets have become available (e.g.,
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Mátyás (2017) for a recent review). In this project, we consider estimation and
inference for factor models with 3D panel data.
We first consider a 3D pure factor model without any exogenous regressors:

yijt = λ
(0)′
ij f

(0)
t +λ

(1)′
ij f

(1)
it +λ

(2)′
ij f

(2)
jt +uijt; i = 1, ..., N ; j = 1, ...,Mi, t = 1, ..., T ;

(358)
where yijt is the observable data, f

(0)
t is the global factor, f (1)

it and f (2)
jt are

local factors that depend on i and j, respectively,
(
λ

(0)′
ij , λ

(1)′
ij , λ

(2)′
ij

)′
are their

corresponding factor loadings and uijt is the idiosyncratic error. We assume that
the dimensions of f (0)

t , f (1)
it and f (2)

jt are r
0×1, r1

i ×1 and r2
j×1, respectively and

λ
(0)
ij , λ

(1)
ij , and λ

(2)
ij have the same corresponding dimensions. That is, there are

r0, r1
i and r

2
j global factors, i-specific local factors and j-specific local factors,

respectively.
We can also extend to allow the exogenous regressors

yijt = β′xijt + λ
(0)′
ij f

(0)
t + λ

(1)′
ij f

(1)
it + λ

(2)′
ij f

(2)
jt + uijt, (359)

where xijt is a k × 1 vector of observable regressors and β is the corresponding
slope coeffi cients. For example, in the international trade application above,
xijt could be the trading costs from country i to country j at year t: Another
example of xijt is the lagged dependent variable, i.e., xijt = yij,t−1 in the
dynamic model. This model is often referred to as panel data models with
interactive fixed effects, as we allow the regressor xijt to be correlated with the
unobservable factors.
The model can be used in various ways. The most general 3D linear fixed

effect model considered in the literature is

yijt = β′xijt + γij + αit + α∗jt + uijt,

where γij , αit, α
∗
jt are fixed effects (e.g., Lu, Miao and Su (2017)). This model

can be thought of as a special case of our Model (359). We consider large pan-
els where the three dimensions (N,M, T ) go to infinity jointly. The goal of this

project is to determine
(
r0, r1

i , r
2
j

)
and estimate

(
f

(0)
t , f

(1)
it , f

(2)
jt

)
,
(
λ

(0)′
ij , λ

(1)′
ij , λ

(2)′
ij

)′
up to a rotation matrix.

Literature Review There is a large literature on the factor models for 2D
panel data. Omitting the j index, models (358) and (359) reduce to

yit = λ′ift + uit

yit = β′xit + λ′ift + uit

where ft and λi are r × 1 vector of factor and factor loadings. The literature
on factor models for 2D panel data has been developed rapidly. For a detailed
review, see Bai and Wang (2016). For the pure factor models, Bai (2003) consid-
ers estimation based on principal components analysis (PCA) and develops the
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inference theory assuming the number of factor r is known. For the model with
exogenous regressors, Bai (2009) and Moon and Weidner (2015,2017) provide es-
timators based on Gaussian quasi-maximum likelihood estimation (QMLE) and
PCA. Pesaran (2006) proposes common correlated effects (CCE) estimators for
estimating β.
There are limited number of papers on 3D factor models. See Breitung

and Eickmeier (2015), Wang (2016), and Choi et al. (2017). All these papers
consider a special case of our pure factor model where there is only one local
component, i.e.,

yijt = λ
(0)′
ij f

(0)
t + λ

(1)′
ij f

(1)
it + uijt; i = 1, ..., N ; j = 1, ...,Mi; t = 1, ..., T ;

This model is often referred to as a multi-level factor model. There are
certain limitations of the existing methods. First, most papers assume that
numbers of global factors r(0) and local factors r(1)

i are known, e.g., Breitung
and Eickmeier (2015) and Wang (2016). Choi et al. (2017) provide information
criteria for selecting the number of local factors r(1)

i but assume the number
of global factors r(0) is known. Second, there is no inference theory for the
estimated factor and factor loading. These papers only establish the consistency
of their estimators. Third, usually strong assumptions are imposed on local
factors, f (1)

it . For example, Choi et al. (2017) assume that the local factors are
uncorrelated, that is,

cov
(
f

(1)
i1t
, f

(1)
i2t

)
= 0 for i1 6= i2;

which may not be satisfied in practice. Fourth, these papers only consider pure
factor models that do not allow exogenous regressors, xijt.

Estimation of Pure Factor Models We impose the key assumptions.
Assumption A.1. f (0)

t , f
(1)
it , and f

(2)
jt are random variables such that (i)

E
(
f

(0)
t

)
= 0, E

(
f

(1)
it

)
= 0 and E

(
f

(2)
jt

)
= 0 for all i, j and t; and (ii)

E
(
f

(0)
t f

(1)′
it

)
= 0; E

(
f

(0)
t f

(2)′
jt

)
= 0 and E

(
f

(1)
it f

(1)′
it

)
= 0 for all i, j and

t:
The uncorrelated assumption allows us to separate the three factors. Define

M = max {Mi, i = 1, ..., N} : By symmetry, we assume that for each j, the i
index runs from 1, ..., Nj . We can rewrite Model (358) as

yijt = λ
(0)′
ij f

(0)
t + u

(0)
ijt , u

(0)
ijt = λ

(1)′
ij f

(1)
it + λ

(2)′
ij f

(2)
jt + uijt (360)

y
(1)
ijt = λ

(1)′
ij f

(1)
it + u

(1)
ijt , y

(1)
ijt = yijt − λ(0)′

ij f
(0)
t , u

(1)
ijt = λ

(2)′
ij f

(2)
jt + uijt (361)

y
(2)
ijt = λ

(2)′
ij f

(2)
jt + uijt, y

(2)
ijt = yijt − λ(0)′

ij f
(0)
t − λ(1)′

ij f
(1)
it (362)

In matrix form, we can write

Y (0) = F (0)Λ(0)′ + U (0); (363)
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Y
(1)
i = F

(1)
i Λ

(1)′
i + U

(1)
i ; i = 1, ..., N (364)

Y
(2)
j = F

(2)
j Λ

(2)′
j + U

(2)
j ; j = 1, ...,M (365)

where yij = (yij1, ..., yijT )
′, y(1)

ij =
(
y

(1)
ij1, ..., y

(1)
ijT

)′
, y(2)

ij =
(
y

(2)
ij1, ..., y

(2)
ijT

)′
,

Y
(1)
i =

(
y

(1)
i1 , ..., y

(1)
iMi

)
, Y (2)

j =
(
y

(2)
1j , ..., y

(2)
Njj

)
, Y (0) = (y11, y12, ..., y1M1

, ..., yN1, ..., yNMN
),

F (0) = (f1, f2, ..., fT )
′, F (1)

i =
(
f

(1)
i1 , f

(1)
i2 , ..., f

(1)
iT

)′
, F (2)

j =
(
f

(2)
j1 , f

(2)
j2 , ..., f

(2)
jT

)′
,

Λ
(1)
i =

(
λ

(1)
i1 , λ

(1)
i2 , ..., λ

(1)
iMi

)′
, Λ(2)

j =
(
λ

(2)
1j , λ

(2)
2j , ..., λ

(2)
Njj

)′
, and Λ(0) =

(
λ

(0)
11 , λ

(0)
12 , ..., λ

(0)
1M1

, ..., λ
(0)
N1, ..., λ

(0)
NMN

)
.

Definitions of U (0), U (1)
i and U (2)

j are similar to Y (0), Y (1)
i and Y (2)

j .
We identify the factors and factor loading sequentially based on the three

equations above. We first identify the global factor and global factor loadings
based on Model (360). Note that we can treat U (0) or u(0)

ijt as a new error term,

as
(
λ

(1)′
ij f

(1)
it + λ

(2)′
ij f

(2)
jt

)
is uncorrelated with f (0)

t . If we stack the (i, j) indices

to one index as in (363), then we can view Model (360) as a standard 2D factor
model and apply the PCA method as in Bai (2003). We can determine the
number of factors r(0) by maximizing the ratio of two adjacent eigenvalues, as
suggested by Ahn and Horenstein (2013). To identify F (0) and Λ(0) we need to
impose certain normalization condition:

1

T
F (0)′F (0) = Ir(0)

(an r(0) × r(0) identity matrix) and Λ(0)′Λ(0) is an r(0) × r(0) diagonal matrix.
Then, we can identify r(0), λ(0)′

ij F
(0)
t and a rotated version of λ(0)

ij and F (0)
t .

After identifying λ(0)′
ij F

(0)
t , we can identify y(1)

ijt = yijt − λ(0)′
ij F

(0)
t in Model

(361). For each i, we impose the normalization condition that

1

T
F

(1)′

i F
(1)
i = Ir(1)

and Λ
(1)′
i Λ

(1)
i is an r(1)

i × r
(1)
i diagonal matrix. Then for each i, we can identify

r
(1)
i , λ(1)′

ij F
(1)
it and a rotated version of λ(1)

ij and F (1)
it .

After achieving the identification of λ(0)′
ij F

(0)
t and λ(1)′

ij F
(1)
it , y

(2)
ijt in Model

(362) is identified. With the normalization condition that 1
T F

(2)′

j F
(2)
j = Ir(2)

and Λ
(2′
j Λ

(2)
j is an r(2)

j × r
(2)
j diagonal matrix for each j, r(2)

j , λ(2)′
ij F

(2)
jt and a

rotated version of λ(2)
ij and F (2)

jt are identified.
We can obtain the initial consistent estimators based on the discussion above.

Then we can achieve more effi cient estimators through iterations. The detailed
estimation algorithm is described in the appendix.
Remark 2.1.1 To ensure A.1(i), we need to demean the data first. Assum-

ing that the data are weakly stationary along the time dimension, we can apply
our estimation method to the demeaned data: yijt − T−1

∑T
t=1 yijt:
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Remark 2.1.2 A.1(ii) is crucial for the identification and often assumed in
multi-level factor models, see Assumption 1(ii) in Choi et al. (2017). It can be
thought of as a normalization, as it can be satisfied by linear projections and
redefining factors and factor loadings.

Estimation of Models with Exogenous Regressors We propose the fol-
lowing iteration estimation method for β: Define the factor components as

Cijt = λ
(0)′
ij f

(0)
t + λ

(1)′
ij f

(1)
it + λ

(2)′
ij f

(2)
jt

Estimation for β: Start with an initial estimator of β, iterate the following
two steps until certain convergence criterion is satisfied.
Step 1: For a given estimator of β, β̂, apply Algorithm 1 in the appendix

to yijt − β̂
′
xijt to obtain estimator of Cijt:

Ĉijt = λ̂
(0)′
ij f̂

(0)
t + λ̂

(1)′
ij f̂

(1)
it + λ̂

(2)′
ij f̂

(2)
jt

Step 2: Given the estimator of Ĉijt, run a regression of yijt − Ĉijt on xijt
to obtain the OLS estimator β̂:
The convergence criterion could be such that∥∥∥β̂` − β̂`−1

∥∥∥∥∥∥β̂`−1

∥∥∥ < ε0 and

∑N
i=1

∑Mi

j=1

∥∥∥Ĉij,` − Ĉij,`−1

∥∥∥∑N
i=1

∑Mi

j=1

∥∥∥Ĉij,`−1

∥∥∥ < ε0

where ε0 is a small number, Ĉij,` =
(
Ĉij1, ..., ĈijT

)′
and the subscript ` repre-

sent the `th iteration.

Algorithm Pick up a reasonably large rmax; which is the largest number of
factors we allow.

1. Initial estimation: Step 01: apply PCA to yijt based on (2.4).
Let µ̃(0)

k be the kth largest eigenvalue of Y (0)Y (0)′/(NMT ) (a T×T matrix).
The estimated r0 is

r(0) = arg max
k

{
µ̃

(0)
k

µ̃
(0)
k+1

; k = 1, ..., rmax

}
.

The estimated factor F (0) and factor loading Λ(0) are respectively. F̃ (0) =
√
T

times eigenvectors corresponding to the r̃(0) largest eigenvalues of Y (0)Y (0)′, and

Λ̃(0) =
F̃ (0)′Y (0)

T

Let λ̃
(0)

ij and f̃ (0)
t be the elements of Λ̃(0) and F̃ (0), respectively.
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Step 02: For each i apply PCA to ỹ(1)
ijt = yijt − λ̃

(0)′
ij f̃

(0)
t based on (2.5).

For a given i, define the data matrix Ỹ (1)
i =

(
ỹ

(1)
i1 , ..., ỹ

(1)
iMi

)
where ỹ(1)

ij =(
ỹ

(1)
ij1, ..., ỹ

(1)
ijT

)′
. Let µ̃(1)

k be the kth largest eigenvalue of Y (1)
i Y

(1)′
i /(MiT ) (a

T × T matrix). The estimated r(1)
i is

r̃
(1)
i = arg max

k

{
µ̃

(1)
k

µ̃
(1)
k+1

; k = 1, ..., rmax

}
.

The estimated factor F (1)
i and factor loading Λ

(1)
i are respectively: F̃ (1)

i =
√
T

times eigenvectors corresponding to the r̃(1)
i largest eigenvalues of Y (1)

i Y
(1)′
i , and

Λ̃
(1)
i =

F̃
(1)′
i Y

(1)
i

T

Let λ̃
(1)

ij and f̃ (1)
it be the elements of Λ̃

(1)
i and F̃ (1)

i , respectively.

Step 03: For each j, apply PCA to ỹ(2)
ijt = yijt− λ̃

(0)′
ij f̃

(0)
t − λ̃

(1)′
ij f̃

(1)
it it based

on (2.6).

For a given j, define the data matrix Ỹ (2)
j =

(
ỹ

(2)
ij , ..., ỹ

(2)
Njj

)
where ỹ(2)

ij =(
ỹ

(2)
ij1, ..., ỹ

(2)
ijT

)′
. Let µ̃(2)

k be the kth largest eigenvalue of Y (2)
j Y

(2)′
j /(NjT ) (a

T × T matrix). The estimated r(2)
j is

r̃
(2)
j = arg max

k

{
µ̃

(2)
k

µ̃
(2)
k+1

; k = 1, ..., rmax

}
.

The estimated factor F (2)
j and factor loading Λ

(2)
j are respectively: F̃ (2)

j =
√
T

times eigenvectors corresponding to the r̃(2)
j largest eigenvalues of Y (2)

j Y
(2)′
j , and

Λ̃
(2)
j =

F̃
(2)′
j Y

(2)
j

T

Let λ̃
(2)

ij and f̃ (2)
jt be the elements of Λ̃

(2)
j and F̃ (2)

j , respectively.

2. Iteration: We use the subscript ` denote the `th iteration, ` = 1, ...
Step `1: apply PCA to data

ỹ
(0)
ijt,` = yijt − λ̃

(1)′
ij,`−1f̃

(1)
it,`−1 − λ̃

(2)′
ij,`−1f̃

(2)
jt,`−1

as in Step 01.
Step `2: apply PCA to

ỹ
(1)
ijt,` = yijt − λ̃

(0)′
ij,`−1f̃

(0)
t,` − λ̃

(2)′
ij,`−1f̃

(2)
jt,`−1
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as in Step 02.
Step 3: apply PCA to data

ỹ
(2)
ijt,` = yijt − λ̃

(0)′
ij,`−1f̃

(0)
t,` − λ̃

(1)′
ij,`−1f̃

(1)
it,`−1

as in Step 03.
The algorithm stops if certain convergence criterion is satisfied, e.g.∑N

i=1

∑Mi

j=1

∥∥∥C̃ij,` − C̃ij,`−1

∥∥∥∑N
i=1

∑Mi

j=1

∥∥∥C̃ij,`−1

∥∥∥ < ε0

where ε0 is a small number,

C̃ijt = λ̃
(0)′
ij f̃

(0)
t + λ̃

(1)′
ij f̃

(1)
it + λ̃

(2)′
ij f̃

(2)
jt

and C̃ij =
(
C̃ij1, ..., C̃ijT

)′
.

10.6 A panel data model with interactive effects charac-
terized by multilevel non-parallel factors by Li and
Yang (2017)

Consider a two-level factor model:

εsit = γ′igt + λs′i f
s
t + usit, s = 1, ..., S

where the second-level factors, fst (rs × 1) are parallel to each other and nested
under the global factor gt (r × 1). If regional shocks are also considered, the
factor model is extended to

εsdit = γ′igt + λs′i f
s
t + δd′i h

d
t + usdit , s = 1, ..., S, d = 1, ..., D (366)

where hdt (rd × 1) are regional factors with loading parameters δdi . h
d
t are neither

parallel to nor nested under the industrial factors fst . The estimators of
Wang (2008), Moench, Ng, and Potter (2013) and Bai and Wang
(2015) cannot be used.
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The vector form of the multilevel non-parallel factor model is given by
ε11
it ε12

it · · · ε1D
it

ε21
it ε22

it · · · ε2D
it

...
...

