
Optical mapping: bionano
DNA labeling

The DNA labeling workflow is divided
into four consecutive steps. First, the
high molecular weight DNA is nicked
with an endonuclease of choice that
introduces single strand nicks
throughout the genome. Second, Taq
polymerase recognizes these sites
and replaces several nucleotides with
fluorescently tagged nucleotides
added to the solution. Third, the two
ends of the DNA are ligated together
using DNA ligase. Fourth, the DNA
backbone is stained with DNA Stain.

Barseghyan et al. Genome Medicine (2017) 



Optical mapping: bionano
DNA loading

The labeled dsDNA is loaded into chip
flowcells. The applied voltage
concentrates the coiled DNA at the lip
(left). Later, DNA is pushed through
pillars (middle) to uncoil/straighten,
then into nanochannels (right). DNA is
stopped and imaged in the
nanochannels. Blue=staining of DNA
backbone, green=fluorescently labeled
nicked sitesBarseghyan et al. Genome Medicine (2017) 

https://bionanogenomics.com/



Optical mapping: bionano
DNA visualization

Once raw image data of labeled long DNA molecules is captured, it is converted into
digital representations of the motif-specific label pattern. A proprietary software then
assembles the data de novo to recreate a whole genome map assembly.

https://bionanogenomics.com/



Electronic mapping: Nabsys

In order to construct whole genome electronic maps, high molecular weight genomic DNA is isolated from
the cells or tissue of choice. The high per-molecule information content of Nabsys single-molecule reads
allows for a solution-phase DNA isolation procedure, producing DNA in the 35-500 kb range, obviating the
need for time consuming gel plug isolation protocols. Following purification, the DNA is tagged in a
sequence-specific manner through an enzymatic nicking reaction. As single molecules pass through the
detector, the presence of the DNA backbone and attached tags are sensed as changes in the resistance
of the detector. The resulting data indicate the time between tag sites on each single-molecule DNA
backbone. The temporal events are then converted to distance-based events where the distance between
tags (termed an “interval”) is reported in base-pairs.

http://nabsys.com/Home.aspx



SRA database







Quality check
Per base sequence quality

After sequencing After adaptor trimming 
and removal of low 

quality regions

Generated by FASTQC software
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/



Quality check
Per base sequence content

After sequencing After adaptor trimming 
and removal of low 

quality regions

Generated by FASTQC software
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/



Quality check
GC content

After sequencing

After adaptor trimming 
and removal of low 

quality regions

Generated by FASTQC software
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/



Quality check
Per sequence quality score

Bad sequencing Good sequencing



Quality check
Per base N content

Bad sequencing Good sequencing



Quality check
Over-represented sequences



Applications of NGS platforms
• DNA sequencing

- genome re-sequencing (SNPs, CNV, GWAS)
- de novo sequencing 
- identification of genome structural variants (cancer genome)
- 3D chromatin interactions
- Epigenomics (chromatin state and genome methylation)
- Metagenomics (taxonomic analysis of environmental samples)

• RNA sequencing
- Qualitative and quantitative analysis of the Transcriptome
- Identification and characterization of miRNAs and other ncRNAs
- RNA editing
- Metatrancriptomics (functional analysis of environmental samples) 



159

ACGTGGTAA CGTATACAC   TAGGCCATA
GTAATGGCG CACCCTTAG

TGGCGTATA CATA…

ACGTGGTAATGGCGTATACACCCTTAGGCCATA

Short fragments of DNA

AC..GC
TT..TC

CG..CA

AC..GC

TG..GT TC..CC

GA..GC TG..AC
CT..TG

GT..GC AC..GC AC..GC
AT..AT

TT..CC
AA..GC

Short DNA sequences

ACGTGACCGGTACTGGTAACGTACA
CCTACGTGACCGGTACTGGTAACGT
ACGCCTACGTGACCGGTACTGGTAA
CGTATACACGTGACCGGTACTGGTA
ACGTACACCTACGTGACCGGTACTG
GTAACGTACGCCTACGTGACCGGTA
CTGGTAACGTATACCTCT...

Sequenced genome

Genome

Genome re-sequencing



Whole genome sequencing



https://www.genomicsengland.co.uk/the-100000-genomes-project/

http://www.internationalgenome.org/



https://sites.google.com/a/ualberta.ca/onekp/



Capturing



Exome sequencing



Exome sequencing



Exome sequencing

Picardi and Pesole 2013 Nature Methods



Structural Variations



SNP detection

Reference genomeReference nucleotide: A

6 aligned reads
(from patient)

4 aligned reads
(from patient)

Total number of reads covering indicated position: 10

Frequency of reads supporting variant: 6/10 = 60%

Heterozygous

T
T
T
T
T
T

A
A
A
A



RNA-Seq
RNA-Seq refers to experimental procedures that generate sequence reads derived
from the entire RNA molecule. It can be used to build a complete map of the
transcriptome across all cell types, perturbations and states.

