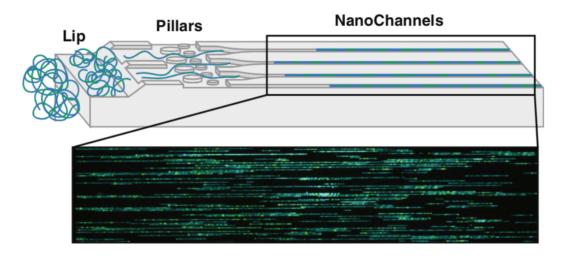
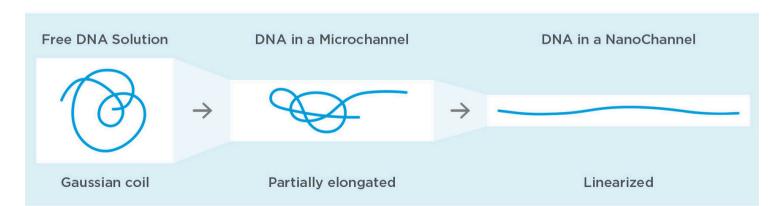

Optical mapping: bionano DNA labeling

1. Induce single-stranded breaks with nicking endonuclease (BspQI, BssSI)

2. Taq Polymerase integrates fluorescent nucleotides at nicking site


3. Ligation

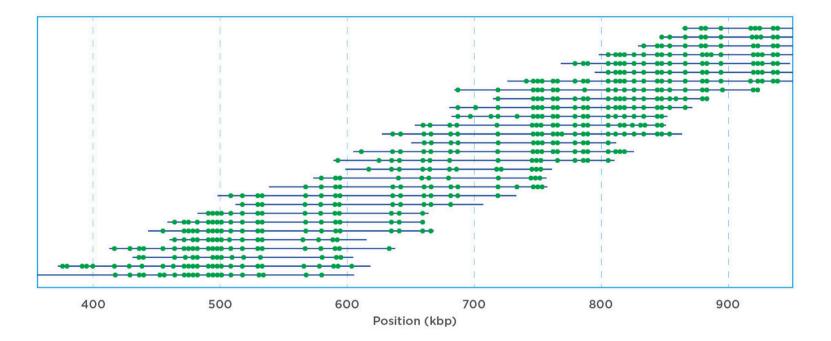
4. DNA staining


The DNA labeling workflow is divided into four consecutive steps. First, the high molecular weight DNA is nicked with an endonuclease of choice that introduces single strand nicks throughout the genome. Second, Tag polymerase recognizes these sites and replaces several nucleotides with fluorescently tagged nucleotides added to the solution. Third, the two ends of the DNA are ligated together using DNA ligase. Fourth, the DNA backbone is stained with DNA Stain.

Optical mapping: bionano DNA loading

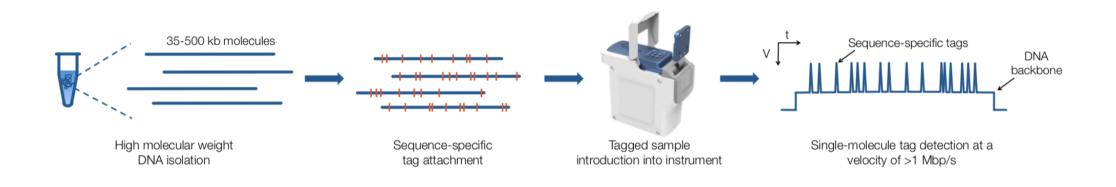
Barseghyan et al. Genome Medicine (2017)

The labeled dsDNA is loaded into chip flowcells. The applied voltage concentrates the coiled DNA at the lip (left). Later, DNA is pushed through pillars (middle) to uncoil/straighten, then into nanochannels (right). DNA is and imaged in the stopped nanochannels. Blue=staining of DNA backbone, green=fluorescently labeled nicked sites



SINGLE DNA MOLECULE LINEARIZATION IN NANOCHANNEL

https://bionanogenomics.com/


Optical mapping: bionano DNA visualization

DIGITAL REPRESENTATION OF LABELED LONG DNA

Once raw image data of labeled long DNA molecules is captured, it is converted into digital representations of the motif-specific label pattern. A proprietary software then assembles the data *de novo* to recreate a whole genome map assembly.

Electronic mapping: Nabsys

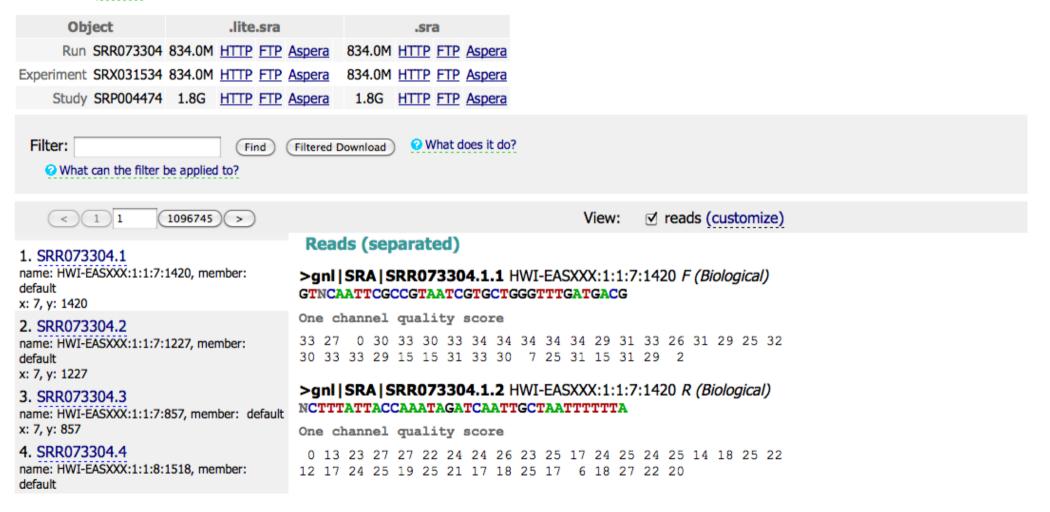
In order to construct whole genome electronic maps, high molecular weight genomic DNA is isolated from the cells or tissue of choice. The high per-molecule information content of Nabsys single-molecule reads allows for a solution-phase DNA isolation procedure, producing DNA in the 35-500 kb range, obviating the need for time consuming gel plug isolation protocols. Following purification, the DNA is tagged in a sequence-specific manner through an enzymatic nicking reaction. As single molecules pass through the detector, the presence of the DNA backbone and attached tags are sensed as changes in the resistance of the detector. The resulting data indicate the time between tag sites on each single-molecule DNA backbone. The temporal events are then converted to distance-based events where the distance between tags (termed an "interval") is reported in base-pairs.

SRA database

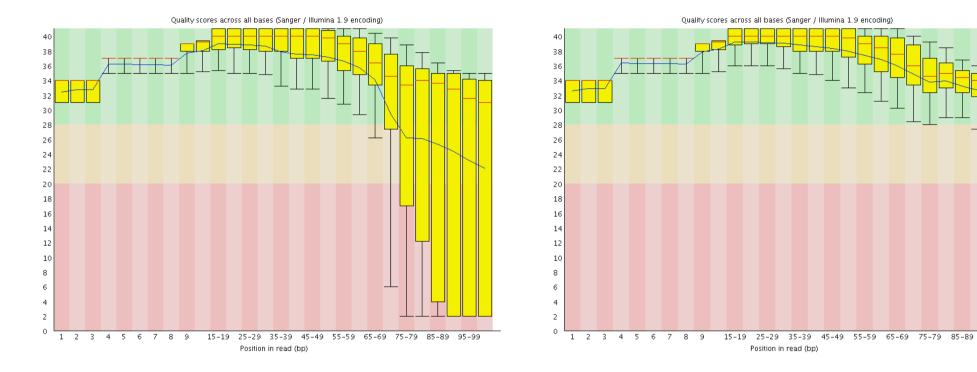
S NCBI Resources 🗵 How To 🖸		Sign in to NCBI		
SRA SRA Limits	dvanced	Search Help		
G ATATTT AATA	SRA			
The Sequence Read Archive (SRA) stores raw sequencing data from the next generation of sequencing platforms including Roche 454 GS System®, Illumina Genome Analyzer®, Applied Biosystems SOLiD® System, Helicos Heliscope®, Complete Genomics®, and Pacific Biosciences SMRT®.				
Using SRA	Tools	Other Resources		
Handbook	BLAST	SRA Home		
<u>Download</u>	SRA Run browser	Trace Archive		
<u>E-Utilities</u>	Submit to SRA	Trace Assembly		
	SRA software	GenBank Home		