. . .
...

εS1
it εS2

it · · · εSDit


S×D

=


γ′i λ1′

i 0 · · · 0

γ′i 0 λ2′
i · · · 0

...
...

...
. . .

...
γ′i 0 0 · · · λS′i


S×r

e′D ⊗


gt
f1
t
...
fSt



r×D

(367)

+
(
eS ⊗

[
δ1′
i δ2′

i · · · δD′i
])
S×rD


h1
t 0 · · · 0

0 h2
t · · · 0

...
...

. . .
...

0 0 · · · hDt


rD×D

+


u11
it u12

it · · · u1D
it

u21
it u22

it · · · u2D
it

...
...

. . .
...

uS1
it uS2

it · · · uSDit


S×D

where

eS
S×1

=

 1
...
1

 , eD
D×1

=

 1
...
1


Remark: Li and Yang (2017) propose the iterative PC algorithm following

Bai (2009) with simulation evidence. But, I believe that the model (366) is
basically the same as (381). Esp. when expressing (367) with more careful
notations, it would be equivalent to (383). Still, it is worthwhile to consider
their panel estimator and extend it more rigorously. See also BE2016...

10.7 The 3D Panel Data Models with the Multi-level Fac-
tor Structure

• Here we develop the 3D PCA following Breitung and Eickmeier
(2016) and Choi et al. (2017)...

• This is quite feasible and worthwhile along with developing the
information criteria for determining the number of both global
and local factors.

• One of my ph.d students, Rui has been working on this exten-
sion, mostly focussing on the simulation performance yet.

• I will provide more details soon.

3D Panel Data Models with the Multi-level Factor Structure: An
iterative approach Consider the following multi-dimensional factor model:

yijt = β′xijt + γ′ijGt + λ′ijF
(1)
it + uijt, i = 1, ..., R, j = 1, ...,Mi, t = 1, ..., T

(368)
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where i = 1, ..., R indicates the country, j = 1, ...,Mi denotes the sector and
t = 1, ..., T is the time period. xijt is a k × 1 vector of regressors and β
is a conformably defined vector containing homogeneous coeffi cients. Gt =
(G1t, ..., Gr0t)

′ comprises the r0 × 1 global factors, and Fit collects the ri × 1
vector of sectoral factors in country i. Stacking (368) for j = 1, ...,Mi, we
obtain:

yi.t = xi.tβ + (Γi,Λi)

(
Gt
Fit

)
+ ui.t (369)

where

yi.t
Mi×1

=


yi1t
yi2t
...

yiMit

 , ui.t
Mi×1

=


ui1t
ui2t
...

uiMit

 , Γi
Mi×r0

=


γ′i1
γ′i2
...

γ′iMi

 , Λi
Mi×ri

=


λ′i1
λ′i2
...

λ′iMi

 , xi.tMi×k
=


x
′

i1t

x
′

i2t
...

x
′

iMit


The entire system becomes:

yt = xtβ + Λ∗F ∗t + ut (370)

where

yt
N×1

=


y1.t

y2.t

...
yR.t

 , ut
N×1

=


u1.t

u2.t

...
uR.t

 , F ∗t
r∗×1

=


Gt
F1t

F2t

...
FRt



xt
N×k

=


x1.t

x2.t

...
xR.t

 , Λ∗
N×r∗

=


Γ1 Λ1 0 · · · 0
Γ2 0 Λ2 · · · 0
...

...
...

. . .
...

ΓR 0 0 · · · ΛR

 ,

and

N =

R∑
i=1

Mi, r
∗ = r0 +

R∑
i=1

ri

Then, we write the full system as

Y =
(
IT ⊗ β′

)
X + F ∗Λ∗′ + U (371)

where

Y
T×N

=

 y′1
...
y′T

 , F ∗
T×r∗

=

 F ∗′1
...
F ∗′T

 , U
T×N

=

 u′1
...
u′T

 , X
Tk×N

=

 x′1
...
x′T

 .
Alternatively, we transpose equation (369) and stack over time as

yi =
(
IT ⊗ β′

)
xi +GΓ′i + FiΛ

′
i + ui

160



where

yi
T×Mi

=


y′i.1
y′i.2
...

y′i.T

 , xi
Tk×Mi

=


x′i.1
x′i.2
...

x′i.T

 , ui =


u′i.1
u′i.2
...

u′i.T


Estimation: The estimation involves two types of iterations, outer iteration
and inner iteration. Outer iteration runs between beta and factors while inner
iteration runs between country factors and sectoral factors. We use the subscript
` denote the `th outer iteration, ` = 1, ...
Outer iteration:
Step 1: Run the OLS regression by ignoring factors using the data

yijt = β′xijt + εijt

where εijt = γ′ijGt +λ′ijFit +uijt, and obtain the initial estimator of β denoted

as β̃
(0)
.

Step 2: Apply one of the multi-level factor estimation techniques to

ŷ
(0)
ijt = γ′ijGt + λ′ijFit + uijt

where ŷ(0)
ijt = yijt − β̃

(0)′
xijt. Denote the initial estimators of γij , Gt, λij and

Fit as γ̃
(0)
ij , G̃

(0)
t , λ̃

(0)

ij and F̃ (0)
it .

Step 3: Construct

ỹ
(0)
ijt = yijt − γ̃(0)′

ij G
(0)
t − λ̃

(0)

ij F̃
(0)
it

by subtracting the (estimated) factors from the data. Then, run the following
OLS regression:

ỹ
(0)
ijt = β′xijt + εijt

and obtain the updated estimator of β denoted as β̃
(1)
.

Step 4: Next, construct the updated residuals by

ŷ
(1)
ijt = yijt − β̃

(1)′
xijt

Then, apply the multi-level factor estimation to

ŷ
(1)
ijt = γ′ijGt + λ′ijFit + uijt

and the updated estimates of factors and factor loadings, denoted γ̃(1)
ij , G̃

(1)
t ,

λ̃
(1)

ij and F̃ (1)
it .
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Repeat Steps 3 and 4 until convegrence. After the `th iteration, we have

the estimators β̃
(`)
, γ̃(`)

ij , G̃
(`)
t , λ̃

(`)

ij and F̃ (`)
it . The algorithm stops if certain

convergence criterion is satisfied, e.g.

N∑
i=1

Mi∑
j=1

∥∥∥C̃ij,` − C̃ij,`−1

∥∥∥ < ε0

where ε0 is a small number,

C̃ijt = λ̃
(0)′
ij(`)f̃

(0)
t(`) + λ̃

(1)′
ij(`)f̃

(1)
it(`)

and C̃ij =
(
C̃ij1, ..., C̃ijT

)′
. We follow two different approaches BE16 and

Choi et al. (2017) to estimate multi-level factors and describe their algorithm
respectively.

The multi-level factor estimation by Choi et al. (2017) Suppose that
r0 and all ri are given. As in Step 2 and 4, we need to estimate the factors and
factor loadings from

ŷ
(`)
ijt = γ′ijGt + λ′ijFit + uijt

=
[
γ′ij , λ

′
ij

] [Gt
Fit

]
+ uijt

where ŷ(`)
ijt = yijt − β̃

(`)′
xijt.

Stacking the above equation for j = 1, ...,Mi, we obtain:

ŷ
(`)
i.t = [Γi,Λi]

[
Gt
Fit

]
+ ui.t

= ΘiKit + ui.t

(372)

where Θi = [Γi,Λi] and Kit = [Gt, Fit]
′. Transpose (372) and further stack over

time we obtain
ŷ

(`)
i

T×Mi

= G
T×r0

Γ′i + Fi
T×ri

Λ′i + ui
T×Mi

(373)

where ŷ(`)
i = [ŷ

(`)
i.1 , ..., ŷ

(`)
i.T ], G = [G1, ..., GT ]′, Fi = [Fi1, ..., FiT ]′ and ui =

[ui.1, ..., ui.T ]′.
Step `, 0: Choose two sectors, say 1 and 2, apply the PCE to (372) and

obtain the estimators of K1
T×r∗1

and K2, denoted by K̂1 and K̂2. Calculate the

sample covariance matrices between K̂1 and K̂2 as Σab (a, b = 1, 2). Denote the
r∗1×1 eigenvector corresponding to an mth largest eigenvalue, µm of the canon-

ical correlation matrix, Σ
− 1
2

11 Σ12Σ−1
22 Σ21Σ

− 1
2

11 as pm. Collect all r0 eigenvectors
as p

r∗1×r0
= [p1, . . . , pr(0) ]. Then, we obtain the initial estimate of G by

Ĝ(`,0)

T×r0
= K̂1p,
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where (`, 0) means the initial estimator in `th step of the outer iteration. This is
the canonical correlation analysis (CCA). CCA searches for a linear combination
of two sets of variables which yields the mth maximum squared correlation

equal to the mth largest eigenvalue of Σ
− 1
2

11 Σ12Σ−1
22 Σ21Σ

− 1
2

11 . The corresponding
eigenvector is the coeffi cients of such combination. Therefore, if K1 and K2

contain the r0 same global factors, then there must be r0 eigenvalues which
are equal to 1. BE16 suggests choosing the sector pairs who have the
largest canonical correlation. Choi et al. suggests choosing the pairs
whose the sample mean of canonical correlations is largest (but in
their code they choose the pairs with largest canonical correlation).
Step `1: After obtaining the initial country factors Ĝ(`,0), we can estimate

the sectoral factors by projecting out Ĝ(`,0). Specifically, the initial estimator
of ith sectoral factor, F̂ (`,0)

i is given by
√
T times the eigenvectors matrix corre-

sponding to the ri largest eigenvalues of the matrix, ŷ
(`)
Hiŷ

(`)′
Hi , where ŷ

(`)
Hi = Hŷ

(`)
i

and H = I − Ĝ(`,0)(Ĝ(`,0)Ĝ(`,0))−1Ĝ(`,0). The initial factor loading matrix can
be estimated by Λ̂

(`,0)
i = (1/T )ŷ

(`,0)′
Hi F̂

(`,0)
i .

Step `2: Now, we can update the country factors and factor loadings using
the results of the previous step. Rewrite (372) as

ŷ
(`)
i.t − Λ̂

(`,0)
i F̂

(`,0)
i.t = ΓiGt + ui.t − (Λ̂

(`,0)
i F̂

(`,0)
i.t − ΛiFi.t)

= ΓiGt + u̇i.t

Stacking them across sectors we obtain:
ŷ

(`)
1.t − Λ̂

(`,0)
1 F̂

(`,0)
1

...
ŷ

(`)
N.t − Λ̂

(`,0)
N F̂

(`,0)
N


(N×1)

=

Γ1

...
ΓN


(N×r0)

Gt +

 u̇1.t

...
u̇N.t


(N×1)

Then we apply PCE to above equation and therefore update Ĝ(`,1) and obtain
its factor loading matrix Γ̂

(`,1)
i . They will be the final estimate of country factor

and loading for `th outer iteration.
Step `3: Finally we use the updated country factors and factor loadings

to update the sectoral factors and corresponding factor loadings using PCE for
each sector using

ŷ
(`)
i.t − Γ̂

(`,1)
i Ĝ

(`,1)
t = ΛiFi.t + üi.t.

The estimators F̂ (`,1) and Λ̂
(`,1)
i will be the final estimator for sectoral factors

and factor loadings for `th outer iteration. Rewrite each element of Γ̂
(`,1)
i , Ĝ(`,1),

Λ̂
(`,1)
i and F̂ (`,1)

i as Γ̃
(`)
i , G̃

(`), Λ̃
(`)
i and F̃ (`)

i and they will be inputs in the `+1th
iteration.

The multi-level factor estimation by BE16 In step 4 of the `th iteration,

given the estimator of β̃
(`)
we estimate the following model:

ŷ
(`)
ijt = γ′ijGt + λ′ijFit + uijt. (374)
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Assume that the idiosyncratic components are identically and independent nor-
mally distributed (i.i.d.) across i, j and t with E(u2

ijt) = σ2. The estimator
remains consistent if the errors are heteroskedastic and autocorrelated, cf. Wang
(2010). Using equation (371), treating the factors and factor loadings as un-
known parameters yields the log-likelihood function

L = const− N∗T

2
log(σ2)− 1

2σ2
tr[(Ỹ (`) − F ∗Λ∗′)(Ỹ (`) − F ∗Λ∗′)′]

where Ỹ (`) = Y −
(
IT ⊗ β(`)′

)
X. The maximization of the likelihood function

is equivalent to minimizing the sum of squared residuals (RSS)

S(F,Λ) =

T∑
t=1

(ỹ
(`)
t − Λ∗F ∗t )′(ỹ

(`)
t − Λ∗F ∗t )

=

N∑
i=1

Mi∑
j=1

T∑
t=1

(ŷ
(`)
ijt − γ′ijGt − λ

′
ijFit)

2

(375)

We use sequential sub-iteration to minimize the objective function.
Inner iteration: Step `0: Employ the same procedure as Step `0 and Step

`1 described above so that we obtain the initial estimators Ĝ(`,0) and F̂ (`,0)
i , the

same as in Choi et al.’s approach
Step `1: Run N time series regressions of the form

ŷ
(`)
ijt = γ′ijĜ

(`,0)
t + λ′ijF̂

(`,0)
it + uijt.

Collecting all the estimated factor loadings γ(`,0)
ij and λ(`,0)

ij we can construct
the loading matrix for the full system as

Λ̂∗(`,0)

N×r∗
=


Γ̂

(`,0)
1 Λ̂

(`,0)
1 0 · · · 0

Γ̂
(`,0)
2 0 Λ̂

(`,0)
2 · · · 0

...
...

...
. . .

...
Γ̂

(`,0)
R 0 0 · · · Λ̂

(`,0)
R


Step `2: For each t, run the following cross section regression similar to

equation (370) treating Λ̂∗(`,0) as the data matrix

ŷ
(`)
t = Λ̂∗(`,0)F ∗t + ut.

Then we can obtain the OLS estimator of F ∗t as

F̂
(`,1)
t =


Ĝ

(`,1)
t

F̂
(`,1)
1t

F̂
(`,1)
2t
...
F̂

(`,1)
Rt

 = (Λ̂∗(`,0)′Λ̂∗(`,0)′)−1Λ̂∗(`,0)′ŷ
(`)
t .
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Step `3: After obtaining updated factors, we can use them to update the
factor loadings by running N time series regressions as in Step `1. Denote the

updated factor loadings as γ̂(`,1)
ij , λ̂

(`,1)

ij and the full loading matrix as Λ̂∗(`,1).
Repeat Step `1 to `3 until the RSS no longer decreases. It is easy to see that

S(F̂ ∗(`,0), Λ̂∗(`,0)) ≥ S(F̂ ∗(`,1), Λ̂∗(`,1)) ≥ S(F̂ ∗(`,2), Λ̂∗(`,2)) ≥ . . .

since in each step the previous estimators are contained in the parameter space of
the subsequent least-squares estimators. Hence the next estimation step cannot
yield a larger RSS. Any fixed point is characterized by the condition

Λ̂∗′Ŷ (`)′Ŷ (`)(I − Λ̂∗(Λ̂∗′Λ̂∗)−1Λ̂∗′) = 0

which results from the fact that the sum of squared residuals does no longer
decrease whenever the estimated factors and factor loadings are orthogonal to
the residuals of the previous step. In order to ensure the uniqueness of the
solution we need to adopt the same restrictions as in PC. We need to make
country factors and sectoral factors orthogonal and all factors should have unit
variance. Suppose that the sub-iteration stops at κth iteration, we first regress
each sectoral factors on country factors as

F̂
(`,κ)
izt = b′Ĝ

(`,κ)
t + vizt, i = 1, . . . , R, z = 1, . . . , ri.

We use residuals of these regressions as updated sectoral factors denoted as
F̄

(`,κ)
it . Now country factors are orthogonal to all sectoral factors. Given Ĝ(`,κ)

t

and F̄ (`,κ)
it , the corresponding factor loadings Γ̄

(`,κ)
i and Λ̄

(`,κ)
i can be updated

using OLS regression as in step `1. The normalized country factors can be
obtained as the r0 PCs of the estimated common components resulting from
the nonzero eigenvalues and the associated eigenvectors of the matrix

Γ̄
(`,κ)
i

(
1

T

T∑
t=1

Ĝ
(`,κ)
t Ĝ

(`,κ)′

t

)
Γ̄

(`,κ)′

i .

We denote the final estimator of the country factors and factor loadings as
G̃

(`)
t . Similarly for each sector the normalized sectoral factors can be obtained

as the ri PCs of the estimated common components resulting from the nonzero
eigenvalues and the associated eigenvectors of the matrix

Λ̄
(`,κ)
i

(
1

T

T∑
t=1

F̄
(`,κ)
t F̄

(`,κ)′

t

)
Λ̄

(`,κ)′

i .