Condition 1
(normal colon)

Condition 2
(colon tumor)

Isolate RNAs

Sequence

Generate cDNA, fragment, 
size select, add linkers

Samples of interest

Map to genome, 
transcriptome, and 

predicted exon 
junctions



RNA-Seq: Applications

ü Gene/transcript expression

ü Isoform reconstruction

ü Alternative splicing detection

ü Gene discovery

ü RNA editing identification

ex1 ex2 ex3

ex1 ex2 ex3 ex1 ex3

gene 1                       gene 2                         gene x

DNA

*
*

*

*

full RNA



RNA-Seq: read types

fragment

Single end

Paired ends
(also strand oriented)



RNA-Seq analysis workflow

RAW Data Quality 
check

Read 
Mapping

Downstream 
analyses

Fastq file(s) - FastQC
- RSeQC
- RNA-SeQC
- FASTX-Toolkit
- cutadapt
- Trimgalore
- …

- GSNAP
- TopHat
- Bowtie
- BWA
- STAR
- …

- Gene Expression (Cuffdiff)
- Gene Fusion (FusionMap)
- Gene Finding (Augustus)
- …
- RNA Editing



RNA-Seq: read mapping

Genome

Gene

Re
ad

s

Genome

Gene

Re
ad

s

Versus

Alignment

Splice-Aware
Alignment

We need to align the sequence data to our genome of interest

² In aligning RNA-Seq data to the genome always pick a slice-aware aligner:

TopHat2, MapSplice, SOAPSplice, Passion, SpliceMap, RUM, ABMapper, CRAC, 
GSNAP, HMMSplicer, Olego, BLAT

http://tophat.cbcb.umd.edu/
http://www.netlab.uky.edu/p/bioinfo/MapSplice
http://soap.genomics.org.cn/soapsplice.html
https://trac.nbic.nl/passion
http://www.stanford.edu/group/wonglab/SpliceMap/
http://www.cbil.upenn.edu/RUM/
http://hkbic.cuhk.edu.hk/software/abmapper
http://crac.gforge.inria.fr/
http://research-pub.gene.com/gmap/
http://derisilab.ucsf.edu/index.php%3Fsoftware=105
http://zhanglab.c2b2.columbia.edu/index.php/OLego
http://genome.ucsc.edu/goldenPath/help/blatSpec.html


RNA-Seq: read mapping
Against transcriptome

exon 1 exon 2

exon 1 exon 2

Tools as BWA, Bowtie, MAQ, SOAP, GSNAP … and others can be used.



RNA-Seq: read mapping
Against whole genome

Garber at al. (2011) Nature Methods

Tophat, MapSplice … GSNAP



RNA-Seq: visualization



RNA-Seq: visualization
strand oriented reads



RNA-Seq: transcriptome reconstruction
Transcript assembly

Garber at al. (2011) Nature Methods

Cufflinks, Scripture Abyss, Trinity



RNA-Seq: alternative splicing

Matlin et al. (2005) Nature Reviews Molecular Cell Biology

Detection by known or 
novel splice junctions

Detection by isoform 
comparison



RNA-Seq: gene/transcript expression

When using RNA-seq to estimate gene expression, read counts need to be properly normalized to extract
meaningful expression estimates
- RNA fragmentation during library construction causes longer transcripts to generate more reads

compared to shorter transcripts present at the same abundance in the sample;
- The variability in the number of reads produced for each run causes fluctuations in the number of

fragments mapped across samples;
To account for these issues, the reads per kilobase of transcript per million mapped reads (RPKM) metric
normalizes a transcript’s read count by both its length and the total number of mapped reads in the sample.

RPKM (FPKM ) =109 × C
NL

C= the number of reads mapped onto the gene's exons
N= total number of reads in the experiment
L= the sum of the exons in base pairs.

Garber at al. (2011) Nature Methods



RNA-Seq: gene fusions



CSIRO. Nescent August 2011 - Measuring Expression

25

75

110

smallRNA separation: PAGE

àsmall RNA < 35bp

RNA-Seq: small RNAs
sequencing

Motameny et al. (2010) Genes



RNA-Seq: small RNAs
analysis

Ryu et al. (2011) PlosOne

http://www.mirbase.org

http://waprna.big.ac.cn/rnaseq/



Genome

Short reads

Using NGS, each genomic position can be
supported by a large number of sequences and
this can greatly improve the detection of RNA
editing substitutions.

Massive RNA sequencing can facilitate the study of entire transcriptomes as well
as post-transcriptional events occurring herein as alternative splicing and RNA
editing.