S NCBI	Resources 🕑	How To 🕑						My NCBI Sign In
SRA		SRA	Limits A	dvanced		Sea	arch	Help
Display Set	<u>tings:</u>					Send to: 🖂		
					Related information			
WGS of Sa	a_JKD6272						BioSample	
Accession	SRX031534						PubMed	
	t design: n/a							
	n: SRA026511	by University of	Melbourne					
				474) • Study • All experiments (mo	ore)		Recent activity	
	<u>RS121467) (mc</u>						-	Turn Off Clear
	_JKD6272 (mg						Q SRP004474 (3)	
	umina (more)					SKP004474 (3)	SRA
Processing:		0-1	to - to				Q SRP007764 (1)	
	s: Base Space, core: Solexa pri		-				SKE007704 (1)	SRA
Spot descri		nary analysis, o					Q exome (38813)	
forw		reverse						SRA
1	37 Varu	reveise					Q SRP007744 (1)	
Total: 1 run.	, 11M spots, 78	9.7M bases						SRA
			<u>ra</u> (795.3M) or <u>si</u>	<u>a-lite</u> (795.3M) formats 🕡			Q SRP (0)	
		-		· · · · · · · · · · · · · · · · · · ·				SRA
								Coo moro
# R	Run	# of Spots	# of Bases					See more

43	7
	343


1. SRR073304

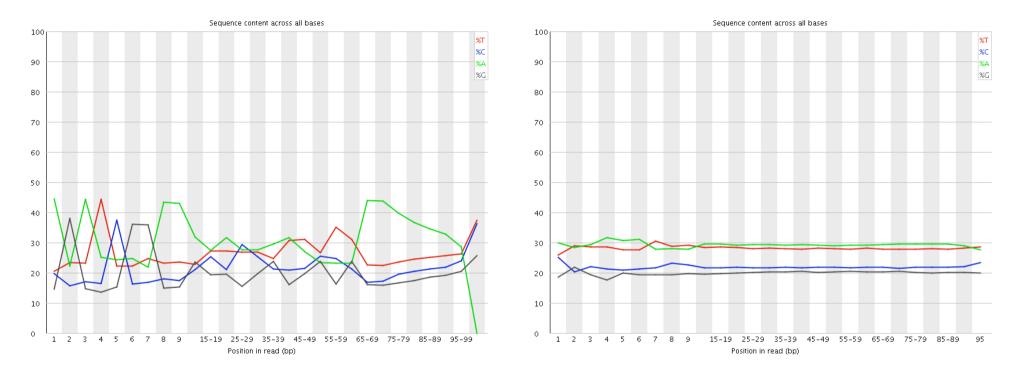
10,967,442


789.7M

Alias: Sa_JKD6272 Instrument model: Illumina Genome Analyzer II Date of run: Run center: University of Melbourne Statistics: Number of spots: 10967442 Number of reads: 21934884 Design: Platform: Illumina Sample: WGS of cMRSA strain Sa_JKD6272 Library: Name: Sa_JKD6272 Strategy: WGS Source: GENOMIC Selection: RANDOM Layout: PAIRED (NOMINAL_LENGTH=250, NOMINAL_SDEV=50) Construction Protocol:

Download (hide):

Quality check Per base sequence quality

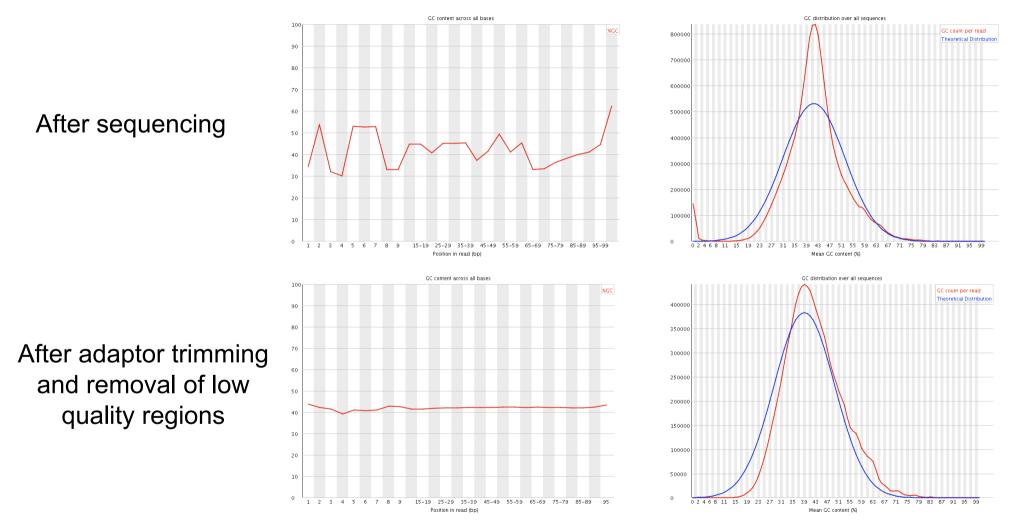


After adaptor trimming and removal of low quality regions 95

Generated by FASTQC software http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

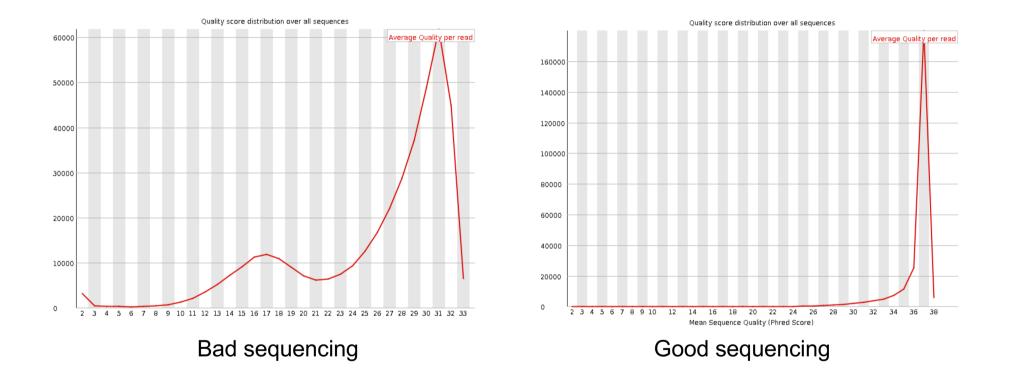
After sequencing

Quality check Per base sequence content

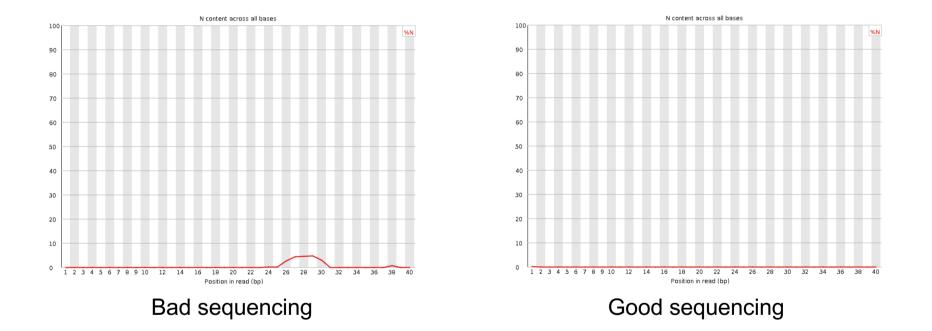


After sequencing

After adaptor trimming and removal of low quality regions


Generated by FASTQC software http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