The final estimators of the sectoral factors are denoted by F̃ (`)
it . Finally run

OLS regressions as in Step `1 we obtain the final estimators of factor loadings,

denoted by γ̃(`)
ij and λ̃

(`)

ij .
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10.8 Monte Carlo Simulation A

We consider three different estimations, OLS top-down approach and Choi et
al’s approach. We drop BE’s approach since the algorithm is extremely time
consuming. In our MC simulation, we set M1 = M2 = ...MN = M so that
sectors have the same number of individuals. We consider the combination of
M = 10, 50, 100, R = 2, 10 and T = 50, 100. The number country and sectoral
factors r0 and ri are all set to be 1. The data are generated by

yijt = β′xijt + γijGt + λijFit + uijt

where β1 = 2 and β2 = 1 and the second regressor xij,2t is exogenous via
xij,2t ∼ U(0, 10), while the first regressor xij,1t is generated by

xij,1t = γijGt + λijFit + γijφ1t + λijφ2t + φ3,ijGt + φ4,ijFit + wijt

φ1t, φ2t, φ3,ij and φ4,ij ∼ U(0.5, 1.5), wijt ∼ N(0, 1). The other parameters
except factors are set as γij , λij ∼ U(0.2, 0.5) and uijt ∼ N(0, 1). Both country
and sectoral factors are generated by independent AR(1) processes as

Gt = αGG
(0)
t−1 + vGt

Fit = αFi F
(1)
i,t−1 + vFit

where αG, αFi ∼ U(0.2, 0.5) and vGt , v
F
it ∼ N(0, 1).
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[h] Simulation result. OLS represent the panel regression ignoring factors. TD represents top-down PC approach and Choi represents Choi et al. (2017) approach described above. The simulation is repeated 1000 times.

OLS TD Choi
(lr)5-6(lr)7-8(lr)9-10 M R T β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

10 2 50 Mean 2.426 1.001 2.003 0.995 2.013 0.995
Std 0.034 0.182 0.045 0.125 0.058 0.125

10 2 100 Mean 2.427 0.997 2.001 0.999 2.007 0.998
Std 0.03 0.128 0.03 0.089 0.033 0.089

10 10 50 Mean 2.427 1.001 2.001 1.004 2.01 1.004
Std 0.017 0.08 0.018 0.055 0.023 0.055

10 10 100 Mean 2.426 1.001 2.001 1.000 2.007 1.000
Std 0.014 0.055 0.013 0.038 0.014 0.038

50 2 50 Mean 2.425 0.999 2.000 0.998 2.001 0.998
Std 0.024 0.08 0.017 0.051 0.017 0.051

50 2 100 Mean 2.427 0.999 2.000 0.999 2.001 0.999
Std 0.018 0.057 0.012 0.037 0.012 0.037

50 10 50 Mean 2.425 0.999 2.000 0.999 2.001 0.999
Std 0.013 0.035 0.008 0.023 0.008 0.023

50 10 100 Mean 2.427 0.999 2.000 1.000 2.001 1.000
Std 0.01 0.025 0.005 0.016 0.005 0.016

100 2 50 Mean 2.425 0.998 2.000 0.999 2.001 0.999
Std 0.021 0.054 0.012 0.035 0.012 0.035

100 2 100 Mean 2.426 0.998 2.000 1.000 2.000 1.000
Std 0.016 0.041 0.009 0.025 0.009 0.025

100 10 50 Mean 2.426 1.001 2.000 1.000 2.001 1.000
Std 0.012 0.026 0.005 0.016 0.006 0.016

100 10 100 Mean 2.427 1.000 2.000 1.000 2.000 1.000
Std 0.009 0.018 0.004 0.011 0.004 0.011

10.9 Monte Carlo Simulation B

We consider three different estimations, OLS top-down approach and Choi et
al’s approach. We drop BE’s approach since the algorithm is extremely time
consuming. IN our MC simulation, we set M1 = M2 = ...MN = M so that
sectors have the same number of individuals. We consider the combination of
M = 10, 50, 100, R = 2, 20 and T = 50, 100. The number country and sectoral
factors r0 and ri are all set to be 1. The data are generated by

yijt = β′xijt + γijGt + λijFit + uijt

where β1 = 2 and β2 = 1 and the second regressor xij,2t is exogenous via
xij,2t ∼ N(1, 1), while the first regressor xij,1t is generated as

xij,1t = ζijGt + ηijFit + wijt

We allow ζij and γij are correlated and so are ηij and λij via[
γij
ζij

]
∼MN

(
ι,

[
1 0.2

0.2 1

])
,

[
λij
ηij

]
∼MN

(
ι,

[
1 0.2

0.2 1

])
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where ι = [1, 1]′. The error terms uijt, wijt ∼ N(0, 1). Both country and sectoral
factors are generated by stationary AR(1) processes as

Gt = αGGt−1 + vGt

Fit = αFi Fi,t−1 + vFit

where αG, αFi = 0.5. We draw the error terms from a multivariate normal
distribution as [vGt , v

F
1t, . . . , v

F
Rt] ∼MN(0,Σv), where

Σv =


1− (αG)2 0 0 . . . 0

0 1− (αF1 )2 0.2 . . . 0.2
0 0.2 1− (αF2 )2 . . . 0.2
...

...
...

. . .
...

0 0.2 0.2 . . . 1− (αFR)2


so that each factor has unit variance while country factor is orthogonal to sec-
toral factors and sectoral factors are mutually correlated. In addition to β, we
also pay attention to the estimated factor G̃ and F̃i. The precision of the esti-
mation for factors is measured by trace ratio. The trace ratio can be expressed
as

tr(G̃) =
tr(G′G̃(G̃′G̃)−1G̃′G)

tr(G′G)

and

tr(F̃i) =
tr(F ′i F̃i(F̃

′
i F̃i)

−1F̃ ′iFi)

tr(F ′iFi)

for country and sectoral factors respectively, where G and Fi are the true factors,
G̃ and F̃i are the estimators. A value of the trace ratio closer to one implies
better performance of the factor estimates. We also consider the size and power
of the t test for β. The standard error for the residual is estimated from the
residuals of the pooled regression after correcting for unobserved factors as

yijt − γ̃(`)
ij G̃

(`)
t − λ̃

(`)

ij F̃
(`)
it = β′xijt + uijt (376)

where γ̃(`)
ij , G̃

(`)
t , λ̃

(`)

ij and F̃ (`)
it are the final estimates of the factors and factor

loadings from the outer iteration. The estimated standard error for the residual
is therefore

σ̃ =

√√√√√ R∑
i=1

Mi∑
j=1

T∑
t=1

ũ2
ijt

NT − k
where ũijt is the residual from regression (376). Then the standard error can
be estimated from

Σ̃β =
[
(X ′−1σ̃2

]−1/2
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Simulation result. OLS represent the panel regression ignoring factors. TD represents top-down PC approach and Choi represents Choi et al. (2017) approach described above. The simulation is repeated 1000 times. Time indicates the average computational time for each iteration measured in seconds.

OLS TD Choi
(lr)5-6(lr)7-8(lr)9-10 M R T β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

10 2 50 Mean 2.466 1.001 2.000 1.001 2.004 1.001
Std 0.099 0.064 0.039 0.035 0.039 0.035

10 2 100 Mean 2.47 1.001 2.001 1.000 2.003 1.000
Std 0.099 0.043 0.026 0.024 0.029 0.025

10 10 50 Mean 2.468 1.001 2.000 0.999 2.003 0.999
Std 0.049 0.027 0.016 0.015 0.016 0.015

10 10 100 Mean 2.474 1.000 2.001 1.000 2.003 1.000
Std 0.048 0.019 0.011 0.010 0.011 0.01

50 2 50 Mean 2.465 0.999 2.000 1.000 2.000 1.000
Std 0.053 0.028 0.015 0.015 0.015 0.015

50 2 100 Mean 2.474 1.000 2.000 1.000 2.000 1.000
Std 0.050 0.020 0.010 0.010 0.010 0.010

50 10 50 Mean 2.469 1.001 2.000 1.000 2.001 1.000
Std 0.031 0.013 0.007 0.007 0.007 0.007

50 10 100 Mean 2.474 1.000 2.000 1.000 2.001 1.000
Std 0.027 0.008 0.004 0.005 0.005 0.005

100 2 50 Mean 2.466 1.000 2.000 1.000 2.000 1.000
Std 0.046 0.020 0.011 0.01 0.011 0.010

100 2 100 Mean 2.472 1.000 2.000 1.000 2.000 1.000
Std 0.038 0.014 0.007 0.007 0.007 0.007

100 10 50 Mean 2.469 1.000 2.000 1.000 2.001 1.000
Std 0.029 0.009 0.005 0.005 0.005 0.005

100 10 100 Mean 2.475 1.000 2.000 1.000 2.000 1.000
Std 0.023 0.006 0.003 0.003 0.003 0.003
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Trace ratio.TD represents top-down PC approach and Choi represents Choi et al. (2017) approach described above. The simulation is repeated 1000 times. The trace ratio for local factors are the trace ratios averaged across sectors and across 1000 repetitions.

M N T TD Choi
10 2 50 tr(G̃) 0.952 0.947

tr(F̃i) 0.775 0.884
10 2 100 tr(G̃) 0.958 0.95

tr(F̃i) 0.808 0.907
10 10 50 tr(G̃) 0.992 0.986

tr(F̃i) 0.891 0.905
10 10 100 tr(G̃) 0.992 0.987

tr(F̃i) 0.914 0.922
50 2 50 tr(G̃) 0.992 0.992

tr(F̃i) 0.863 0.956
50 2 100 tr(G̃) 0.993 0.992

tr(F̃i) 0.886 0.969
50 10 50 tr(G̃) 0.999 0.998

tr(F̃i) 0.943 0.958
50 10 100 tr(G̃) 0.999 0.998

tr(F̃i) 0.961 0.973
100 2 50 tr(G̃) 0.996 0.996

tr(F̃i) 0.87 0.961
100 2 100 tr(G̃) 0.996 0.996

tr(F̃i) 0.903 0.978
100 10 50 tr(G̃) 0.999 0.999

tr(F̃i) 0.947 0.964
100 10 100 tr(G̃) 0.999 0.999

tr(F̃i) 0.968 0.979
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Size and power

TD Choi
(lr)5-6(lr)7-8 M R T null β̂1 β̂2 β̂1 β̂2

10 2 50 1.8 1 1 1 1
1.85 1 1 1 1
1.9 0.984 0.955 0.983 0.952
1.95 0.769 0.605 0.792 0.599
2 0.493 0.228 0.491 0.229
2.05 0.761 0.629 0.735 0.625
2.1 0.974 0.961 0.966 0.961
2.15 0.998 1 0.999 0.999
2.2 1 1 1 1

10 2 100 1.8 1 1 1 1
1.85 1 1 1 1
1.9 0.998 0.998 0.997 0.998
1.95 0.901 0.824 0.911 0.817
2 0.494 0.223 0.486 0.229
2.05 0.905 0.824 0.891 0.823
2.1 1 0.997 0.999 0.998
2.15 1 1 1 1
2.2 1 1 1 1

10 10 50 1.8 1 1 1 1
1.85 1 1 1 1
1.9 1 1 1 1
1.95 1 1 1 1
2 0.419 0.194 0.422 0.192
2.05 1 1 1 1
2.1 1 1 1 1
2.15 1 1 1 1
2.2 1 1 1 1

10 10 100 1.8 1 1 1 1
1.85 1 1 1 1
1.9 1 1 1 1
1.95 1 1 1 1
2 0.46 0.242 0.481 0.247
2.05 1 1 1 1
2.1 1 1 1 1
2.15 1 1 1 1
2.2 1 1 1 1
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Size and power

TD Choi
(lr)5-6(lr)7-8 M R T null β̂1 β̂2 β̂1 β̂2

50 2 50 1.8 1 1 1 1
1.85 1 1 1 1
1.9 1 1 1 1
1.95 0.993 0.983 0.993 0.983
2 0.442 0.179 0.455 0.177
2.05 0.994 0.989 0.994 0.989
2.1 1 1 1 1
2.15 1 1 1 1
2.2 1 1 1 1

50 2 100 1.8 1 1 1 1
1.85 1 1 1 1
1.9 1 1 1 1
1.95 1 1 1 1
2 0.436 0.211 0.43 0.207
2.05 1 0.998 1 0.998
2.1 1 1 1 1
2.15 1 1 1 1
2.2 1 1 1 1

50 10 50 1.8 1 1 1 1
1.85 1 1 1 1
1.9 1 1 1 1
1.95 1 1 1 1
2 0.425 0.176 0.432 0.178
2.05 1 1 1 1
2.1 1 1 1 1
2.15 1 1 1 1
2.2 1 1 1 1

50 10 100 1.8 1 1 1 1
1.85 1 1 1 1
1.9 1 1 1 1
1.95 1 1 1 1
2 0.419 0.194 0.422 0.192
2.05 1 1 1 1
2.1 1 1 1 1
2.15 1 1 1 1
2.2 1 1 1 1
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Size and power

TD Choi
(lr)5-6(lr)7-8 M R T null β̂1 β̂2 β̂1 β̂2

100 2 50 1.8 1 1 1 1
1.85 1 1 1 1
1.9 1 1 1 1
1.95 1 0.999 1 0.998
2 0.405 0.21 0.41 0.211
2.05 1 1 1 1
2.1 1 1 1 1
2.15 1 1 1 1
2.2 1 1 1 1

100 2 100 1.8 1 1 1 1
1.85 1 1 1 1
1.9 1 1 1 1
1.95 1 1 1 1
2 0.413 0.174 0.408 0.172
2.05 1 1 1 1
2.1 1 1 1 1
2.15 1 1 1 1
2.2 1 1 1 1

100 10 50 1.8 1 1 1 1
1.85 1 1 1 1
1.9 1 1 1 1
1.95 1 1 1 1
2 0.414 0.172 0.424 0.174
2.05 1 1 1 1
2.1 1 1 1 1
2.15 1 1 1 1
2.2 1 1 1 1

100 10 100 1.8 1 1 1 1
1.85 1 1 1 1
1.9 1 1 1 1
1.95 1 1 1 1
2 0.403 0.184 0.409 0.186
2.05 1 1 1 1
2.1 1 1 1 1
2.15 1 1 1 1
2.2 1 1 1 1

10.10 Potential Dataset

The monthly housing price data of 70 cities from Nation Bureau of Statistics of
China. For Y , the dependent variable, we have a panel of T = 91 with different
N for different grouping schemes. ForX, the regressors, we have candidates such
as the average disposable income, the quantity of loan etc. X is yet to be col-
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lected.Different Grouping Scheme

8*Housing Price for 70 Cities First Tier City
Second Tier City
Third Tier City
Newly Built
Second hand

Large (Size > 144m2)
Medium (90m2 < Size ≤ 144m2)

Small (Size ≤ 90m2)

10.11 Digressions: Factor Representations

The following factor representations will be useful for enhancing our understand-
ing.

The benchmark case of Lu and Xu Consider the following generic multi-
dimensional factor model:

yijt = λ
(0)′
ij f

(0)
t +λ

(1)′
ij f

(1)
it +λ

(2)′
ij f

(2)
jt +uijt, i = 1, ..., N, j = 1, ...,M, t = 1, ..., T

(377)
where i = 1, ..., N indicates the source country, the index j = 1, ...,M denotes
the destination country, and t = 1, ..., T stands for the time period. (For simplic-
ity we fix the number of i and j indices at N andM , which can be generalised in

the different applications.) f (0)
t =

(
f

(0)
1t , ..., f

(0)
r0t

)′
comprises the r(0) × 1 global

factors, f (1)
it collects the r(1)

i × 1 vector of source-factors in country i, and f (2)
jt

collects the r(2)
j ×1 vector of destination factors in country j. The idiosyncratic

component, uijt is assumed to satisfy an approximate factor model. Stacking
(377) for j = 1, ...,M , we obtain:

yi1t
yi2t
...

yiMt

 =


λ

(0)′
i1

λ
(0)′
i2
...

λ
(0)′
iM

 f (0)
t +


λ

(1)′
i1

λ
(1)′
i2
...

λ
(1)′
iM

 f (1)
it +


λ

(2)′
i1 f

(2)
1t

λ
(2)′
i2 f

(2)
2t
...

λ
(2)′
iM f

(2)
Mt

+


ui1t
ui2t
...

uiMt



=


λ

(0)′
i1

λ
(0)′
i2
...

λ
(0)′
iM

 f (0)
t +


λ

(1)′
i1

λ
(1)′
i2
...

λ
(1)′
iM

 f (1)
it +


λ

(2)′
i1 0 · · · 0

0 λ
(2)′
i2 · · · 0

...
...

. . .
...