RNA-Seq: RNA editing



We can employ NGS data (RNA-Seq, genome resequencing and exome sequencing) to

study RNA editing at different levels:

ü genome/exome Vs RNA-Seq to identify

new events (REDItools);

ü RNA-Seq to explore the presence of
known A-to-I conversions;

ü RNA-Seq to detect de novo new editing
candidates;

r1   GGGTGCCTTTATGCAGCAAGGATGCGATATT
r2   GGGTGTCTTTATGCAGCAAGGATGCGATACTTCGC
r3   GGGTGCCTTTATGCAGCAAGGATGCGATATTTCG
r4   GGGTGCCTTTATGCAGCAAGGATGCGATATTTCG
r5   GGGTGCCTTTATGCAGCAAGGATGCGATATTTCG

..............A.....................
gDNA  TGGGTGCCTTTATGCAGCAAGGATGCGATATTTCGCC

..............G.....................
r1   GGGTGCCTTTATGCGGCAAGGATGCGATATT
r2   GGGTGTCTTTATGCAGCAAGGATGCGATACTTCGC
r3   GGGTGCCTTTATGCGGCAAGGATGCGATATTTCG
r4   GGGTGCCTTTATGCGGCAAGGATGCGATATTTCG
r5   GGGTGCCTTTATGCGGCAAGGATGCGATATTTCG

RNA-Seq

Exome

gDNA  AGCTGGCCAGATACATTAAGACCAGTGCTCACTATGAAG
................G.....................   

r1   GCTGGCCAGATACATTGAGACCAGTGCTCAC
r2   GCTGGCCAGATACATTAAGACCAGTGCTCAC
r3    CTGGCCAGATACATTGAGACCAGTGCTCACTATGAAG
r4    CTGGCCAGATACATTGAGACCAGTGCTCACTATG
r5    CTGGCCAGATACATTAAGACCAGTGCTCACTATGAAG
r6    CTGGCCAGATACATTAAGACCAGTGCTCACTATGAAG
r7    CTGGCCAGATACATTGGGACCAGTGCTCACTATGAAG
r8    CTGGCCAGATACATTGAGACCAGTGCTCACT
r9    CTGGCCAGATACATTGAGACCAGTGCTCACTATGAAG

RNA-Seq

RNA-Seq: RNA editing detection

http://www.caspur.it/ExpEdit/



Human Transcriptome profile

Melè et al. 2015 Science



ChIP-Seq



ChIP-Seq



Metagenomics



Capturing single cells and quantifying mRNA
levels using the C1 Single-Cell Auto Prep
System. (a) Key functional components of the
C1 System are labeled, including the
pneumatic components necessary for control
of the microfluidic integrated fluidic circuit
(IFC) and the thermal components necessary
for preparatory chemistry. (b) Left, complete
IFC with carrier; reagents and cells are loaded
into dedicated carrier wells, and reaction
products are exported to other dedicated
carrier wells.(c) Schematic for a C1 reaction
line, with the reaction line colored light gray
and the isolation valves shown in varied
colors.

Pollen et al. 2014 Nature Biotech. 

Single-cell sequencing – C1



Droplet-Sequencing (Drop-Seq)



Droplet-Sequencing (Drop-Seq)



Droplet-Sequencing (Drop-Seq)



Single-cell transcriptome

Pollen et al. 2014 Nature Biotech. 

Distinct groups of cells corresponding to pluripotent, blood, skin and neural cells can be
identified by PCA. NPC, neural progenitor cell.















Similarity search for genes



























GeneID … in action
First step: splice sites, start and stop codons are predicted
and scored along the sequence using Position Weight Matrices
(PWMs)

Start codon
Stop codon

Acceptor site

Donor site

Genomic sequence



Second step: Exons are scored as the sum of the scores of the
defining sites, plus the the log-likelihood ratio of a Markov
Model for coding DNA

First exon Internal exon Terminal exon

Start codon
Stop codon

Acceptor site

Donor site

GeneID … in action

Genomic sequence



Last step: from the set of predicted exons, the gene structure
is assembled maximizing the sum of the scores of the
assembled exons

First Internal Terminal

First Internal Terminal

15 20 40

10 30 25

Predicted gene with score (15+30+40)

First
15

Internal

30

Terminal
40

GeneID … in action



http://genome.crg.es/geneid.html



Ab initio
Gene Prediction Tools

• Genscan (http://genes.mit.edu/)

• FGENESH (http://www.softberry.com/berry.phtml?topic=gfind)

• GeneMark.hmm (http://opal.biology.gatech.edu/GeneMark)

• GlimmerHMM (http://www.genomics.jhu.edu/GlimmerHMM)

• SNAP (http://homepage.mac.com/iankorf)

• Genie (http://www.fruitfly.org/~martinr/doc/genie.html)

Ab initio gene finders remain the simplest and cost-effective
technology for translating a genome to a set of exon-intron
structures and the proteins they encode.

A lot of such ab initio gene predictions are freely available on
world wide web:



Ab initio
Gene Prediction Tools
A great part of these ab initio gene finders is based on HMM
and thus on very complex probabilistic models.

LEGEND:
N: intergenic,
Es: single-exon gene
Ei: initial exon
Et terminal exon
E0–E2: exons in phase 0–2
I0–I2: introns in phases 0–2

Example…from SNAP
(Korf, 2004 BMC Bioinformatics)



http://genes.mit.edu/GENSCAN.html
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