Quality check GC content



Generated by FASTQC software http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

Quality check Per sequence quality score

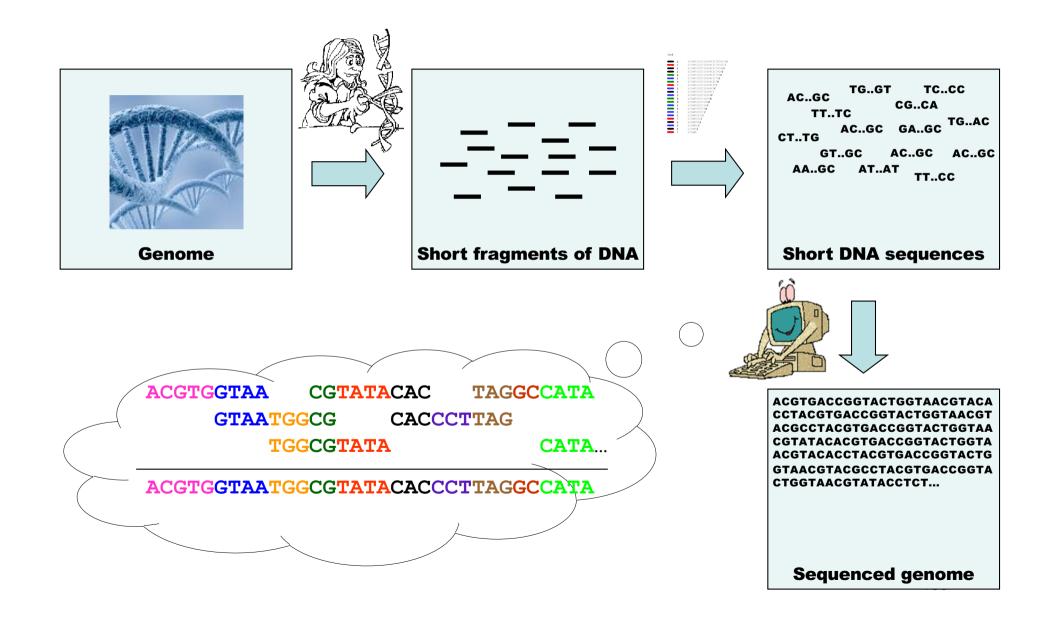
Quality check Per base N content

Quality check Over-represented sequences

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
AGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTC	2065	0.5224039181558763	No Hit
GATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG	2047	0.5178502762542754	No Hit
ATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGA	2014	0.5095019327680071	No Hit
CGATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTAT	1913	0.4839509420979134	No Hit
GTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGA	1879	0.47534961850600066	No Hit
AAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCT	1846	0.4670012750197325	No Hit
TGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCAT	1841	0.46573637449150995	No Hit
AACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAA	1836	0.46447147396328753	No Hit
GATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATC	1831	0.4632065734350651	No Hit
AAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTC	1779	0.45005160794155147	No Hit
ATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCA	1779	0.45005160794155147	No Hit
AATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCC	1760	0.4452449859343061	No Hit

Applications of NGS platforms


DNA sequencing

- genome re-sequencing (SNPs, CNV, GWAS)
- de novo sequencing
- identification of genome structural variants (cancer genome)
- 3D chromatin interactions
- Epigenomics (chromatin state and genome methylation)
- Metagenomics (taxonomic analysis of environmental samples)

RNA sequencing

- Qualitative and quantitative analysis of the Transcriptome
- Identification and characterization of miRNAs and other ncRNAs
- RNA editing
- Metatrancriptomics (functional analysis of environmental samples)

Genome re-sequencing

Whole genome sequencing

Vol 452|17 April 2008

nature

NEWS & VIEWS

HUMAN GENETICS

Dr Watson's base pairs

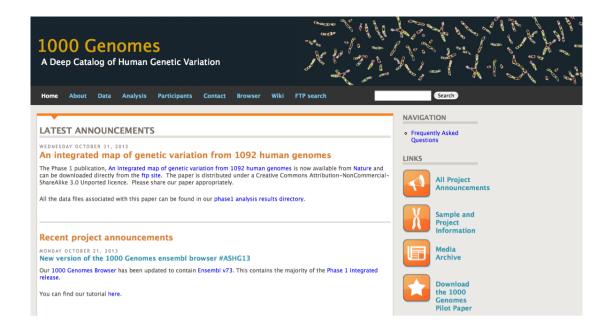
Maynard V. Olson

The application of new technology to sequence the genome of an individual yields few biological insights. Nonetheless, the feat heralds an era of 'personal genomics' based on cheap sequencing.

This issue of Nature contains a paper that is, in a curious way, a sequel to one published 55 years ago - the description by James Watson and Francis Crick1 of the double-helical structure of DNA. At the informationcarrying core of this beautiful structure, with its far-reaching implications for biology and medicine, are the base pairs that Watson discovered by fitting together cardboard cut-outs of the bases adenine, thymine, guanine and cytosine. Now, on page 872, Wheeler et al.2 describe the use of massively parallel DNA sequencing to determine the order of the base pairs in Watson's own genome. This achievement is a technical tour de force that points towards routine use of wholegenome sequencing as a research tool in human genetics. Given the choice of James Watson as an identified research subject, the paper is also a conspicuous effort to publicize the arrival of the era of personal genomics and the willingness of a famous geneticist to put his genome sequence in the public domain.

Technically, the paper's interest stems from its reliance on a DNAsequencing platform that differs greatly from the one used during the first great era of genome sequencing, which culminated in the Human Genome Project (HGP). In the HGP platform, each kilobase-pair fragment of genomic DNA was captured

as a bacterial 'clone' using recombinant-DNA techniques and processed in its own microlitre-scale well in a microtitre plate. Following a series of biochemical steps, each sample was analysed electrophoretically in a dedicated, metre-long glass capillary. To achieve the required redundancy in sequence cover-


centres that looked more like manufacturing plants than laboratories. The data-production costs alone were hundreds of millions of dollars.

Wheeler et al.² used one of several new DNAsequencing platforms that can achieve much the same result at perhaps 1% of the cost³⁴. Note, efficiency of the new methods lies in massive parallelization of the biochemical and measurement steps. The instruments used by Wheeler et al. are marketed by 454 Life Sciences, a component of Roche Diagnostics, which joined forces with the Human Genome Sequencing Center at Baylor College of Medicine in Houston, Texas, to sequence Watson's genome.

The 454 instruments achieve massive parallelization in two different ways3. In an initial step, single DNA molecules are attached to synthetic beads and then amplified enzymatically. During amplification, the beads are trapped in tiny water droplets within a water-oil emulsion; hence, more than 100,000 samples can be processed in parallel in a single test tube. In a later step, during which optical measurements are used to collect the actual sequencing data, each bead is confined to a picolitre-scale well etched into the end of a glass fibre within a fibre-optic bundle. Although costs have not yet dropped to the much-ballyhooed target of US\$1,000 per genome6, they are now low enough to make the era of personal genomics a reality rather than a distant dream.

What can we expect to learn from the sequences of individual genomes? The main lesson from the analyses by Wheeler et al. is that it will be extremely difficult to extract medically, or even

biologically, reliable inferences from individual sequences. Consider the challenge of interpreting Watson's single nucleotide polymorphisms (SNPs — simple substitutions of one base for another at a particular site in the genome). Wheeler *et al.* report about 3,300,000 SNPs in Watson's genome relative to the HGP reference http://www.internationalgenome.org/

Home > The 100,000 Genomes Project

The 100,000 Genomes Project

https://www.genomicsengland.co.uk/the-100000-genomes-project/

The project will sequence 100,000 genomes from around 70,000 people. Participants are NHS patients with a rare disease, plus their families, and patients with cancer.

The aim is to create a new genomic medicine service for the NHS – transforming the way people are cared for. Patients may be offered a diagnosis where there wasn't one before. In time, there is the potential of new and more effective treatments.