0 0 · · · λ
(2)′
iM



f

(2)
1t

f
(2)
2t
...

f
(2)
Mt

+


ui1t
ui2t
...

uiMt


which can be compactly written as

yi.t = Λ
(0)
i f

(0)
t + Λ

(1)
i f

(1)
it + Λ̊

(2)
i F

(2)
t + ui.t =

(
Λ

(0)
i ,Λ

(1)
i , Λ̊

(2)
i

) f
(0)
t

f
(1)
it

F
(2)
t

+ ui.t

(378)
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where r(2) =
∑M
j=1 r

(2)
j ,

yi.t
M×1

=


yi1t
yi2t
...

yiMt

 , ui.t
M×1

=


ui1t
ui2t
...

uiMt

 , F
(2)
t

r(2)×1

=


f

(2)
1t

f
(2)
2t
...

f
(2)
Mt



Λ
(0)
i

M×r(0)
=


λ

(0)′
i1

λ
(0)′
i2
...

λ
(0)′
iM

 , Λ
(1)
i

M×r(1)i

=


λ

(1)′
i1

λ
(1)′
i2
...

λ
(1)′
iM

 , Λ̊
(2)
i

M×r(2)
=


λ

(2)′
i1 0 · · · 0

0 λ
(2)′
i2 · · · 0

...
...

. . .
...

0 0 · · · λ
(2)′
iM


The entire system representing all i = 1, ..., N source countries becomes:


y1.t

y2.t

...
yN.t

 =


Λ

(0)
1 Λ

(1)
1 0 · · · 0 Λ̊

(2)
1

Λ
(0)
2 0 Λ

(1)
2 · · · 0 Λ̊

(2)
2

...
...

...
. . .

...
...

Λ
(0)
N 0 0 · · · Λ

(1)
N Λ̊

(2)
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f
(0)
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(1)
1t

f
(1)
2t
...

f
(1)
Nt

F
(2)
t


+


u1.t

u2.t

...
uN.t



which can be compactly written as

yt = ΛFt + ut

where r = r(0) + r(1) + r(2) with r(1) =
∑N
i=1 r

(1)
i ,

yt
NM×1

=


y1.t
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...
yM.t

 , ut
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...
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Λ
NM×r
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Λ
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1 Λ

(1)
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1

Λ
(0)
2 0 Λ

(1)
2 · · · 0 Λ̊

(2)
2

...
...

...
. . .

...
...

Λ
(0)
N 0 0 · · · Λ

(1)
N Λ̊

(2)
N


Then, we write the full system as

Y = FΛ′ + U
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where

Y
T×NM

=

 y′1
...
y′T

 , F
T×r

=

 F ′1
...
F ′T

 , U
T×NM

=

 u′1
...
u′T



Special case: the country-industry hierarchical model of Choi et al.
(2017) Consider the following multi-dimensional factor model:

yijt = λ
(0)′
ij f

(0)
t + λ

(1)′
ij f

(1)
it + uijt, i = 1, ..., N, j = 1, ...,Mi, t = 1, ..., T (379)

where i = 1, ..., N indicates the country, j = 1, ...,M denotes the sector and

t = 1, ..., T is the time period. f (0)
t =

(
f

(0)
1t , ..., f

(0)
r0t

)′
comprises the r(0) × 1

global factors, and f (1)
it collects the r(1)

i × 1 vector of sectoral factors in country
i. Stacking (379) for j = 1, ...,Mi, we obtain:

yi.t = Λ
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(0)
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(1)
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(1)
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where
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which can be compactly written as

yt = ΛFt + ut

where

yt
N∗×1

=


y1.t

y2.t

...
yN.t

 , ut
N∗×1

=


u1.t

u2.t

...
uN.t

 , Ft
r∗×1

=


f

(0)
t

f
(1)
1t

f
(1)
2t
...

f
(1)
Nt


176



Λ
N∗×r∗

=
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1 Λ
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2 0 Λ
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and

N∗ =

N∑
i=1

Mi, r
∗ = r(0) +

N∑
i=1

r
(1)
i

Then, we write the full system as

Y = FΛ′ + U

where

Y
T×N∗

=

 y′1
...
y′T

 , F
T×r∗

=

 F ′1
...
F ′T

 , U
T×N∗

=

 u′1
...
u′T


The extension to the three level or overlapping factor model (BE16)
Consider the following three-level factor model:

yik,jt = λ
(0)′
ik,jf

(0)
t +λ

(1)′
ik,jf

(1)
it +λ

(2)′
ik,jf

(2)
kt +uik,jt, i = 1, ..., N, k = 1, ...,K, j = 1, ...,M, t = 1, ..., T

(381)
where i = 1, ..., N indicates the country, j = 1, ...,M denotes the sector, k =
1, ...,K is another classification (could be overlapping, e.g. style, value-growth

or the market, nasdaq, dowjones). f (0)
t =

(
f

(0)
1t , ..., f

(0)
r0t

)′
comprises the r(0)× 1

global factors, f (1)
it collects the r(1)

i × 1 vector of industry factors, and f
(2)
kt

collects the r(2)
k × 1 vector of another classification factors. Stacking (377) for

j = 1, ...,M , we obtain: yik,1t
...
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where

yik,.t
M×1

=
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...
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=

 ui1t
...
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Λ
(0)
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λ
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Next, the entire system for i = 1, ..., N and k = 1, ...,K, becomes:
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(383)
which can be compactly written as

yt = ΛFt + ut

where
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Λ
NKM×r

=
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Then, we write the full system as

Y = FΛ′ + U

where

Y
T×NKM

=

 y′1
...
y′T

 , F
T×r

=

 F ′1
...
F ′T

 , U
T×NKM

=

 u′1
...
u′T


Remark: See the estimation algorithm in BE16... But, this is not quite

three-level model.We assume that E
(
f

(2)
kt f

(2)′
kt

)
= I

r
(2)
k

as well as E
(
f

(2)
kt f

(0)′
t

)
=

0 and E
(
f

(2)
kt f

(1)′
it

)
= 0. The least-squares can be applied to estimate the fac-

tors and factor loadings, where the iteration adopts a sequential estimation of
the factors f (0)

t , f
(1)
1t , ..., f

(1)
Nt and f

(2)
1t , ..., f

(2)
Kt . In what follows we focus on the

sequential LS procedure. Consistent starting values can be obtained from a CCA
of the relevant subfactors (see below). Let f̂0(0)

t , f̂
0(1)
1t , ..., f̂

0(1)
Nt and f̂0(2)

1t , ..., f̂
0(2)
Kt

denote the initial estimators. The loading matrices can be estimated by run-
ning regressions of yik,jt on the initial factor estimates f̂

0(0)
t , f̂

0(1)
1t , ..., f̂

0(1)
Nt and

f̂
0(2)
1t , ..., f̂

0(2)
Kt . The resulting LS estimators of the loading coeffi cients are or-

ganised as in the matrix Λ, yielding the estimator Λ̂. An update of the factor
estimates is obtained by running a regression of yt on Λ̂ yielding the updated
vector of factors, f̂1(0)

t , f̂
1(1)
1t , ..., f̂

1(1)
Nt and f̂

1(2)
1t , ..., f̂

1(2)
Kt . With updated esti-

mates of factors we obtain improved estimates of the loading coeffi cients by
running again regressions of yik,jt on the estimated factors. This sequential
LS estimation procedure continues until convergence. The last step involves or-

thogonalising the local factors,
(
f̂

0(1)
1t , ..., f̂

0(1)
Nt

)
and

(
f̂

0(2)
1t , ..., f̂

0(2)
Kt

)
. Although

this orthogonalisation step is not necessary for identification of the factors, it
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enables us to perform a variance decomposition of individual variables with re-
spect to the factors. Orthogonalising the factors can be achieved by regressing(
f̂

0(1)
1t , ..., f̂

0(1)
Nt

)
on
(
f̂

0(2)
1t , ..., f̂

0(2)
Kt

)
(or vice versa) and taking the residuals as

new estimates of
(
f

(1)
1t , ..., f

(1)
Nt

)
or f (2)

1t , ..., f
(2)
Kt .

Remark: The initialization for the three-level factor model works as fol-
lows. We first estimate the global factor as the first r(0) PCs and the global
factors are eliminated from the variables by running least-squares regressions
of the variables on the estimated global factors.25 In the next step the CCA is
employed to extract the common component among the r(1)

i + r
(2)
k estimated

factors from region i, group k and the estimated vectors from the same region
i but different group k′. This common component is the estimated regional
factor. Similarly, the estimated factor f (2)

kt obtained from a CCA of the factor
of region i, group k and a different region i′ but the same group. These initial
estimates are used to start the sequential LS procedure. The overall estimation
procedure outlined for the three-level factor model with an overlapping factor
structure can be generalised to allow for further levels of factors (provided that
the number of units in each group is suffi ciently large). Furthermore, the levels
may be specified as a hierarchical structure (e.g. Moench et al. (2013)), that is,
the second level of factors (e.g. regions) is divided into a third level of factors
(e.g. countries) such that each third level group is uniquely assigned to one
second level group. For such hierarchical structures the CCA can be adapted
to yield a consistent initial estimator for a sequential estimation procedure that
switches between estimating the factors and (restricted) loadings.

More to come...

10.12 Alternative approaches based on the (local) spatial
effects and global factors

To be completed:
• Indeed, this would make my ultimate goal. I have some preliminary notes
and consider extending the QML-EM algorithms poposed by Bai and Li
in a seuqnce of papers (all publised in top journals).

• I will provide more details soon.

25Alternatively, a CCA between (i) the variables in region i and group k and (ii) the variables
in group i′ and k′ with i 6= i′ and k 6= k′ may be employed to extract the common factors.
In our experience the two-step top-down estimator used in our simulation performs similarly
and has the advantage that the starting values are invariant with respect to a reorganization
of the levels (that is interchanging regions and groups).
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11 Spatial Weights Matrix and KMS26

The choice of appropriate spatial weights is a central component of spatial mod-
els as it assumes a priori a structure of spatial dependence, which may or may
not correspond closely to reality. The spatial weights are interpreted as functions
of relevant measures of geographic or economic distance (Anselin, 1988, 2002).
The choice of weights is frequently arbitrary, there is substantial uncertainty
regarding the choice, and empirical results vary considerably.
The spatial panel data models assume a time invariant spatial weights ma-

trix. When the spatial weights matrix is constructed with economic/socioeconomic
distances or demographic characteristics, it can be time varying (e.g. Case,
Hines, and Rosen, 1993). Lee and Yu (2012b) investigate the QML estimation
of SDPD models with time varying spatial weights matrices.Monte Carlo results
show that, when spatial weights matrices are substantially varying over time,
a model misspecification of a time invariant spatial weights matrix may cause
substantial bias in estimation.
Define the N ×N matrix of the spatial weights:27

W =

 w11 · · · w1N

...
. . .

...
wN1 · · · wNN

 =

 w1

...
wN

 with wii = 0 (384)

The jth element of wi, wij , represents the link (or distance) between the neigh-
bor j and the spatial unit i. It is a common practice to haveW having a zero di-
agonal and being row-normalized such that the sum of elements in each row ofW
is unity. The ith rowwi may be constructed aswi = (di1, di2, ..., din)/

∑n
j=1 dij ,

where dij ≥ 0 represents a function of the spatial distance between ith and jth
units. The weighting operation may be interpreted as an average of neighboring
values.
Shi (2016) defines the endogenous and time-varying spatial weights matrix

satisfies the following assumption (see below for details):
Assumption 6. (1) The spatial weights satisfy wij,t ≥ 0, wij,t = 0, and

wij,t = 0 if ρij,t > ρc, i.e., there exists a threshold ρc > 1 such that the weight
is zero if the geographic distance exceeds ρc. For i 6= j,

wij,t = hij (zit, zjt) I
(
ρij,t < ρc

)
(385)

or the row normalized version that

wij,t =
hij (zit, zjt) I

(
ρij,t < ρc

)∑n
k=1 hik (zit, zkt) I

(
ρik,t < ρc

)
where hij()’s are nonnegative, uniformly bounded functions. (2) The function
hij(.) satisfies the Lipschitz condition,

|hij (a1, b1)− hij (a2, b2)| ≤ c0 (|a1 − a2|+ |b1 − b2|)
26 I will make the use of more clear and consitent notations after your feedbacks.
27We can easily construct the time-varying matrix, Wt.
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for some finite constant c0.
For convenience consider the simple SAR model:28

yit = λ

n∑
j=1

wij,tyjt + vit. (386)

We consider the different specifications for the spatial weights matrix as
follows:

• Fixed weights based on the physical or economic distance. Assuming the
threshold is known or trying a number of different thresholds. This ex-
ogenous assumption may hold when spatial weights are constructed using
predetermined geographic distances.

• If “economic distance”such as the relative GDP or trade volume is used
to construct the weight matrix, then it is likely that these elements are
correlated with the final outcome.

• BHP: using the spatial correlation-based adjacency or spatial weights ma-
trix, subject to sparsity issues, rendering the estimation less reliable.,
e.g. in the UK house price data by Beulah’s thesis, the correlation-based
weights matrix contains only 0.3% nonzero weights, rendering too many
zero weights such that effective sample in each region is mostly 1 or 2.

• Under (385), Qu and Lee (2014) and Shi (2016) consider (see below for
details):29

hij (zit, zjt) =
1

|zit − zjt|
(387)

where |zit − zjt| measures the economic distance, and I
(
ρij,t < ρc

)
is pre-

determined based on geographic distance, ρc such that I
(
ρij,t < ρc

)
= 1

if the two locations are neighbors and otherwise 0.

• Using (385) and (387), the model (386) can be written as

yit = λ
n∑
j=1

1

|zit − zjt|
I
(
ρij,t < ρc

)
yjt + vit. (388)

• Assuming that ρc is known and zit is correlated with vit, Shi extends Qu
and Lee (2014) and develops the control function approach in panels:30

yit = λ

n∑
j=1

wij,tyjt + (Znt −X2ntΓ)
′
it δ + ξit. (389)

28 It is straightforward to develop the extended model with covariates and error components
with unobserved fixed effects and factors or interactive effects.
29Qu and Lee (2014) also suggest the higher and nonlienar orders, hij (zit, zjt) =∑D
d=1

1

|zit−zjt|d
30 It is unclear how to write the z specification for each spatial unit. See (406) and (407)

below. The basic idea seems to get some information about the single covariate zit, zjt and
their difference zit − zjt from the large system equations.
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where
wij,t =

1

|zit − zjt|
I
(
ρij,t < ρc

)
• Consider (406) below, and assume the single covariate in z:

zit = x′itβz + γ′izfzt + εit (390)

where xit are kz×1 regressors with coeffi cient vector βz, and unobservables
have two components, fzt consisting of Rz × 1 time factors with loading
γ′izl and εitl is idiosyncratic error. Then, (389) can be written as

yit = λ

n∑
j=1

wij,tyjt + (zit − x′itβz − γ′izfzt)
′
δ + ξit. (391)

• The structure of the model (388) is similar to KMS, which is given by

yit = λ
1

mit

n∑
j=1

I
(
ρij,t < ρc

)
yjt + vit. (392)

where mit =
∑n
j=1 I

(
ρij,t < ρc

)
. (388) assumes the known threshold, ρc

whilst (392) estimates λ and ρc jointly, then imposing the equal weight
once yjt is selected.

• More generally, we consider:

wij,t =
1

ρij,t
I
(
ρij,t < ρc

)
with ρij,t = |zit − zjt| (393)

Alternatively, we may consider the row-normalisation version as

wij,t =

1
ρij,t

I
(
ρij,t < ρc

)∑n
j=1

1
ρij,t

I
(
ρij,t < ρc

) with ρij,t = |zit − zjt| (394)

Notice that Qu and Lee conjecture that another issue that needs fu-
ture research is to consider an endogenous spatial weight matrix
purely constructed with economic distances. This could be a tech-
nical challenging issue as the near-epoch assumption may not be met.
{WHY??} Alternative large sample theorems may need to be developed.

• We can consider (i) the exogenous case, E (z′itvit) = 0 and (ii) the endoge-
nous case, E (z′itvit) 6= 0. We may also consider the time-invariant case
using

wij =
1

ρij
I
(
ρij < ρc

)
with ρij = |zi − zj | or ρij = |z̄i − z̄j | (395)

where we consider the time-invariant covariate, zi or the time-average,
z̄i = T−1

∑
zit.
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• I conjecture that the KMS algorithm to construct the endogenous spatial
weights or selection matrix would be useful, makeing contribution to the
literature. In particular, we consider VAR as the DGP for the N × 1
vector, zt = (z1t, ..., zNt)

′, say

zt =

p∑
j=1

Φjzt−j + εt

and derive the CF:

vt =

zt −
p∑
j=1

Φjzt−j

′ δ + ξt.

Then, the final model will become:

yit = λ

n∑
j=1

wij,tyjt + ε′itδ + ξit, (396)

where wij,t is defined in (393) or (394).

• Horrace et al. (2015) consider a firm with n workers. When the manager
allocates workers to projects (peer groups) in each time period, t = 1, ..., T ,
she specifies an n × n adjacency matrix which determines the interrelat-
edness of the workers’productivity. Let the adjacency matrix be denoted
by Aot = [aoij,t], where a

o
ij,t = 1 if workers i and j are assigned to the same

project and aoij,t = 0 otherwise. We set aoii,t = 0. Let the row-normalized
Aot be At = [aij,t], where aij,t = aoij,t/

∑n
k=1 a

o
ik,t. Then productivity of

the worker i in period t is given by

yit = ρ

n∑
j=1

aij,tyjt + xitβ + uit. (397)

The dependent variable yit is the productivity of worker i in period t.∑n
j=1 aij,tyjt is the average productivity of worker i’s co-workers assigned

to the same project with ρ capturing the peer effect. xit is a 1× kx vector
of exogenous variables. uit is the disturbance. In this setting, the marginal
product across workers in period t is ρaij,t when the workers are on the
same project and 0 otherwise.
If At is exogenous so that E(Ut|At, Xt) = 0, then model (397) can be
estimated using spatial panel data methods. However, it is reasonable
to believe that the manager’s choices of how to allocate workers to
projects may be correlated with Ut. Then E(Ut|At, Xt) 6= 0 and At
is endogenous.
Let dit be an indicator variable such that dit = 1 if worker is assigned to
the project and dit = 0 otherwise. Suppose mt workers are allocated to
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the project. Then, for worker i assigned to the project (i.e. dit = 1), (397)
can be written as

yit = ρ
1

mt

n∑
j=1

djtyjt + xitβ + E (uit|Dt) + u∗it. (398)

where Dt = (d1t, ..., dnt)
′ and u∗it = uit − E(uit|Dt). By construction,

E (u∗it|Dt) = 0 and the weights djt in the peer effect regressor can be
considered exogenous. We refer to E (uit|Dt) as the selectivity bias.
As mt is often predetermined (e.g., in sports games, the number of ac-
tive players mt is fixed), dit is not independent across i. Hence, instead of
modeling the probability that a certain worker is assigned to a project (i.e.
Pr(dit = 1)), we consider the probability of a set of workers is assigned to
a project.

• Notice that the structure of the model (398) is also similar to KMS, but
it imposes that djt’s are known a priori. So this model is more restrictive
than (388).

• MORE discussions...

• CCE approximation possible for spatial and factors?

• Heterogeneous extension of KMS?

• How to estimate the weights and thresholds together in KMS with and
without endogeneity?

11.1 Qu and Lee (2014)

Consider the output equation of a cross-sectional SAR model:

Yn = λWnYn +X1nβ + Vn, (399)

where Yn = (y1,n, ..., yn,n)
′ is an n × 1 vector, X1n is an n × k1 matrix with

its elements {x1,in; l(i) ∈ Dn, n ∈ N} being bounded for all i and n, Vn =

(v1,n, ..., vn,n)
′, λ is a scalar, and β =

(
β1, ..., βk1

)′
is a k1 × 1 vector of co-

effi cients. Wn = (wij,n) is an n × n nonnegative weights matrix with zero
diagonals and its elements constructed by Zn:

wij,n = hij(Zn, ρij) for i, j = 1, ..., n; i 6= j, (400)

where h(·) is a bounded function. Finally, we consider the DGP for Zn:

Zn
n×p2

= X2n
n×k2

Γ
k2×p2

+ εn, (401)

where X2n is an n× k2 matrix with {x2,in; l(i) ∈ Dn, n ∈ N} bounded for all i
and n, Γ is a k2×p2 matrix of coeffi cients, εn = (ε1,n, ..., εn,n)

′ is an n×p2 matrix
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of disturbances with εi,n = (ε1,in, ..., εp2,in)
′ being p2 dimensional column vec-

tors, and Zn = (z1,n, ..., zn,n)′ is an n× p2 matrix with zi,n = (z1,in, ..., zp2,in)′.

zi,n
p2×1

=

 z1,in

...
zp2,in

 , Zn
n×p2

=

 z′1,n
...

z′n,n

 =

 z1,1n zp2,1n
. . .

z1,nn zp2,nn

 ,

zi
p2×1

=

 z1i

...
zp2i

 , Zn
n×p2

=

 z′1
...
z′n

 =

 z11 zp21

. . .
z1n zp2n

 ,

x2i
k2×1

=

 x2,1i

...
x2,k2i

 , X2n
n×k2

=

 x′21
...
x′2n

 =

 x2,11 x2,k21

. . .
x2,1n x2,k2n

 ,

Γ
k2×p2

=

 γ1
...
γk2

 =

 γ11 γ1p2
. . .

γk21 γk2p2


Zn = X2nΓ + εn z1,1n zp2,1n

. . .
z1,nn zp2,nn

 =

 x2,11 x2,k21

. . .
x2,1n x2,k2n


 γ11 γ1p2

. . .
γk21 γk2p2


=

 x2,11γ11 + · · ·+ x2,k21γk21 x2,11γ1p2 + · · ·+ x2,k21γk2p2
. . .

x2,1nγ11 + · · ·+ x2,k2nγk21 x2,1nγ1p2 + · · ·+ xγk2p2


Let

{(
εl(i),n, vl(i),n

)
; l(i) ∈ Dn, n ∈ N

}
be a triangular double array of real

random variables defined on a probability space (Ω;F ;P ), where the index set
Dn ⊂ D is a finite set.
Remark: We consider n agents in an area where each agent i is endowed

with a predetermined location l(i). Any two agents are separated away by a
distance of at least 1. Due to some competition or spillover effects, each agent i
has an outcome yi,n directly affected by its neighbors’outcomes yj,n’s. The spa-
tial weight wij,n is a measure of the relative strength of linkage between agents i
and j, and the spatial coeffi cient λ provides a multiplier for the spillover effects.
However, the spatial weight wij,n is not predetermined but depends on
some observable random variable Zn. We can think of zi,n as some eco-
nomic variables at location l(i) such as GDP, consumption and economic growth
rate which influence strength of links across units. This specification has been
used in the literature, and it may introduce endogeneity into the spatial weight
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matrix. Case et al. (1993) consider the weights of the form (before row
normalization):

wij,n =
1

|zi,n − zj,n|
where zi,n and zj,n are observations on “meaningful”socioeconomic character-
istics.
We have the following moment assumption.
Assumption 2. The error terms vi,n and εi,n, have a joint distribution:(

vi,n, ε
′
i,n

)′ ∼ iid (0,Σvε) , Σvε =

[
σ2
v σ′vε

σvε Σε

]
where Σvε is positive definite,σ2

v is a scalar variance, covariance σvε = (σvε1, ..., σvεp2)
′

is a p2 dimensional vector, and Σε is a p2 × p2 matrix. The supi,nE|vi,n|4+δε

and supi,nE ‖εi,n‖
4+δε exist for some δε > 0. Furthermore, E(vi,n|εi,n) = ε′i,nδ

and V ar(vi,n|εi,n) = σ2
ξ .
31

The endogeneity of Wn comes from the correlation between vi,n and εi,n.
Using Assumption 2, we can construct32

ξn = Vn − εnδ,

where

δ = Σ−1
ε σvε and ξn ∼

(
0, σ2

ξIn
)
with σ2

ξ = σ2
v − σ′vεΣ−1

ε σvε.

In particular, ξn are uncorrelated with εn. The outcome equation (399) be-
comes:

Yn = λWnYn +X1nβ + (Zn −X2nΓ) δ + ξn, (402)

with E
(
ξi,n|εi,n

)
= 0 and E

(
ξ2
i,n|εi,n

)
= σ2

ξ and ξi,n’s are iid across i. Our sub-
sequent asymptotic analysis will rely on (402), where (Zn −X2nΓ) are control
variables to control the endogeneity of Wn.
Remark: Qu and Lee (2014) propose 3 estimators. If error terms are jointly

normally distributed, QMLE becomes MLE and achieves the asymptotic effi -
ciency. The 2SIV estimation is based on linear moments only and therefore as-
ymptotically less effi cient. For the GMM estimator based on some proper linear
and quadratic moment conditions, it can be asymptotically as effi cient as the ML
estimator under normality. In the absence of normality, QMLE is no longer as-
ymptotic effi cient. The optimum GMM estimator based on linear and quadratic
moment conditions might be asymptotically more effi cient than QMLE, because
it adopts the best weighting matrix for those moment conditions, while QMLE

31This conditional homoskedasticity condition is required for the QMLE theory. For the IV
or GMM estimations, we can relax this assumption.
32 In the special case that (vi,n, ε

′
i,n)′ has a jointly normal distribution, then

vi,n|εi,n ∼ N(σ′vεΣ
−1
ε εi,n, σ

2
v − σ′vεΣ−1ε σvε)

and ξn is independent of εn.
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gives each moment an equal weight. However, the asymptotic effi ciency of the
2SIV and QMLE cannot be directly compared. Therefore, the 2SIV and
GMM methods have the merit of computational simplicity and ro-
bustness.
Assumption 4. We consider two cases of Wn:
(4.1) Case 1: The spatial weight wij,n = hij(zi,n, zj,n, ρij) for i 6= j, where

hij(·)’s are non-negative, uniformly bounded functions of some observable vari-
able Zn. 0 ≤ wij,n ≤ c1ρ

−c3d0
ij for some 0 ≤ c1 and c3 > 3.33 Furthermore,

there exist at most K (K ≥ 1) columns of Wn that the column sum exceeds cw,
where K is a fixed number that does not depend on n.34

(4.2) Case 2: The spatial weight wij,n = 0 if ρij > ρc, i.e., there exists a
threshold ρc > 1 and if the geographic distance exceeds ρc , then the weight is
zero. For i 6= j,

wij,n = hij (zi,n, zj,n) I
(
ρij ≤ ρc

)
or wij,n =

hij(zi,n, zj,n)I(ρij ≤ ρc)∑
ρij≤ρc hik(zi,n, zk,n)

,

where hij(.)’s are non-negative, uniformly bounded functions.
Remark: Assumption 4 provides the essential features of the weights ma-

trix. The geographic distance plays an important role in constraining magni-
tudes of spatial weights. The spatial weight of two locations would be larger if
they were closer to each other or when their economic indices were more
similar, but their weights would become smaller when two units are further
apart. Assumption (4.1) allows the situation that all agents are spatially cor-
related but the spatial weight decreases suffi ciently fast at a certain rate as
physical distances increase. Symmetry is not imposed on the spatial weight ma-
trix. If Wn is symmetric, the second part on the column sum norm condition in
(4.1) will not be needed. For an asymmetric Wn, the second part of (4.1) limits
the number of columns which have large magnitudes relative to the row sum
norm. For example, big countries may have great impact on small countries, but
those small countries may have little or zero influence on big countries. In this
example, we have some “stars”whose row sums are bounded by cw,
while their column sums can be much larger. Assumption (4.1) assumes
that the number of such stars can only be finite and bounded. Assumption (4.2)
allows for a row-normalized spatial weight matrix. In this case, wij,n might have
agents linked in an area, but once the geographic distance between two agents
exceeds a threshold, the two units are not spatially interacted.
In the MC they construct the endogenous, row-normalized Wn = (wij,n) as

follows:

1. Generate bivariate normal random variables (vi,n, εi,n) from iidN

(
0,

(
1 ρ
ρ 1

))
as disturbances in the outcome equation and the spatial weights equation.

33For example, wij,n = min
(

1
‖zi,n−zj,n‖p

, c1ρ
−c3d0
ij

)
.

34As c
−ρij
0 decreases faster than ρ−c3d0ij , all the results hold for the case of 0 ≤ wdij,n ≤

c1c
−ρij
0 with some c1 ≥ 0 and c0 > 1.
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2. Construct the spatial weight matrix as the Hadamard productWn = W d
n ◦

W e
n, i.e., wij,n = wdij,nw

e
ij,n, where W

d
n is a predetermined matrix based

on geographic distance: wdij,n = 1 if the two locations are neighbors and
otherwise 0;W e

n is a matrix based on economic similarity: w
e
ij,n = 1/|zi,n−

zj,n| if i 6= j and weii,n = 0, where elements of Zn are generated by zi,n =
1 + 0.8xi2,n + εi,n.

3. Row-normalize Wn.

Remark: See also Assumption 6 in Shi (2016) that considers only As-
sumption (4.2). Notice that hij (zi,n, zj,n) measures economic similarity while
I(ρij ≤ ρc) depends on the physical distance. In our case we consider
hij (zi,n, zj,n) measures economic similarity and I

(
ρij ≤ ρc

)
also depends on

the economic distance.

11.2 Shi (2106)

A data set contains n individuals indexed by i for T time periods indexed by
t. Individuals are located on a unevenly spaced lattice D ⊂ Rd0 with d0 ≥ 1.
The location l : {1, ..., n} → Dn ⊂ D is a mapping of individual i to its location
l(i) ∈ D ⊂ Rd0 . Let DT ⊂ Z denote the set of time indexes. This is an
adaptation of the topological structure of spatial processes in Jenish and Prucha
(2009, 2012) and Qu and Lee (2015) to the panel data setting. Define the metric

ρit,js = ρ(it, js) = max

{
max

1≤k≤d0
(|l(i)k − l(j)k|) , |t− s|

}
where l (i)k is the kth component of the d0 × 1 vector l (i).
Assumption 1. The lattice D ⊂ Rd0 with d0 ≥ 1, is infinitely countable.

All elements in D are located at distances of at least ρ0 > 0 from each other.
We assume that ρ0 = 1.
The equation of interest is (bad notations)

ynt = λWntynt +Xntyβy + Γnyfyt + vnt, (403)

where ynt is n × 1, Xnty is n × ky matrix of exogenous regressors. Wnt is an
n× n spatial weights matrix with elements, wij,t.

ynt
n×1

=

 y1t

...
ynt

 , Xnty
n×ky

=

 X1t,1 X1t,ky
...

. . .
...

Xnt,1 Xnt,ky

 , βy
ky×1

=

 β1
...
βky



Γny
n×Ry

=

 Γ11 Γ1Ry
...

. . .
...

Γn1 ΓnRy

 =

 Γ1

...
Γn

 , fyt
Ry×1

=

 f1t

...
fRyt

 , vnt
n×1

=

 v1t

...
vnt

 ,
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Wnt
n×n

=

 w11,t · · · w1n,t

...
. . .

...
wn1,t · · · wnn,t

 =

 w1,t

...
wn,t

 with wii,t = 0 (404)

The spatial weights matrix measures the degree of connections be-
tween spatial units with zero diagonals. Let yit denote the i-th element of
ynt. λwij,t measures the impact of yjt on yit and λ is the spatial interactions
coeffi cient. Economic theory may suggest how the spatial weights matrix is
constructed.
Example: Kelejian and Piras (2014): Weights are based on relative prices

of cigarettes between two neighboring states. We assume the following model:

lnCit = β1 lnCi,t−1 + β2 ln pit + β3 ln Iit + λ

 46∑
j=1

pjt
pit
dijt lnCjt

+ µi + δt + uit

(405)
where i = 1, . . . , 46 denotes states, t = 1, . . . , 29 denotes time periods, and the
disturbance term uit has the non-parametric specification.35 Cit is cigarette
sales to persons of smoking age in packs per capita in state i at time t. pit
is the average retail price per pack of cigarettes. Iit is per capita disposable
income. All values are measured in real terms. The spatial lag accounts for
cross border cigarette shopping, or bootlegging. dijt is a dummy variable which
indicates the desirability of cross border shopping. In particular, dijt = 1 if i
and j are border states and pjt < pit; dijt = 0 if i and j are not border states, or
if pjt > pit. The multiplication of dijt by the price ratio indicates that the price
ratio pjt/pit will only be considered by cigarette consumers in state i if pjt < pit.
Since the price of cigarettes is endogenous in a demand model for cigarettes,
our weighting matrix is endogenous. We expect λ to be positive because the
higher is the price ratio, the less attractive is cross state shopping. See also an
example (subsection 3.2.3 in Shi) about the average effect of a treatment on the
treated (ATT).

Sources of endogeneity The spatial weights matrix may be constructed
from covariate that may correlate with vnt together with common factors. Sup-
pose that there are p variables, zit1, ..., zitp that are used to construct Wnt.
Consider the regression equation for zitl:

zitl = x′itzlβzl + γ′izlfzt + εitl, l = 1, ..., p (406)

where xitzl are kzl × 1 regressors with coeffi cient vector βzl, and unobservables
have two components, fzt consisting of Rz×1 time factors with loading γ′izl and
εitl is idiosyncratic error. Stacking it across i and then over l for time period

35We assume the following non-parametric specification:

uN = RNεN

where RN is an unknown NT × NT non-stochastic matrix, and εN is an NT × 1 random
vector whose mean is zero and VC is INT with E (uN ) = 0 and

(
uNu

′
N

)
= RNR

′
N .
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t, we have znt = (z1t1, ..., znt1, z1t2, ..., zntp)
′ an np × 1 vector which has the

following structure:
znt = Xntzβz + Γnzfzt + εnt (407)

whereXntz is np×kz with kz = kz1+...+kzp, Γnz = (γ1z1, ..., γnz1, γ1z2, ..., γnzp)
′

is np×R and εnt is defined similarly. Note that Xnty and Xntz may have some
common regressors.
Remark: Notations in Shi are generally unclear and need to be improved.