The project will also enable new medical research. Combining genomic sequence data with medical records is a ground-breaking resource. Researchers will study how best to use genomics in healthcare and how best to interpret the data to help patients. The causes, diagnosis and treatment of disease will also be investigated. We also aim to kick-start a UK genomics industry. This is currently the largest national sequencing project of its kind in the world.

Cooke	ما ما خ	alte.
Searc	n this	site

BALBERTA 1000 Plants

HOME

GREEN PLANTS

MEDIA

SUB-PROJECTS

AGRICULTURE

ANGIOSPERMS

BIOCHEMISTRY

EXTREMOPHYTES

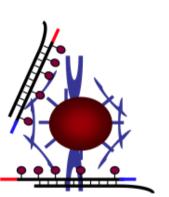
GREEN ALGAE

MEDICINES

NON-FLOWERING

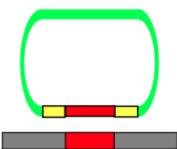
SITEMAP

Home

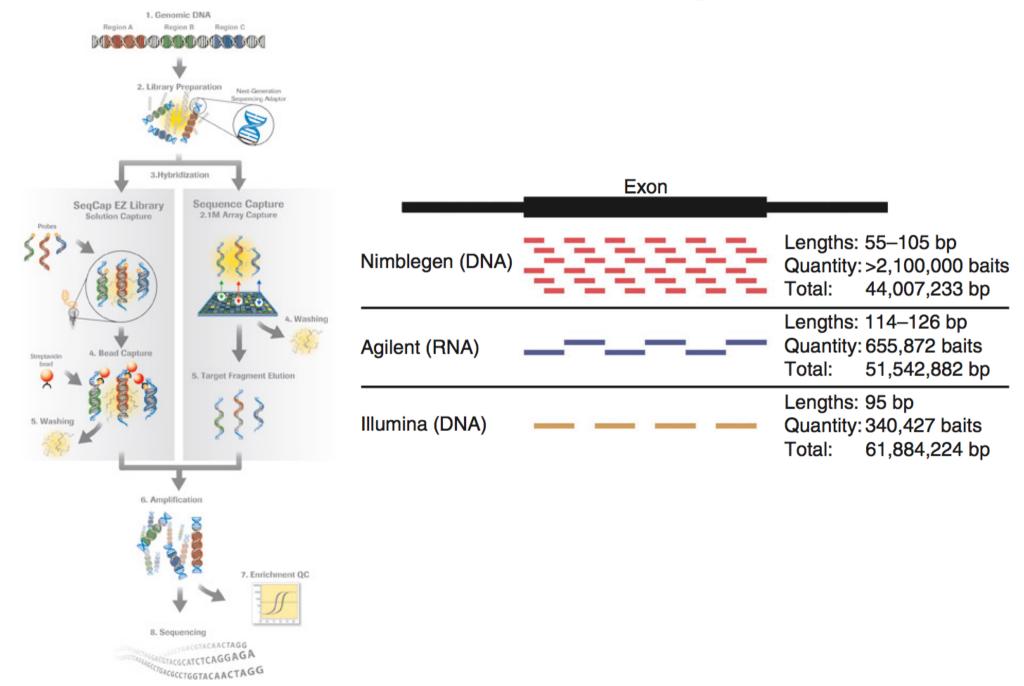

The 1000 plants (oneKP or 1KP) initiative is an international multi-disciplinary consortium that has generated large-scale gene sequencing data for over 1000 species of plants. Major supporters include Alberta Ministry of Innovation and Advanced Education, Musea Ventures (Somekh Family Foundation), Beijing Genomics Institute in Shenzhen (BGI-Shenzhen), China National GeneBank (CNGB), iPlant Tree-of-Life (iPToL) Grand Challenge, Compute Canada (Westgrid), Alberta Innovates Technology Futures (AITF-iCORE Strategic Chair). The sample selection was originally based on a series of overlapping sub-projects with scientific objectives that could be addressed by sequencing multiple plant species (links on left). As more collaborators joined 1KP, however, the objectives evolved and are now exemplified by the diverse collection of papers described by the links below.