In constructing znt, he allows the dimension of X regressors is different for
l = 1, ..., p. Hence, the definition of the np × kz matrix, Xntz is quite un-
clear. In MC and empirical applications he used the univariate construction of
zi variable. Suppose that we use the difference between univariate variable, say

1
|zit−zjt| to construct the spatial weights. In such case the use of large dimen-
sional specification for znt in (407) seems to be redundant (also computationally
infeasible). If so, I conjecture that the use of VAR or SPVAR seems to be
more sensible, say

znt =

p∑
j=1

Φjzn,t−j + Γnzfzt + εnt (408)

Still an important issue of how to construct the spatial weights from (408),
which I will discuss more later. Remind that the VAR cannot be employed in
the cross-section studies by Qu and Lee (2015).
The following conditional moment assumption specifies that the disturbance

terms in znt may correlate with vit in the ynt equation.
Assumption 2 (Qu and Lee (2015)). The error terms vit and εit are

independently distributed over i and t, and have a joint distribution

(vit, ε
′
it)
′ ∼ (0,Σvε), Σvε =

[
σ2
v σ′vε

σvε Σε

]
where Σvεis positive definite, σ2

v is a scalar variance, the covariance σvε =
(σvε1, ..., σvεp) is a p × 1 vector, and Σε is a p × p matrix. Furthermore, εit
is generated as εit = Σ

1/2
ε eit where eitp is independently distributed across i, t

and p with E (eitp) = 0, E
(
e2
itp

)
= 1. Furthermore, supn,T supi,tE |vit|

4+δε and

supn,T supi,tE ‖vit‖
4+δε exist for some δε > 0. Denote

E (vit|εit) = ε′itδ

and define
ξit = vit − ε′itδ.

Assuming that E
(
ξ2
it |εit|

)
= E

(
ξ2
it

)
= σ2

ξ , E
(
ξ3
it |εit|

)
= E

(
ξ3
it

)
and E

(
ξ4
it |εit|

)
=

E
(
ξ4
it

)
.

If σvε 6= 0, the spatial weights matrix correlates with disturbances in the
outcome equation of the same period. Hence, using the assumption 2, the
outcome equation (403) becomes:

ynt = λWntynt +Xntyβy + Γnyfyt + (znt −Xntzβz − Γnzfzt)
′
δ + ξnt, (409)
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Shi develops the QML estimator of (409), though (409) is not clearly defined.
Remark: The use of control function approach is found to be robust to

nonlinear model, e.g. Wooldridge or Blundell?? Suppose in the linear model
that Wntynt and/or Xnty are endogenous, then we use as CF(

Wntynt − zntγy
)′
δy or (Xnty − zntγx)

′
δx

Similarly, when treating wij,t as the variable, then we may consider the following
CF:

(Wnt − zntγW )
′
δW

Here, Qu and Lee and Shi assume that spatial weights follow the smooth function
of znt, and employ the CF in terms of (znt −Xntzβz − Γnzfzt)

′
δ in (409). So

we should think about this issue more carefully.

MC Consider the main outcome equation:

yit = λ

n∑
j=1

wij,tyjt + xitβy + γ′yifyt + vit.

Two unobserved factors (fyt) and factor loadings (γ′yi) are generated indepen-
dently from U [−2, 2]. The observed regressor (xit) is a scalar and correlates
with factors through

xit =
1

3

{
γ′yifyt + γ′yi`2 + f ′yt`2

}
+ ηit,

where ηit ∼ U [−2, 2] and `2 is a 2× 1 vector of 1’s.
The spatial weights are correlated with vit according to the following process.

1. Individuals indexed by 1 to n are located successively on a chessboard of
dimension

√
n×
√
n. The neighborhood structure follows the rook pattern.

Individuals in the interior of the chessboard have 4 neighbors, and those
on the border and the corner have 3 and 2 neighbors, respectively. Let
wdij = 1 if i and j are neighbors and wdij = 0 otherwise, and denote the
n× n matrix Wd =

[
wdij
]
.

2. Let
zit = xitβz + γzifzt + εit.

with one unobserved factor fzt being the first element of fyt. The scalar
γzi is generated from U [−2, 2], and . Let

weij,t = wdij ×min

(
1

|zit − zjt|
, 2

)
The spatial dependence is stronger for neighbors with similar z’s. weit,jt is
capped at 2 such that individuals whose z’s are very similar (|zit − zjt| <
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0.5) have the same degree of spatial effect. The spatial weights in the
outcome equation are row-normalized,

wit,jt =
weit,jt∑n
j=1 w

e
it,jt

.

3. The idiosyncratic errors vit and εit are generated from i.i.d. bivariate
normal random variables,

N

(
0,

4

3
ϑ

(
1 ρ
ρ 1

))
The inverse of ϑ is a measure of the signal to noise ratio.

Application Let yit denote the HECM origination rate, defined as the
number of newly originated HECM loans in state i and quarter t as a percentage
of the senior population (age 65 plus) from the 2010 census. There are two
n× n spatial weights matrices, W1,n = (w1,ij) and W2,nt = (w2,it,jt). w1,ij = 1
if states i and j share the same border and w1,ij = 0 otherwise. W2,nt captures
the different spillover effect from large lenders. w2,it,jt = w1,ijzitzjt, where zit is
the share of the HECM loans originated by the large lenders (defined as being
one of the top 10 largest lenders. A larger weight is given to a state with more
dominant large lenders. House price dynamic variables are constructed using
the Federal Housing Finance Agency’s quarterly all-transactions house price
indexes (HPI) deflated by the CPI, and include deviations from the previous
9 year averages (hpi_dev), standard deviations of house price changes in the
previous 9 years (hpi_v) and the interaction between the two.
Our empirical application considers multiple spatial weights matrices such

that

zit = hpi_devitβz1+hpi_vitβz2+(hpi_devit×hpi_vit)βz3+γ′zifzt+εit; (410)

yit = λ1

n∑
j=1

w1,ijyjt+λ2

n∑
j=1

wit,jtyjt+hpi_devitβy1+hpi_vitβy2+(hpi_devit×hpi_vit)βy3+γ′yifyt+vit;

(411)
where εit and vit have variances σ2

ε and σ
2
v with correlation ρ. According to the

eigenvalue ratio criterion, zit has one unobserved factor and so is yit, and the
growth ratio criterion gives the same result. Table 3.7 reports the estimation
results.
Remark: As discussed above, Shi used the relatively simple specification.

There is only single z variable, and x regressors are common in (410) and (411).
There is no details of whether there are common factors between fzt and fyt.
Also unclear of whether one unobserved factor estimated for zit and yit is the
same or different. In general, unsure about the computational details... Further,
an intuition about w2,it,jt = w1,ijzitzjt is unclear too, though it is designed to
capture spillovers due to large lenders. Overall, this line of research will be more
important and they provide the first research step heading into such directions
but still there are many ambiguous issues in the current study.
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11.3 Horrace et al. (2016)

Suppose there are qt possible lineups denoted by Ls for s = 1, ..., qt. The
manager allocates lineup Ls to the project if and only if

d∗st > max
r 6=s

d∗rt,

where
d∗st = πst + ξst, s = 1, ..., qt

where πst is the deterministic component of d∗st and ξst is a random innovation
with zero mean and unit variance. Let dst be a dummy such that dst = 1 if the
lineup Ls is chosen in period t and dst = 0 otherwise. Then, dst = 1 if and only
if

εst < 0 with εst = max
r 6=s

d∗rt − d∗st.

The productivity of Ls is given by the following model:

Yst = ρWtYst +Xstβ + Ust, s = 1, ..., qt, t = 1, ..., T. (412)

Yst = [yit]i∈Ls is an mt × 1 vector of the dependent variable of the workers in
Ls. Wt is a constant weighting matrix given by (complete network)

Wt =
1

mt − 1

(
1mt1

′
mt − Imt

)
=

1

mt − 1


 1 1

. . .
1 1

−
 1 0

. . .
0 1


 =

1

mt − 1

 0 1
. . .

1 0

 .

WtYst =
1

mt − 1

 0 1
. . .

1 0


 y(1)t

...
y(mt)t

 =


1

mt−1

∑mt
j=2 y(j)t

...
1

mt−1

∑mt−1
j=1 y(j)t


WtYst measures the average productivity of a worker’s co-workers in lineup Ls,
with its coeffi cient ρ capturing the peer effect. Xst = [xit]i∈Ls is an mt × kx
matrix of kx exogenous variables of the workers in Ls. Ust is an mt × 1 vector
of disturbances such that Ust ∼ iid(0,Σ). We allow for possible correlation
between Ust and ξt =

(
ξ1t, ..., ξqtt

)
such that

E(Ust|dst = 1, πt) = λs (πt) 1mt with πt = (π1t, ..., πqtt) (413)

Then, the model (412) can be written as36

Yst = ρWtYst +Xstβ + λs(πt)1mt + U∗st, (414)

where U∗st = Ust − λs(πt)1mt . We consider three different approaches for esti-
mation of (414).
36The selectivity bias λs(πt) introduces a group correlated effect (Manski, 1993). Semi-

parametric estimation of ρ and β along with the unknown λs(.) would face the “the curse of
dimensionality.”
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The parametric selection correction approach Let Fst (.|πt) denote
the conditional distribution function of εst = maxr 6=s d

∗
rt − d∗st. Let Φ (.) and

φ (.) denote the standard normal distribution and density. Lee (1983) suggests
using the transformation:

Jst (.) ≡ Φ−1(Fst (.|πt))

to reduce the dimensionality of the selectivity bias. In this case the selectivity
bias is given by

E (Ust|dst = 1, πt) = E[Ust|Jst(εst) < Jst(0), πt] = E[Ust|Jst (εst) < Jst(0)],

where Lee (1983) implicitly assumes that the joint distribution of Ust and
Jst (εst) does not depend on πt. Further, we make the following assumption
that Ust and Jst (εst) are i.i.d. with a joint normal distribution given by[

Ust
Jst (εst)

]
∼ N

[
0,

(
Σ σ121mt

σ121′mt 1

)]
The selectivity bias is then given by

E(Ust|dst = 1, πt) = −σ12
φ(Jst(0))

Fst(0|πt)
1mt . (415)

Thus, from (413) and (415), we have:

λs(πt) = −σ12

φ
(
Φ−1 (Pst)

)
Pst

, (416)

where we use

Jst(0) = Φ−1(Fst(0|πt)) and Pst = Fst(0|πt).

Substitution of (416) into (414) gives

Yst = ρWtYst +Xstβ − σ12

φ
(
Φ−1 (Pst)

)
Pst

1mt + U∗st. (417)

For the network model, Lee’s approach can be implemented as follows.

• Step 1: Let πst = zstγ, where zst is a 1× kz vector of exogenous variables.
Then, γ can be estimated by maximizing the likelihood function:

lnL =

T∑
t=1

qt∑
s=1

dst lnPst.

It proves convenient to assume that ξst is independently and identically
Gumbel distributed so that

Pst = exp(zstγ)/

qt∑
r=1

exp(zrtγ)

Then, γ can be estimated by a conditional logit estimator γ̂ (McFadden,
1974).
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• Step 2: With the predicted probabilities

P̂st = exp (zstγ̂) /

qt∑
r=1

exp (zstγ̂) ,

we consider the feasible counterpart of (14)

Yst = ρWtYst +Xstβ − σ12

φ
(

Φ−1(P̂st)
)

P̂st
1mt + U∗∗st

and estimate (ρ, β′, σ12)′ by 2SLS estimator with linearly independent
columns in WtXst as instruments for WtYst.

The semi-parametric selection correction approach Following Dahl
(2002), we impose the following assumption to reduce the dimensionality of the
selectivity bias:

λs (πt) = µ(Pst).

Thus, (414) becomes:

Yst = ρWtYst +Xstβ + µ(Pst)1mt + U∗st.

The semi-parametric selection correction approach can be implemented in a
similar two-step procedure.

• Step 1: We obtain the predicted probabilities P̂st from, say, a conditional
logit regression.

• Step 2: We replace µ(Pst) by its (feasible) series approximation

K∑
k=1

κkbk

(
P̂st

)
,

where bk(.) are the basis functions, and estimate (ρ, β′)′ together with κk
by the 2SLS estimator with linearly independent columns in WtXst as
instruments for WtYst.

The fixed-effect approach The selectivity bias λs (πt) can be consid-
ered as a time-varying lineup-specific fixed effect. To avoid estimating the un-
known function λs (.), we can apply a within transformation to eliminate this
term. Suppose Xst = [X1,st, 1mtx2,st], where X1,st is an mt × k1 matrix of k1

individual-varying exogenous variables and x2,st is a 1×k2 vector of individual-
invariant exogenous variables (k1 + k2 = kx). Then, (414) can be written as

Yst = ρWtYst +X1,stβ1 + 1mtx2,stβ2 + λs (πt) 1mt + U∗st. (418)
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Let Qt = Imt − 1
mt

1mt1
′
mt denote the within-transformation projector. As

Qt1mt = 0 and QtU∗st = QtUst, premultiplication of (414) by Qt gives:

QtYst = ρQtWtYst +QtX1,stβ1 +QtUst. (419)

Then, ρ and β1 can be estimated from the within model (419) by the conditional
maximum likelihood (CML) in Lee (2007).
The fixed-effect approach does not impose any restrictions on λs (πt). How-

ever, the within transformation may cause an identification problem esp. if
mt = m for all t, similar to the one studied in Lee (2007). The fixed-effect
approach can be implemented by the following steps.

• Step 1: We estimate the within Eq. (419) by the CML estimator in Lee
(2007).

• Step 2: We obtain the predicted probabilities P̂st from, say, a conditional
logit regression.

• Step 3: Let

r̂st =
1

mt
1′mt

(
Yst − ρ̂WtYst −X1,stβ̂1

)
,

where ρ̂ and β̂1 are the first-step estimates. We consider the regression:

r̂st = x2,stβ2 + µ
(
P̂st

)
+ ζst,

where the selectivity bias µ
(
P̂st

)
) is either given by−σ12φ

(
Φ− 1(P̂st)

)
/P̂st

in the parametric approach or approximated by
∑K
k=1 κkbk(P̂st) in the

semi-parametric approach. We estimate β2 together with the unknown

parameters in µ
(
P̂st

)
by the OLS estimator.

• Remark: The parametric and semi-parametric approaches have the ad-
vantage of computational simplicity. However, both approaches impose
strong restrictions on the selectivity bias λs (πt) to reduce its dimension-
ality. Because of the endogeneity of the peer effect regressor, the model
needs to be estimated by the 2SLS estimator that relies on the existence
of valid instruments. This may be quite challenging in empirical applica-
tions. On the other hand, the fixed effect approach does not impose any
restrictions on λs (πt). We can use the CML or GMM estimator, which ex-
ploit both linear and quadratic moment conditions, and may outperform
the 2SLS estimator that only uses linear moment conditions. However,
the within transformation makes the identification of the peer effect more
challenging. In particular, the within equation is not identified if mt does
not vary over time. In this case identification can be achieved by imposing
exclusion restrictions through heterogeneous peer effects.

197



• Comments:

—No CSD...
— "The selectivity bias λs (πt) can be considered as a time-varying
lineup-specific fixed effect. To avoid estimating the unknown function
λs (.), we can apply a within transformation to eliminate this term."
Is this suffi ciently general? In other words, how is the endogeneity
correction in (413) is general? Suppose that λs (πt) is time-varying,
still the within transformation will remove λs (πt) 1mt for all t?

— In the threshold model, Kourtellos et al. (2015) have addressed an
issue of endogenous threshold variable in the single equation context.
"Our estimation of the threshold parameter is based on a two-stage
concentrated least squares method that involves an inverse Mills ratio
bias correction term in each regime." So can we adopt the approach
by Horrace et al. (2015) by extending the threshold model to the
panel context. This would be an alternative approach to Seo and
Shin (2015).

—Notice that the model (398) is also similar to KMS, but it imposes
that djt’s are known a priori. So we rewrite (398) using the KMS
threshold selection mechanism as

yit = ρ
1

mit

n∑
j=1

I (|zit − zjt| < r) yjt + xitβ + E (uit|zt) + u∗it, (420)

where zt = (z1t, ..., znt)
′. As mit =

∑n
j=1 I (|zit − zjt| < r), the equal

weights are row-normalised by construction. In this regard, (420) is
a natural generalisation of (398), where all networks are generally
unobserved a priori or where the network members are potentially
randomly chosen individuals. "Bandiera et al. (2009) investigate
how social connections between workers and managers affect the pro-
ductivities of fruit pickers in the UK. Their measure of social con-
nectedness is based on similarities of worker/manager characteristics,
and there are multiple managers whose worker assignments change
daily."We may consider and follow this line of the research
trend.

—Notice that Horrace et al. (2015) argue that mt is often predeter-
mined (e.g., in sports games, the number of active playersmt is fixed).
Next, workers work on the project to produce output for a given time
period. For the population of n workers, the n × n adjacency ma-
trix across all projects is potentially endogenous. By focusing on a
single project of interest, we have an m × m submatrix of the ad-
jacency matrix which is exogenous conditional on selection into the
specific project. Thus, the network endogeneity is reduced to a se-
lectivity bias, which can be corrected using a fixed effect estimator
or a polychotomous Heckman-type bias correction procedure due to
Lee (1983) and Dahl (2002).
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—Our setup allows us to give a structural interpretation to the se-
lectivity bias correction term that links the model to the produc-
tive effi ciency literature in that the bias can viewed as “managerial
(in)competence” or (in)effi ciency, depending on the sign of the es-
timate. So in this regard, we may consider the stochastic
frontier type application or extension?

—KMS extension seems to be complicated. Here we haveN individuals,
and select the mt members out of N -idnviduals at time ṫ. HLP as-
sume that the selction is pre-determined and then control for selctiv-
ity bias. Now, we wish to endogenise the selection process using
the threshold mechanism advanced by KMS. Then, how? Next, we
control endogeneity of selection by using the generic control fucn-
tion approach. Here the main aim is to control for endogeneity, not
interested in measuring the selection bias parametrically or semi-
parametrically.

• Consider the following KMS type model:

yit = ρ
1

mit

n∑
j=1

I (|qit − qjt| < r) yjt + β′xit + uit, (421)

where I (A) is an indicator function, taking unity if the event A is true and
0 otherwise, and mit =

∑n
j=1 I (|qit − qjt| < r) with r being a threshold

parameter to be estimated. So the individual productivity is spatially
affected by peers or members. Now, qit is likely to be correlated. To
control for such endogeneity, we consider the following control function:

qit = λ′q
(i)
t + vit, (422)

where

q
(i)
t

(N−1)×1

=
[
q1t · · · qNt

]
, λ

(N−1)×1
=

 λ1

...
λN


Assume now: (

uit
vit

)
∼
(

0,

(
σ2
u σuv

σuv σ2
v

))
(423)

then we construct
uit = δvit + eit

where

δ =
σuv
σ2
v

, eit ∼
(

0, σ2
e = σ2

u −
σ2
uv

σ2
v

)
Hence, we rewrite (421) as

yit = ρ
1

mit

n∑
j=1

I (|qit − qjt| < r) yjt +β′xit + δ
(
qit − λ′q(i)

t

)
+ eit, (424)
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Now, the selection is exogneous with respect to eit, so that we follow the
KMS algorithm.

• My main query is how to extend the above logic from the individal level
to the line-up level analysed as in your paper?

• A few more questions:

— I am not still 100% convinced about your estimation details.

—You now estimate eq. (22) in empirical applications. How do you
construct, Yst? Is it an m × 1 vector? Then what is the data de-
mension? How do you write the model in matrix form in terms of
Yt =

(
Y ′1t, ...Y

′
qtt

)′
? Also, the data seems to be unbalanced as the

specific line-up (a total of 79 different line-ups) does not play at all
time period. Then, not sure how to handle such unblanced data?

—You propose the within estimator with Qt = Imt − 1
mt

1mt1
′
mt de-

noting the within-transformation projector, since the selectivity bias
λs (πt) can be considered as a time-varying lineup-specific fixed ef-
fect. But this is a bit confusing, as it looks like the time effect, and
Qt constructs the deviation from the cross-section or group average
rather than the indvidual mean over time.

— In Section 5.3.1, "we can use player dummies to control for unob-
served player-specific characteristics." I am a bit unclear about how
to combine them... Is it feasible to introduce the line-up specific in-
dividual effects from eq. (7)? More generally, why not controlling for
interactive effects by

Yst = ρWtYst +Xstβ + εst, s = 1, ..., qt, t = 1, ..., T.

εst = λ′sft + Ust

so that the model can also allow for strong form of cross-section
dependence?

• Initially, I thought that the KMS extension seems to be straighforward.
However, here we haveN individuals, and select themt members out ofN -
individuals at every time ṫ. You assume that the selction is pre-determined
and then control for selctivity bias. Now, we wish to endogenise the selec-
tion process using the threshold mechanism advanced by KMS. Then, how
we move from an individual selection to the group selection? If feasible,
my idea is to control endogeneity of selection by using the generic control
fucntion approach. Here remind that the main aim is to control for endo-
geneity, not interested in measuring the selection bias parametrically or
semi-parametrically.
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11.4 Threshold model extensions

11.4.1 The single-equation threshold model considered by Kourtel-
los et al. (2015)

Let {yi, zi, xi, qi}ni=1 be an i.i.d or a weakly dependent observed sample, where
yi is real valued, zi is an l × 1 vector, xi is a p× 1 vector such that l ≥ p, and
qi is a scalar. Consider the following structural threshold regression model:

yi = β′x1xi + ui, qi ≤ γ, (425)

yi = β′x2xi + ui, qi > γ, (426)

where qi is the threshold variable that splits the sample into two regimes. In
each of the two linear models, yi is a dependent variable, xi is a vector of slope
variables (regressors) including an intercept, and ui is the equation error with
E(ui|Fi−1) = 0, where Fi−1 = {zi−j , xi−1−j , qi−1−j , ui−1−j : j ≥ 0}.
Consider the case where xi is a vector of strictly exogenous regressors and

a strict subset of zi.37 Then endogeneity bias arises when ui is correlated with
qi. Consider the reduced form model for the threshold variable qi given by

qi = π′qzi + vqi (427)

where E(vqi|Fi−1) = 0. Then, endogeneity amounts to E(ui|Fi−1, vqi) 6= 0.
(427) is analogous to a selection equation in the literature on limited dependent
variable models (Heckman, 1979). The main difference is that while limited
dependent variable models treat qi as latent and the sample split as observed,
here we treat the sample split value as an unknown parameter.
Assumption 1.
1.1 E(ui|Fi−1) = 0
1.2 E(vqi|Fi−1) = 0
1.3 E(ui|Fi−1, vqi) = E(ui|vqi)
1.4 E(ui|vqi) = κvqi
1.5 vqi ∼ N(0, 1)
Assumption 1.4 assumes a linear conditional expectation between the errors

of the structural and the reduced form equations.38 Assumptions 1.4 and 1.5
can be relaxed and the bias correction terms can be estimated by semi-
parametric methods such as a series approximation; see Kourtellos et
al. (2015).
Using Assumption 1 we get:

E
(
ui|Fi−1, vqi ≤ γ − π′qzi

)
= κE

(
vqi|vqi ≤ γ − π′qzi

)
= κ

∫ γ−π′qzi

−∞
vqf

(
vq|vq ≤ γ − π′qzi

)
dvq = κλ1

(
γ − π′qzi

)
37 It is straightforward to allow endogenous regressors, xi.
38Not sure suffi ciently general? For example, when they allow for regime-specific inverse

Mills ratios, why not allowing for regime-specific conditional means here too?
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E
(
ui|Fi−1, vqi > γ − π′qzi

)
= κE

(
vqi|vqi > γ − π′qzi

)
= κ

∫ ∞
γ−π′qzi

vqf
(
vq|vq > γ − π′qzi

)
dvq = κλ2

(
γ − π′qzi

)
where

λ1

(
γ − π′qzi

)
=
−φ
(
γ − π′qzi

)
Φ
(
γ − π′qzi

) and λ2

(
γ − π′qzi

)
=

φ
(
γ − π′qzi

)
1− Φ

(
γ − π′qzi

)
are the inverse Mills ratio terms. φ(·) and Φ(·) are the normal pdf and cdf.
Note that the normality of vqi is key for the derivation of the inverse Mills ratio
terms.
Denote the inverse Mills ratio terms at the true value πq0 as

λ1i (γ) = λ1

(
γ − π′q0zi

)
, λ2i (γ) = λ2

(
γ − π′q0zi

)
(428)

Then taking conditional expectations yields

E
(
yi|Fi−1, vqi ≤ γ − π′q0zi

)
= β′x1xi+E

(
ui|Fi−1, vqi ≤ γ − π′q0zi

)
= β′x1xi+κλ1i (γ)

E
(
yi|Fi−1, vqi > γ − π′q0zi

)
= β′x2xi+E

(
ui|Fi−1, vqi > γ − π′q0zi

)
= β′x2xi+κλ2i (γ)

The STR model is then defined by

yi = β′x1xi + κλ1i (γ) + ε1i, qi ≤ γ,

yi = β′x2xi + κλ2i (γ) + ε2i, qi > γ,

where
ε1i = −κλ1i (γ) + ui and ε2i = −κλ2i (γ) + ui.

It is useful to write the model in a single equation by making the following
definitions

I(·) = 1 iff qi ≤ γ, 0 iff qi > γ

Λi (γ) = λ1i (γ) I(qi ≤ γ) + λ2i (γ) I(qi > γ)

εi = ε1iI (qi ≤ γ) + ε2iI (qi > γ)

We can then express equations as

yi = β′x1xiI (qi ≤ γ) + β′x2xiI(qi > γ) + κΛi (γ) + εi, (429)

where E (εi|Fi−1) = 0. The STR model, (429) nests the threshold regression
model of Hansen (2000) with κ = 0. Another difference is that the presence of
different inverse Mills ratios in each of the regimes in STR necessarily implies
the presence of regime-specific heteroskedasticity.
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Endogeneity in Both the Threshold and Slope Variables When xi’s
are also endogenous and not a subset of zi, the reduced form model for xi is:

xi = Π′xzi + vxi, (430)

where E(vxi|Fi−1) = 0 and Πx is a l×p matrix of unknown parameters. Denote
the conditional expectation at the true value Πx0 as

gxi = E(xi|Fi−1) = Π′x0zi

Assumptions 1.1—1.5 augmented with
1.6 E(vxi|Fi−1) = 0.
1.7 vxi ⊥ I

(
vqi ≤ γ − π′qzi

)
|Fi−1

Assumptions 1.6 and 1.7 allow us to write39

E
(
xi|Fi−1, vqi ≤ γ − π′qzi

)
= E(xi|Fi−1) = Π′x0zi

E
(
xi|Fi−1, vqi > γ − π′qzi

)
= E(xi|Fi−1) = Π′x0zi

Then, we have:

E
(
yi|Fi−1, vqi ≤ γ − π′q0zi

)
= β′x1gxi + κλ1i(γ)

E
(
yi|Fi−1, vqi > γ − π′q0zi

)
= β′x2gxi + κλ2i(γ)

STR model that allows for endogeneity in both threshold and slope variables
can be written as:

yi = β′x1gxiI (qi ≤ γ) + β′x2gxiI (qi > γ) + κΛi(γ) + e∗i ,

where
e∗i = β′x1vxiI (qi ≤ γ) + β′x2vxiI (qi > γ) + εi

with E(e∗i |Fi−1) = 0.40

We proceed in three steps to estimate the model: a two-step concentrated LS
method to estimate the threshold parameter and an additional step to produce
estimates of the slope coeffi cients.
YC Remark: read the paper for detailed estimation procedure, but

I find their proposed estimation technique seems rather complicated
and cumbersome.

39One could allow dependence between vxi and vqi by assuming that E(vxi|Fi−1, vqi) is a
linear function of vqi, which implies the need for an additional inverse Mills ratio term in each
regime.
40One possible concern is the assumption of linearity in the reduced form of xi. This

assumption can be relaxed to allow for nonlinearities such as a threshold regression in the first
stage. However, this extension is not trivial.
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11.4.2 Semiparametric Threshold Regression based on nonparamet-
ric CF by Kourtellos et al. (2016) Incomplete

We propose a semiparametric approach to deal with the endogeneity of threshold
variable and regressors that relaxes the parametric assumptions of Kourtellos,
Stengos, and Tan (2015). Specifically, we propose to estimate the threshold
parameter using a concentrated least squares (CLS) which includes a regime
specific control function estimated by series estimation method based on poly-
nomial and splines.
Consider the basic parametric structural threshold regression (or STR) model:

yt = x′tβ1 + σ1ut, qt ≤ γ0

yt = x′tβ2 + σ2ut, qt > γ0

for t = 1, 2, ..., n, where yt is the log income per capita in country t, qt is an
endogenous threshold variable (such as the quality of institutions) with γ0 being
the sample split value, xt is a dx × 1 vector of growth determinants, β1 and β2

are regime-specific slope coeffi cients, and ut is an error with zero mean and unit
variance.
A reduced form equation for qt is given by

qt = z′tπq + vq,t, t = 1, 2, ..., n,

where E (vq,t, zt) = 0 for all t. Assuming

E(ut|xt, zt, vq,t) = E(ut|vq,t) = g(vq,t)

almost surely, where g(·) is a smooth unknown function to be estimated. Letting
Fv be the cdf of vq,t, we obtain

E(ut|vq,t ≤ γ0 − z′tπq) =
E[g(vq,t)I(vq,t ≤ γ0 − z′tπq)]

Fv (γ0 − z′tπq)
≡ h1 (γ0 − z′tπq) ,

E(ut|vq,t > γ0 − z′tπq) =
E[g(vq,t)I(vq,t > γ0 − z′tπq)]

1− Fv (γ0 − z′tπq)
≡ h2 (γ0 − z′tπq) ,

Therefore, we can rewrite the model as

yt = x′tβ1 + σ1h1 (γ0 − z′tπq) + ε1t, qt ≤ γ0

yt = x′tβ2 + σ2h2 (γ0 − z′tπq) + ε2t, qt > γ0

where
εjt = σj [ut − hj (γ0 − z′tπq)] for j = 1, 2.

And, combining together gives a single equation:

yt = x′tβ2 + x′tδI (qt ≤ γ0) + h (γ0 − z′tπq) + εt, (431)
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where δ = β1 − β2, the regression error,

εt = ε1tI(qt ≤ γ0) + ε2tI(qt > γ0),

h (γ0 − z′tπq) = σ1h1 (γ0 − z′tπq) + σ2h1 (γ0 − z′tπq) ,

We need to impose an identification condition as we cannot identify (γ, σ1, σ2)
from the unknown functions h(·), h1(·), and h2(·). Therefore, we propose the
following model:

yt = x′tβ2 + x′tδI (qt ≤ γ0) + h (γ0 − z′tπq) + εt,

h (z′tπq) = h1 (z′tπq) I (qt ≤ γ0) + h2 (z′tπq) I (qt > γ0)

= h2 (z′tπq) + η (z′tπq) I (qt ≤ γ0)

where
η (z′tπq) = h1 (z′tπq)− h2 (z′tπq)

captures the endogenous threshold effect. We set

h(0) = h1(0) = h2(0) = 0

for identification purpose when xt contains a constant term one.
Let {φ1(w), φ2(w), ...} be a sequence of orthonormal basis functions in L2(−∞,∞)

space if qt takes value from the real line or L2[0, 1] space if qt has a finite support.
We approximate h (z′tπq) by

h∗ (z′tπq) = h∗1 (z′tπq) I(qt ≤ γ0)+h∗2 (z′tπq) I(qt > γ0) = h∗2 (z′tπq)+η
∗ (z′tπq) I(qt ≤ γ0),

where we denote an Ln× 1 vector, ΦLn(w) = {φ1(w), ..., φLn(w)}′, and h∗j (w) =
α′Ln,jΦLn(w) for j = 1, 2, and η∗(w) = (αLn,1 − αLn,2)′ΦLn(w).

Our four-step estimation procedure is given as follows.
Step 1. For a given γ ∈ [γ, γ̄], we estimate θ =

(
β′1, α

′
Ln,1

, β′2, α
′
Ln,2

)′
from

the objective function

θ̂ = a arg min
θ

n∑
t=1

[
yt − x′−,tβ1 − α′Ln,1Φ−Ln,γ (q̂t)− x′+,tβ2 − α′Ln,2Φ+

Ln,γ
(q̂t)
]2
,

where we denote x−,t = xtI(qt ≤ γ), x+,t = xtI(qt > γ), Φ−Ln,γ (q̂t) =

ΦLn,γ (q̂t) I(qt ≤ γ) and Φ+
Ln,γ

(q̂t) = ΦLn,γ (q̂t) I(qt > γ). Denoting X =

[X−,γ ,X+,γ ], where X−,γ stacks up
[
x′−,t,Φ

−′
Ln,γ

(q̂t)
]
and X+,γ stacks up

[
x′+,t,Φ

+′
Ln,γ

(q̂t)
]
,

and solving (2.14) give

θ̂(γ) =
(
X ′γXγ

)−1 X ′γy.
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Step 2. We estimate the threshold parameter γ by minimizing the concen-
trated least squares criterion:

γ̂ = arg min
γ∈[γ,γ]

n∑
t=1

[
yt −X ′t,γ θ̂(γ)

]2
Step 3. Calculate

ŷt = yt − α̂′Ln,1 (γ̂) Φ−Ln,γ (q̂t)− α̂′Ln,2 (γ̂) Φ+
Ln,γ

(q̂t) ,

We then run a linear regression model,

ŷt = x′tβ2 + δ′nxtI(qt ≤ γ̂) + errort

and obtain the OLS estimator β̃2 and δ̃n for β2 and δn respectively.
Step 4. Calculate

y̌t = yt − x′−,tβ̂1 − x′+,tβ̂2.