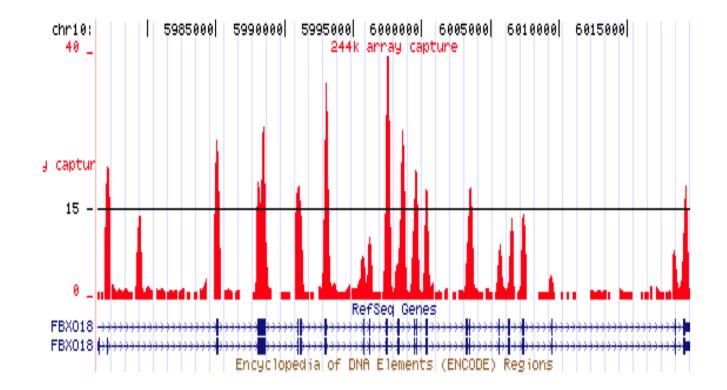
Capturing

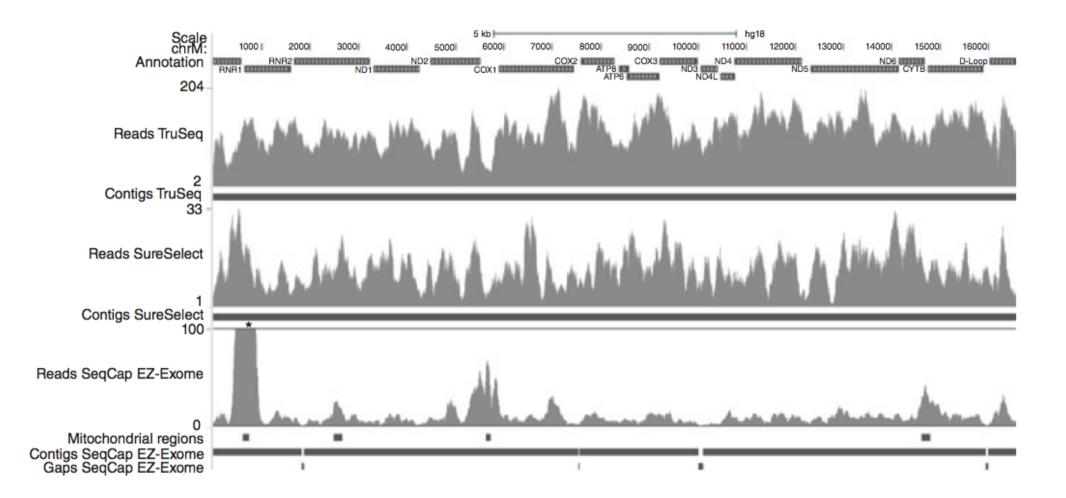
Array hybridization


Agilent Technologies

In solution hybridization




Molecular inversion probes


Exome sequencing

Exome sequencing

Exome sequencing

Picardi and Pesole 2013 Nature Methods

Structural Variations

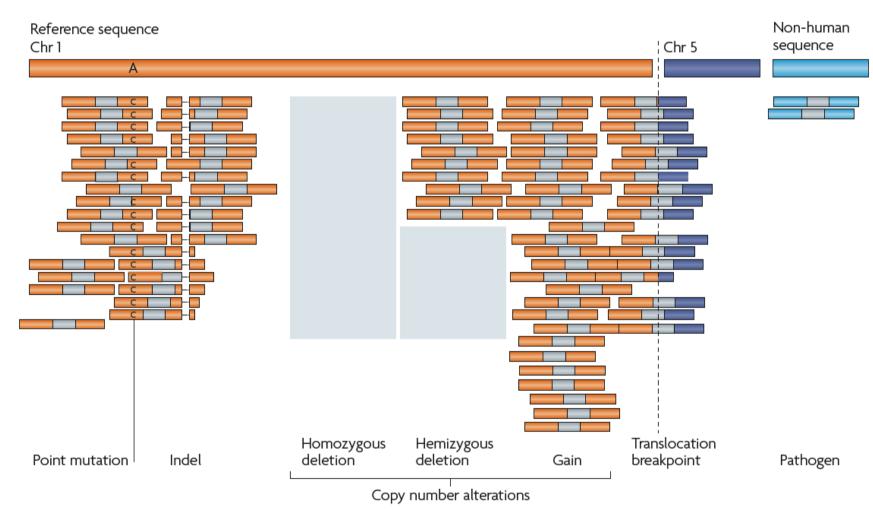
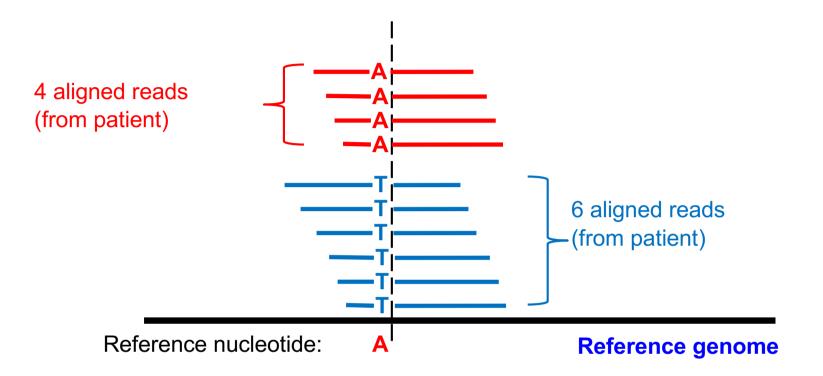
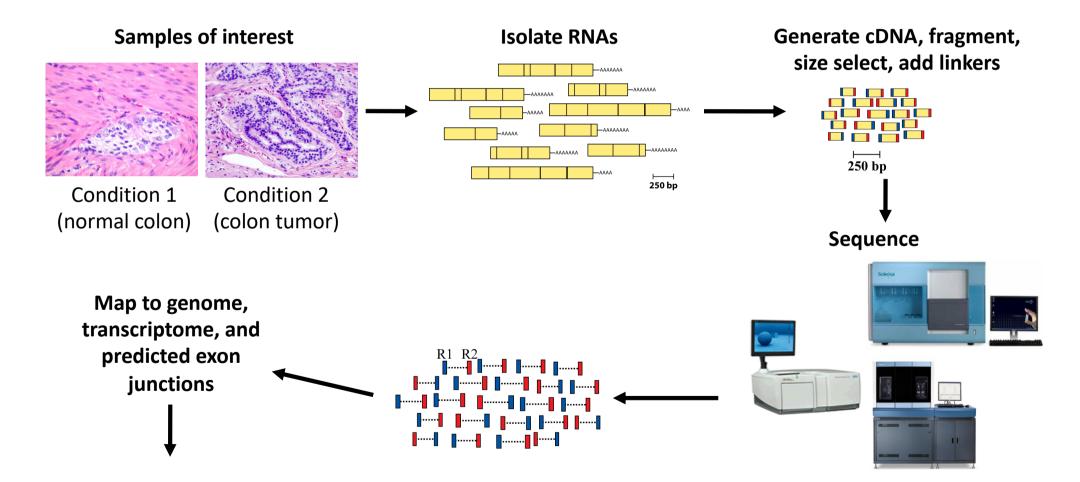
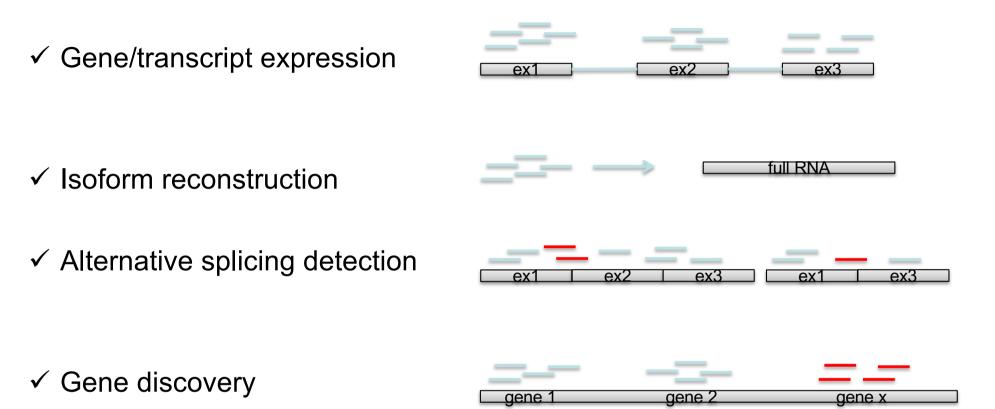



Figure 3 | Types of genome alterations that can be detected by second-generation sequencing. Sequenced

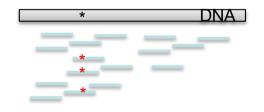
SNP detection

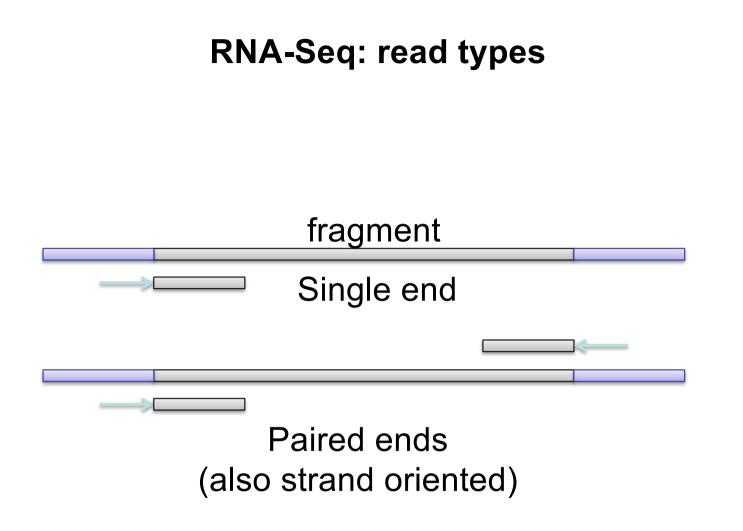

Total number of reads covering indicated position: 10

Frequency of reads supporting variant: 6/10 = 60%

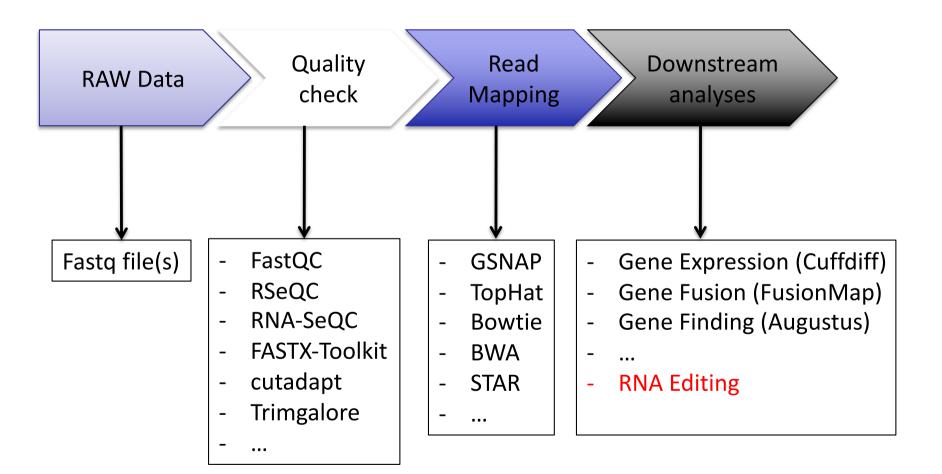

Heterozygous

RNA-Seq


RNA-Seq refers to experimental procedures that generate sequence reads derived from the entire RNA molecule. It can be used to build a complete map of the transcriptome across all cell types, perturbations and states.