We then re-estimate h2(w) and ηn(w) by the local linear regression approach
from

y̌t = h2 (q̂t) + ηn (q̂t) I(qt ≤ γ̂) + errort, t = 1, 2, ..., n.

We denote the estimator for ψ(w) = [h2(w), ηn(w)]′ by ψ̃(w) = [h̃2(w), η̃n(w)]′.

11.4.3 YC’s hunch

Rewrite (425) and (426) as

yi = β′x1xi (1− I(qi > γ)) + β′x2xiI(qi > γ) + ui (432)

= β′x1xi +
(
β′x2 − β′x1

)
xiI(qi > γ) + ui

We follow Qu and Lee (2015) and make the following assumptions:(
ui
vqi

)
∼
(

0,

(
σ2
u σuv

σuv σ2
v

))
(433)

then we construct
ui = δvqi + ei

where

δ =
σuv
σ2
v

, ei ∼
(

0, σ2
e = σ2

u −
σ2
uv

σ2
v

)
Hence, we rewrite (432) simply as

yi = β′x1xi +
(
β′x2 − β′x1

)
xiI(qi > γ) + δ

(
qi − π′qzi

)
+ ei. (434)

I trust that there is no longer endogeneity of qi in (434) as it is uncor-
related with ei by construction. There is no need to allow for regime-
dependent inverse Mills ratios for the paramertic model or regime-
dependent series approximations for the semiparamertic model. As
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briefly discussed, the use of CF seems to be robust to any nonlinear-
ity associated with the model. (Pls check!) Further, the assumption

in (433) does not require that
(

ui
vqi

)
are normally distributed.

• So the bottom line is that if the CF transformation in (434) ren-
ders qi exogenous, then we may proceed to develop the associated
estimation and inference from (434) in a rather straightforward
manner. If the main aim is to make the transition variable qi
exogenous, then I trust that the use of (434) is suffi cient for
consistent estimation of regime-dependent slope parameters, β1

and β2. Notice that the approximation by the inverse Mills-ratio
used in (429) is valid only if the joint normality condition is sat-
isfied. So the comparison of the estimator obtained from (429)
and (434) is similar to the RE and FE estimators. If the joint
normality is valid, the estimator by (429) is consistent and more
effi cient than the estimator by (434). If not, only the estimator
by (434) is consistent. Also, here, we are not interested in find-
ing out the exact magnitude of the (specific) selection bias terms.
So our motivation to provide much simpler but robust approach.
So could you please check the validity of this conjecture?

Along similar logics, we can also control for endogenous regressors.
We now consider the case with endogenous regressors as in (430). We combine
(427) and (430) and obtain:(

qi
xi

)
=

(
π′q
Π′x

)
zi +

(
vqi
vxi

)
(435)

which can be written as41

Xi
(p+1)×1

= Π
(p+1)×l

zi
l×1

+ vi (436)

We thus modify the assumption, (433) as follows:(
ui
vi

)
∼
(

0,

(
σ2
u Σuv

Σ′uv Σvv

))
(437)

then we construct
ui = δ′vi + ei

where
δ = Σ−1

vv Σuv, ei ∼
(
0, σ2

e = σ2
u − Σ′uvΣ

−1
vv Σuv

)
Hence, we rewrite (432) as

yi = β′x1xi +
(
β′x2 − β′x1

)
xiI(qi > γ) + δ′ (Xi −Πzi) + ei. (438)

41 In this way we can allow for correlation between vqi and vxi.

207



Again I trust that there is no longer endogeneity of qi and xi in (438)
as they are uncorrelated with ei by regression construction. So if
(438) works, it does not impose any (potentially strong) assumptions
as in say, Kourtellos et al. (2015).

11.4.4 The panel data extension

Next, we develop the panel data extension along with dynamic mod-
elling, also paying more attention to the FE approaches by Horrace
et al. (2015).

Panel Threshold Regression Models with Endogenous Threshold Vari-
ables by Wang and Lin (2010) This is a panel extension of Kourtellos et
al. (2015). Consider the panel threshold model:

yit = xitI (qit ≤ θ)β1 + xitI (qit > θ)β2 + eit (439)

qit = zitπ + uit; (440)

where qit is an observed threshold variables, θ is an unknown threshold para-
meter, and zit is a vector of instruments.
Assumption 2.1. {yit, xit, qit, eit} is strictly stationary, ergodic.
Assumption 2.2. E |xit|4 <∞ and E |eit|4 <∞.
Assumption 2.3. n→∞ and T is xed.
Assumption 2.4. For some fixed number G < ∞ and 0 < α < 1/2, δ =

β2 − β1 = n−αG.
Assumption 2.5. Let ft (θ) denote the density function of qit. Define

D (θ) =

T∑
t=1

E(Gxit|qit = θ)ft (θ)

D (θ) is continuous at θ = θ0.
Assumption 2.6. D (θ) = D, 0 < D < 1.
Assumption 2.7. uit|zit ∼ N(0, 1).
Assumption 2.8. The joint distribution between eit and uit is defined as:(

eit
uit

)
|xit, zit = N

(
0,

(
σ2
e γj
γj 1

))
where γj is the covariance between eit and uit; γj = γ1 when qit ≤ θ and
γj = γ2 when qit > θ.

• Remark: why is covariance regime-dependent?

Assumptions (2.7) and (2.8) impose the correlation relationship between
threshold variable and panel threshold errors. We are able to find the accurate
functional form of the generated regressor for a two-stage bias correction
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estimator with Assumption (2.7). Assumption (2.8) describes the endogeneity
structure of the panel threshold model.
From Assumption (2.8) and KST (2007), it is useful to decompose eit into

two parts: (
εit
uit

)
=

(
1 −γj
0 1

)(
eit
uit

)
meaning

eit = γ1uitI (qit ≤ θ) + γ2uitI (qit > θ) + εit (441)

• Remark: This is more general than Assumption 1.4 in Kourtellos
et al. (2015). Still not quite intuitive why we consider the
same threhsold model for the regression of eit (main equation)
on uit (transition variable regression)? Any meaningful economic
example?

We then get the joint distribution of εit and uit:(
εit
uit

)
|xit, zit = N

(
0,

(
σ2
e − γ2

j 0
0 1

))
Under Assumptions (2.1)-(2.8), the effect introduced by endogenous thresh-

old variables, γjuit enters Equation (1) linearly.
42 When qit ≤ θ, the conditional

expectation of panel threshold model is:

E [yit|xit, zit, qit ≤ θ] = E [yit|xit, zit, uit ≤ θ − zitπ] = xitβ1 + λ1 (θ − zitπ)

When qit > θ, we have that:

E [yit|xit, zit, qit > θ] = E [yit|xit, zit, uit > θ − zitπ] = xitβ2 + λ2 (θ − zit)

where

λ1 (θ − zitπ) = − φ (θ − zitπ)

Φ (θ − zitπ)
, λ2 (θ − zitπ) = − φ (θ − zitπ)

1− Φ (θ − zitπ)

φ () and Φ () denote the density and cumulated density function of a standard
normal distribution. We can rewrite panel threshold model with endogenous
threshold variables:

yit = xitI (qit ≤ θ)β1 + xitI (qit > θ)β2 + ψ (qit, zit, θ, π) + εit (442)

where

ψ (qit, zit, θ, π) = γ1λ1 (θ − zitπ) I (qit ≤ θ) + γ2λ2 (θ − zitπ) I (qit > θ)

or
ψ (qit, zit, θ, π) = γ1λ1 (θ − zitπ) + γ2λ2 (θ − zitπ)

42To simplify our analysis, we consider that the correlation between eit and uit is fixed
across i and t; i.e., γj in this paper. This setting can be relaxed in the future study.
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Our estimation procedure proceeds in three steps: First, we estimate the
parameter in (440) by OLS. Second, we estimate the threshold parameter by
minimizing a concentrated least square criterion using ^from first stage.

SCLS (βi (θ) , γi (θ) , θ) = arg min

N∑
i=1

T∑
t=1

(yit − xitI (qit ≤ θ)β1 − xitI (qit > θ)β2 − ψ (qit, zit, θ, π̂))
2

Third, we estimate the parameters β̂1 and β̂2 by LS based on the split samples.

• Remark: still weak theory and weak MC results with no appli-
cation, that’s why still unpublished?

YC’s proposed CF-based modelling Rewrite the panel threshold model,

yit = xitβ1 + xitI (qit > θ) (β2 − β1) + uit (443)

and we allow both qit and xit to be endogenous such that(
qit
xit

)
=

(
π′q
Π′x

)
zit +

(
vqi,t
vxi,t

)
(444)

which can be written as

Xit
(p+1)×1

= Π
(p+1)×l

zit
l×1

+ vit (445)

Assume: (
uit
vit

)
∼
(

0,

(
σ2
u Σuv

Σ′uv Σvv

))
(446)

then we construct
uit = δ′vit + eit

where
δ = Σ−1

vv Σuv, ei ∼
(
0, σ2

e = σ2
u − Σ′uvΣ

−1
vv Σuv

)
Hence, we rewrite (443) as

yit = xitβ1 + xitI (qit > θ) (β2 − β1) + δ′ (Xit −Πzit) + eit. (447)

Again I trust that there is no longer endogeneity of qit and xit in (438)
as they are uncorrelated with ei by regression construction. So if
(447) works, it does not impose any (potentially strong) assumptions
as above.

• I will work on more general case with fixed effects and cross-
section dependence, also paying attention to the FE approaches
by Horrace et al. (2015).
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11.4.5 Digressions to FE models

We consider the error components-based panel:

yit = xitβ + εit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (448)

εit = αi + uit. (449)

Here we assume:

• uit’s are N(0, σ2
u).

• αi’s and uit’are correlated with xit.

Further,

• αi’s and uit’are not correlated with xjt for i 6= j. (sensible??) maybe in
the case where αi uncorrelated with αj and uit uncorrelated with ujt.

• We may decompose the Nk × 1 vector, xt = (x′1t, ...,x
′
Nt)
′ into the two

groups, say xt =
(
x

(1)′
t ,x

(2)′

t

)
with x

(1)
t =

(
x′1t, ...,x

′
N1t

)′
and x

(2)
t =(

x′N1+1,t, ...,x
′
Nt

)′
. Then, assume that x

(2)
t are uncorrelated with αi and

uit if xit does not belong to x
(2)
t or x

(2)
−i,t are uncorrelated with αi and uit

if xit does not belong to x
(2)
t and x

(2)
−i,t indicates the vector excluding xit

from x
(2)
t . e.g. x

(1)
t influential countries and x

(2)
t small countries. or x

(1)
t

neighbor (similar) countries and x
(2)
t remote countries. not sure yet...

Here we consider the few candidates for the control function for xit: First,
we consider the following time series regression for the k × 1 vector xit:43

xit = x−i,tΦi + vit, t = 1, ..., T (450)

where

x−i,t
k×(N−1)

=
[

x′1t · · · x′Nt
]
, Φi
k(N−1)×1

=

 Φi1

...
ΦiN


Assume now: (

uit
vit

)
∼
(

0,

(
σ2
u Σuv

Σ′uv Σvv

))
, t = 1, ..., T (451)

then we construct the following orthogonal projection:

uit = δ′vit + eit, t = 1, ..., T (452)

where
δ = Σ−1

vv Σuv, eit ∼
(
0, σ2

e = σ2
u − Σ′uvΣ

−1
vv Σuv

)
43We can easily allow unobserved individual heterogeneities in (450).
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Hence, using (452), we rewrite (448) as

yit = xitβ + δ′vit + αi + eit (453)

where xit is uncorrelated with eit. Applying the within transformation to (453),
we obtain:

ỹit = x̃itβ + δ′ṽit + ẽit (454)

where ỹit = yit − ȳi with ȳi = T−1
∑
yit and similarly for x̃it, ṽit and ẽit.

Construction of vit in full: write (450) in the matrix notation:

Xi = X−iΦi + Vi (455)

where

Xi
T×k

=

 x′i1
...

x′iT

 , X−i
T×(N−1)k

=

 x′−i,1
...

x′−i,T

 , Vi
T×k

=

 v′i1
...

v′iT


Next, we need to construct vit , and stacking (455) for i = 1, ..., N by

X1 = X−1Φ1 + V1

...

XN = X−NΦN + VN

Thus, we obtain the final sepcification:

X = X−Φ + V (456)

where

X
NT×k

=

 X1

...
XN

 , X−
NT×N(N−1)k

=

 X−1

. . .
X−N

 , Φ
N(N−1)k×1

=

 Φ1

...
ΦN

 , V
NT×k

=

 V1

...
VN


In the case where N > T , the estimatin of (450) may be subject to the

incidental parameters problem. Hence, to reduce the dimensionality of Φ, we
may consider the following simpler and practical approaches: first consider

xit = x̄−i,tΦ̄i + vit, (457)

where

x̄−i,t
k×1

=
1

N − 1

N∑
j=1,j 6=i

xjt, Φ̄i
k×1

=

 Φ̄i1
...

Φ̄ik


In this case we have

Xi = X̄−iΦ̄i + Vi (458)
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where

Xi
T×k

=

 x′i1
...

x′iT

 , X̄−i
T×k

=

 x̄′−i,1
...

x̄′−i,T

 , Vi
T×k

=

 v′i1
...

v′iT


and

X = X̄−Φ̄ + V (459)

where

X
NT×k

=

 X1

...
XN

 , X̄−
NT×Nk

=

 X̄−1

. . .
X̄−N

 , Φ̄
Nk×1

=

 Φ̄1

...
Φ̄N

 , V
NT×k

=

 V1

...
VN



Alternatively, we follows KMS and consider:

xit = x̆
(i)
t Φ̆(i) + vit, (460)

where

x̆
(i)
t

km×1

=
1

m

N∑
j=1,j 6=i

xjt1 {|qit − qjt| ≤ r} , Φ̆(i)

km×1
=


Φ̆

(i)
1
...

Φ̆
(i)
m


Or maybe LASSO or SAR... Then, we will modify the final regression, (453),
accordingly.
Next, more generally, xit is assumed to be the smooth function of the kN×1

vector, xt = (x1t, ...,xNt)
′. In this case the control function for xit follows the

VAR(1):
xt = Φxt−1 + vt.

Assume now: (
uit
vit

)
∼
(

0,

(
σ2
u Σuv

Σ′uv Σvv

))
(461)

then we construct
uit = δ′vit + eit

where
δ = Σ−1

vv Σuv, eit ∼
(
0, σ2

e = σ2
u − Σ′uvΣ

−1
vv Σuv

)
Hence, we rewrite (448) as

yit = xitβ + δ′ (xt −Φxt−1) + αi + eit (462)

or
ỹit = x̃itβ + δ′ (xt −Φxt−1) + eit (463)

where ỹit = yit − ȳi. To reduce the dimensionality of Φ(i)??
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Mundlak (1978) argued that the dichotomy between fixed effects and random
effects models disappears if we make the assumption that αi depend on the
mean values of xi, an assumption he regards as reasonable in many problems.
As before, consider the error components model,

yi = xiβ +αi + ui, (464)

but now assume
αi = x̄iπ + wi,

where wi has the same properties that αi was assumed to have; that is,

1. wi’s are iidN(0, σ2
w).

2. wi’s are uncorrelated with ujt for all i, j, t, that is, E [wiujt] = 0 for all
i, j, t.

3. wi’s are uncorrelated with xjt for all i, j, t, that is, E [wixjt] = 0 for all
i, j, t.

12 Concluding Remarks

Eventually, this project aims to

• develop the general econometrics specifications that can accommodate the
spatial and factor dependence, the spatial heterogeneity, the endogenous
spatial weights matrix as well as the spatial nonlinearity in dynamic het-
erogenous panels in a rather unified framework by combining all the recent
advances made in the related literature.

• extend all the advances to the multi-dimensional dataset, separately and
jointly. As the dimension grows, it would be more complicated and chal-
lenging to develop the hierarchical and strucutal structue of the spatial
effects and factors, jointly.

• These works will be of great applicability to a variety of the big dataset,
not only the health economics data...
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