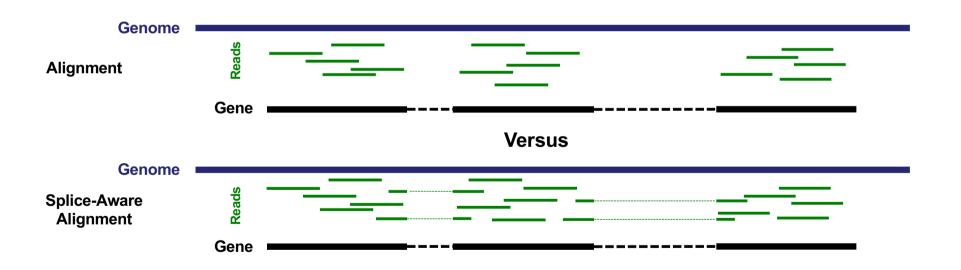


RNA-Seq: Applications



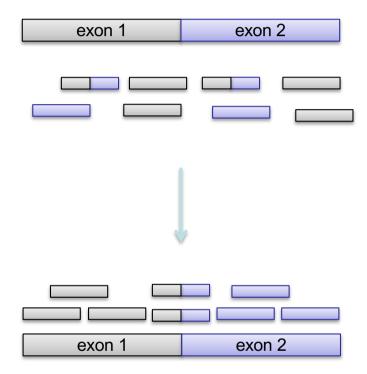
✓ RNA editing identification

RNA-Seq analysis workflow



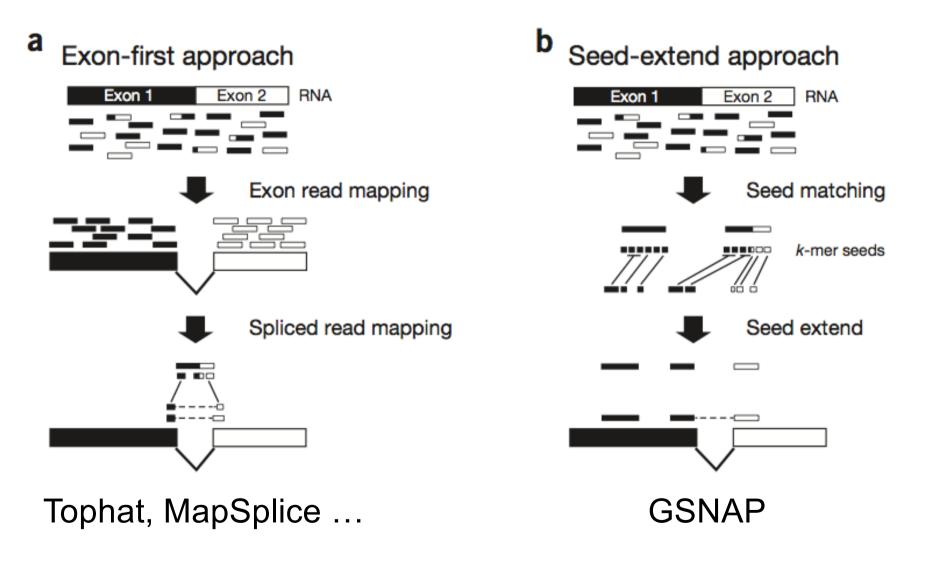
RNA-Seq: read mapping

We need to align the sequence data to our genome of interest

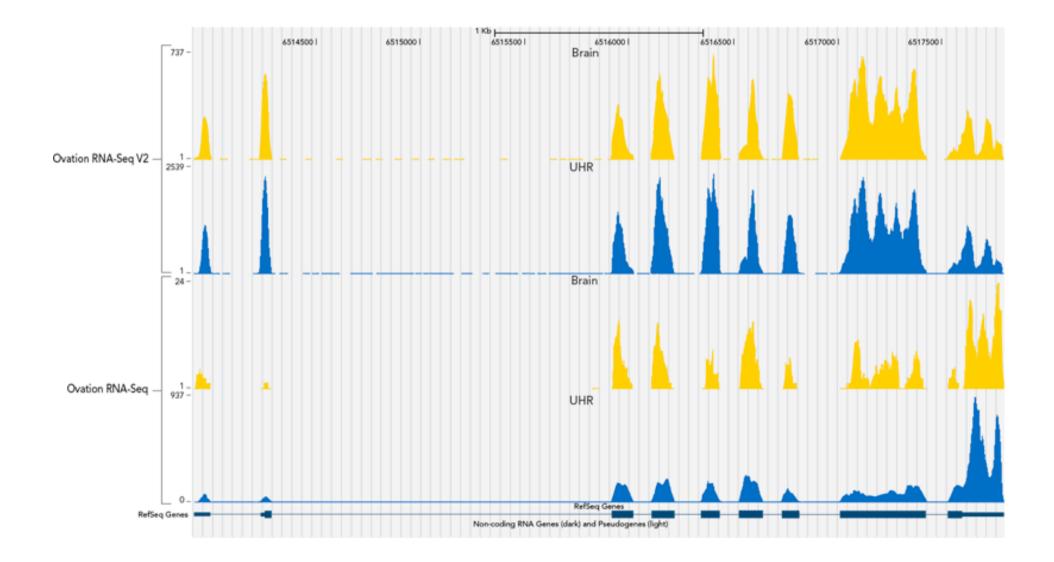

 \diamond In aligning RNA-Seq data to the genome always pick a slice-aware aligner:

TopHat2, MapSplice, SOAPSplice, Passion, SpliceMap, RUM, ABMapper, CRAC, GSNAP, HMMSplicer, Olego, BLAT

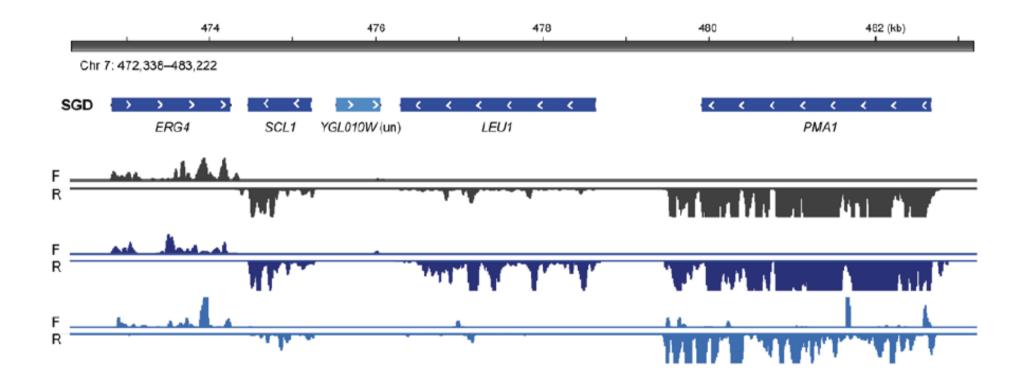
RNA-Seq: read mapping


Against transcriptome

Tools as BWA, Bowtie, MAQ, SOAP, GSNAP ... and others can be used.


RNA-Seq: read mapping

Against whole genome

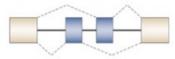

Garber at al. (2011) Nature Methods

RNA-Seq: visualization

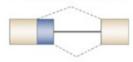
RNA-Seq: visualization

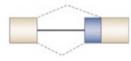
strand oriented reads

RNA-Seq: transcriptome reconstruction Transcript assembly RNA 1 Sequence-fragmented RNA Break reads Align reads to genome into k-mer seeds Assemble ---reads Genome-independent approach Cufflinks, Scripture de Bruijn k-mer graph Fragments aligned to genome Parse graph into sequences Abyss, Trinity Assemble alignments Transcript 1 Transcript 2 Align sequences to genome Transcript graph Parse graph into transcripts Genomic loci

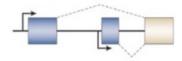

Garber at al. (2011) Nature Methods

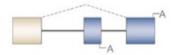
RNA-Seq: alternative splicing

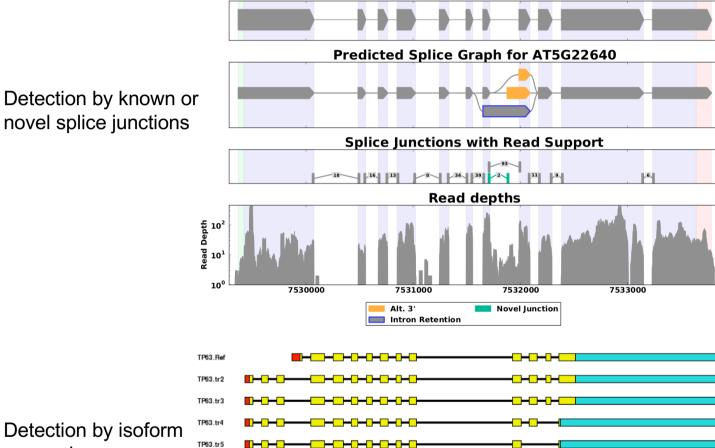

a Cassette exons


b Mutually exclusive exons

c Competing 5' splice sites


d Competing 3' splice sites


e Retained intron


f Multiple promoters

g Multiple poly(A) sites

Detection by known or novel splice junctions

━━━━━━

╺╺╺

┝┥<mark>┝╼╏╼╏┍┥</mark>┍┥

┝╍╗╼╗╼╗╼╗╼╗╼╗

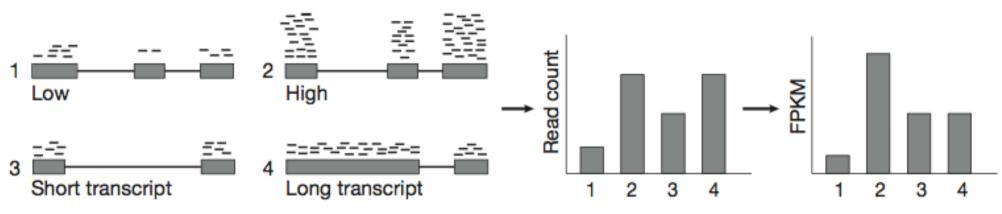
┝╍╗╼╗╼╗╼╗╼

Gene Models for AT5G22640

Matlin et al. (2005) Nature Reviews Molecular Cell Biology

comparison

TP63.tr6


TP63.tr7

TP63.tr8

TP63.tr9

TP63.tr10

RNA-Seq: gene/transcript expression

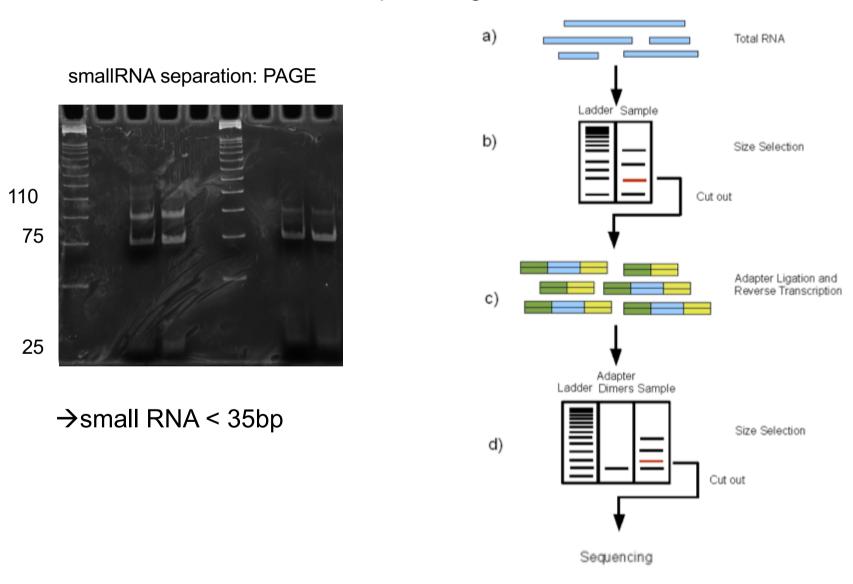
Garber at al. (2011) Nature Methods

When using RNA-seq to estimate gene expression, read counts need to be properly normalized to extract meaningful expression estimates

- RNA fragmentation during library construction causes longer transcripts to generate more reads compared to shorter transcripts present at the same abundance in the sample;
- The variability in the number of reads produced for each run causes fluctuations in the number of fragments mapped across samples;

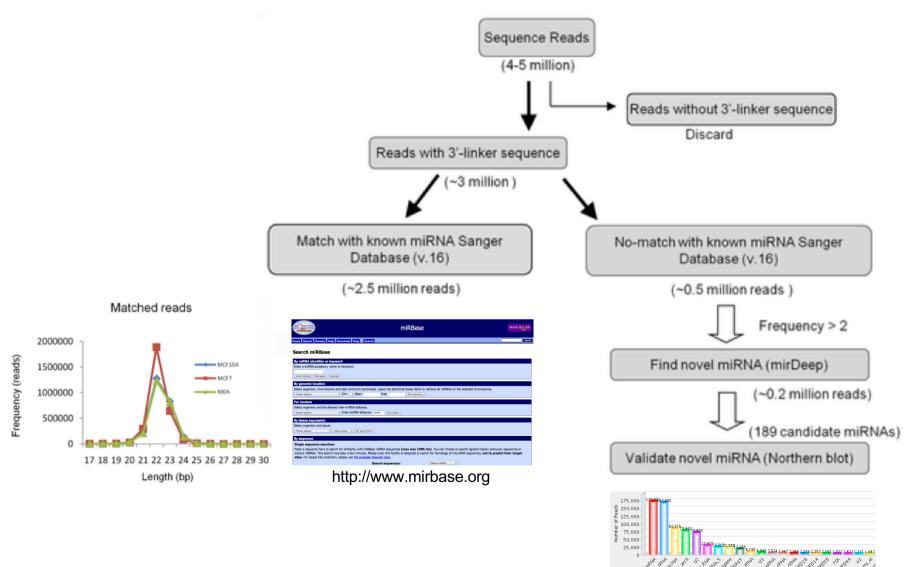
To account for these issues, the reads per kilobase of transcript per million mapped reads (RPKM) metric normalizes a transcript's read count by both its length and the total number of mapped reads in the sample.

$$RPKM(FPKM) = 10^9 \times \frac{C}{NL}$$


C= the number of reads mapped onto the gene's exons N= total number of reads in the experiment L= the sum of the exons in base pairs.

RNA-Seq: gene fusions

Ь	ABL1 gene transcript				
	BCR-ABL fusion	Exons 1–14	Exons 2–11		
	BCR gene transcript				
с					
GTCA	TCGTCCACTCAGCCA	CTGGATTTAAGCAGAGTTCAA	ATCTGTACTGCACCCTGGAGG	TGGATTCCTTTGGGTATTTT	BCR
AGGC	ATGGGGGTCCACACT	SCAATGTTTTTGTGGAACATG	AAGCCCTTCAGCGGCCAGTAG	CATCTGACTTTGAGCCTCAG	ABL1
GTCA	TCGTCCACTCAGCCA	CTGGATTTAAGCAGAGTTCAA	AAGCCCTTCAGCGGCCAGTAG	CATCTGACTTTGAGCCTCAG	BCR-ABL fusion transcript
	T-GTCCACTCAGCCA TCCACTCAGCCA CCACTCAGCTA CAGCCA CAGCCA AGCCA GCCA	ATTTAAGCAGAGTTCAA TTAAGCAGAGTTCAA AGCAGAGT-CAA AT-A-AGTTCAA CAGAGTTCAA CAGAGTTCAA AGTTCAA GTTCAA TCAA	AAGC AAGCCCTTCAGC AAGCCCTTCAGC AAGCCCTTCAGC AAGCCCTTCAG AAGCCCTT AAGCCCTT AAGCCCTTCAGCGGCCAGTAG AAGCCCTTCAGCGGCCAGTAG AAGCCCTTCAGCGGCCAGTAG AAGCCCTTCAGCGGCCAGTAG AAGCCCTTCAGCGGCCAGTAG AAGCCCTTCAGCGGCCAGTAG AAGCCCTTCAGCGGCCAGTAG AAGCCCTTCAGCGGCCAGTAG AAGCCCTTCAGCGGCCAGTAG AAGCCCTTCAGCGGCCAGTAG AAGCCCTTCAGCGGCCAGTAG	GC GCA GCATCTGACTTTGAG GCATCTGACTTTGA-C GCATCTG GCATCTGACTTTG GCATCTGACT GCATCTGACT GCATCTGAC GCATCTGACTTTGAG GCATCTGACTTTGAGCCTCAG	


RNA-Seq: small RNAs

sequencing

Motameny et al. (2010) Genes

RNA-Seq: small RNAs analysis

http://waprna.big.ac.cn/rnaseq/

Ryu et al. (2011) PlosOne

RNA-Seq: RNA editing

Massive RNA sequencing can facilitate the study of entire transcriptomes as well as post-transcriptional events occurring herein as alternative splicing and RNA editing.

Genome
Short reads

Using NGS, each genomic position can be supported by a large number of sequences and this can greatly improve the detection of RNA editing substitutions.

RNA-Seq: RNA editing detection

We can employ NGS data (RNA-Seq, genome resequencing and exome sequencing) to study RNA editing at different levels:

 ✓ genome/exome Vs RNA-Seq to identify new events (REDItools);

\checkmark RNA-Seq to explore the presence of

known A-to-I conversions;

BIOINFORMATICS APPLICATIONS NOTE 2011, pages 1-2 doi:10.1093/bioinformatics/bt117

Genome analysis

ExpEdit: a webserver to explore human RNA editing in RNA-Seq experiments

Ernesto Picardi¹, D'Antonio Mattia², Danilo Carrabino², Tiziana Castrignanò² and Graziano Pesole^{1,3,*}

✓ RNA-Seq to detect *de novo* new editing

candidates;

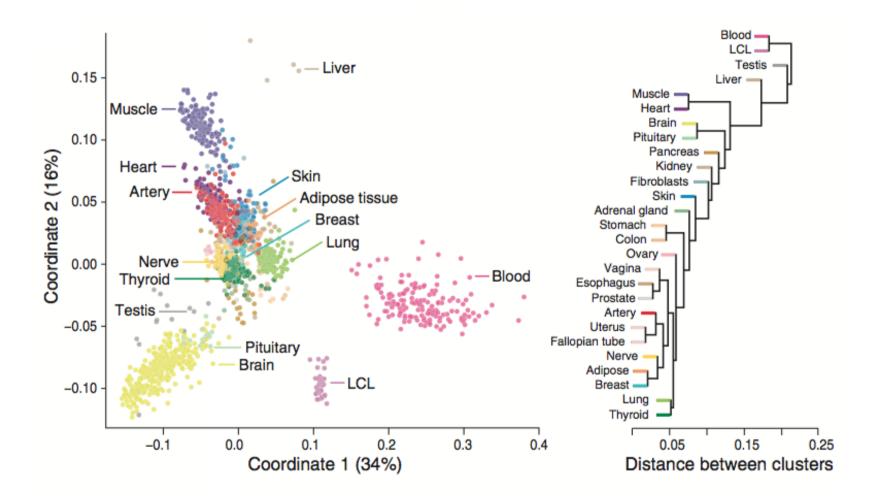
OPEN CACCESS Freely available online

PLOS ONE

A Novel Computational Strategy to Identify A-to-I RNA Editing Sites by RNA-Seq Data: *De Novo* Detection in Human Spinal Cord Tissue

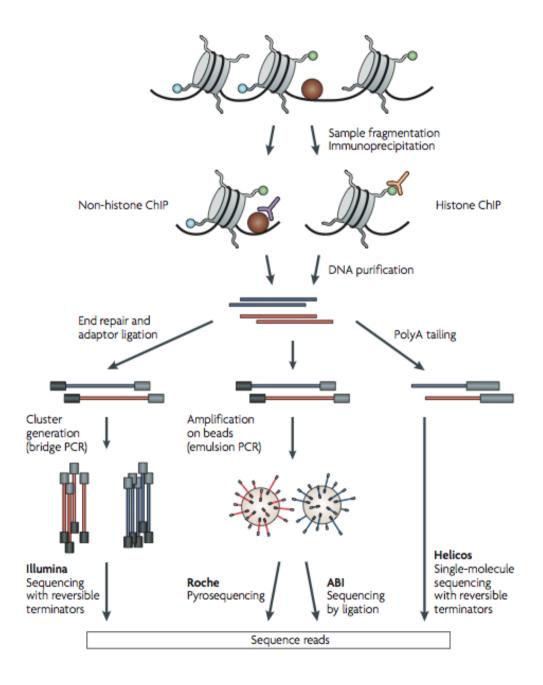
Ernesto Picardi^{1,2}, Angela Gallo³, Federica Galeano³, Sara Tomaselli³, Graziano Pesole^{1,2}*

1 Dipartimento di Bioscienze, Biotecnologie e Scienze Farmacologiche, Università di Bari, Bari, Italy, 2 Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Italy, 3 RNA Editing Laboratory, Oncohaematology Department, Ospedale Pediatrico "Bambino Gesù", IRCCS, Rome, Italy

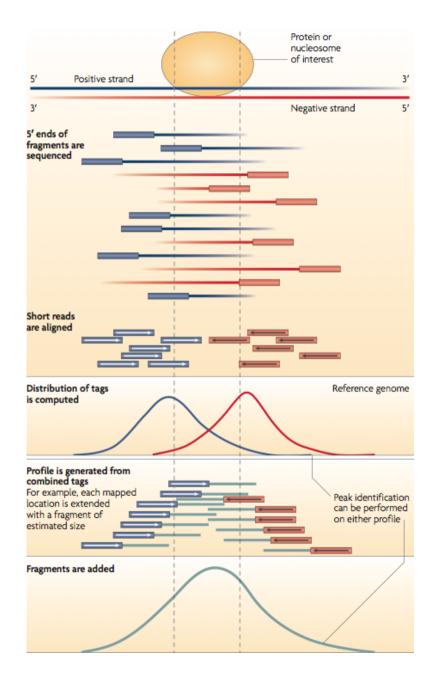

	[r1	GGGTGCCTTTATGC <mark>A</mark> GCAAGGATGCGATATT
	r2	GGGTGTCTTTATGC <mark>A</mark> GCAAGGATGCGATACTTCGC
Exome	r3	GGGTGCCTTTATGC <mark>A</mark> GCAAGGATGCGATATTTCG
	r4	GGGTGCCTTTATGC <mark>A</mark> GCAAGGATGCGATATTTCG
	r5	GGGTGCCTTTATGCAGCAAGGATGCGATATTTCG
		A
ç	JDNA	TGGGTGCCTTTATGCAGCAAGGATGCGATATTTCGCC
		G
	[r1	GGGTGCCTTTATGC <mark>G</mark> GCAAGGATGCGATATT
	r2	GGGTGTCTTTATGC <mark>A</mark> GCAAGGATGCGATACTTCGC
RNA-Seq	r3	GGGTGCCTTTATGC <mark>G</mark> GCAAGGATGCGATATTTCG
	r4	GGGTGCCTTTATGC <mark>G</mark> GCAAGGATGCGATATTTCG
	r5	GGGTGCCTTTATGC <mark>G</mark> GCAAGGATGCGATATTTCG

	16 of 865 rows match filter(s)												
Location	A	Reference	Strand	_	Region		Nucle	eotide		A -	Editing extent		
Location	Position	base	Strand	🔷 Gene	Region	🔷 As	🔷 Cs	🔷 Gs	🔷 Ts	Coverage		Source	
All 🔽	= •	All	All 💌		CDS 🗾	= • AND •	= •	= •	= •	≥ ▼10 AND ▼	> • 0 AND •	D 💌	
						- •	- •	- •	- •		- •		
chr1	<u>6081149</u>	А	+	KCNAB2	CDS	0	0	31	0	31	1.000	D	
chr4	<u>158477325</u>	А	+	GRIA2	CDS	0	0	11	0	11	1.000	D	
chr5	150619602	Α	+	GM2A	CDS	0	0	16	0	16	1.000	D	
chr5	150619632	А	+	GM2A	CDS	0	0	12	0	12	1.000	D	
chr11	<u>62214851</u>	А	-	BSCL2	CDS	0	0	20	0	20	1.000	D	
chr16	57102927	А	+	NDRG4	CDS	0	0	93	0	93	1.000	D	
chr11	77468301	А	-	NDUFC2	CDS	9	0	17	0	26	0.654	D	

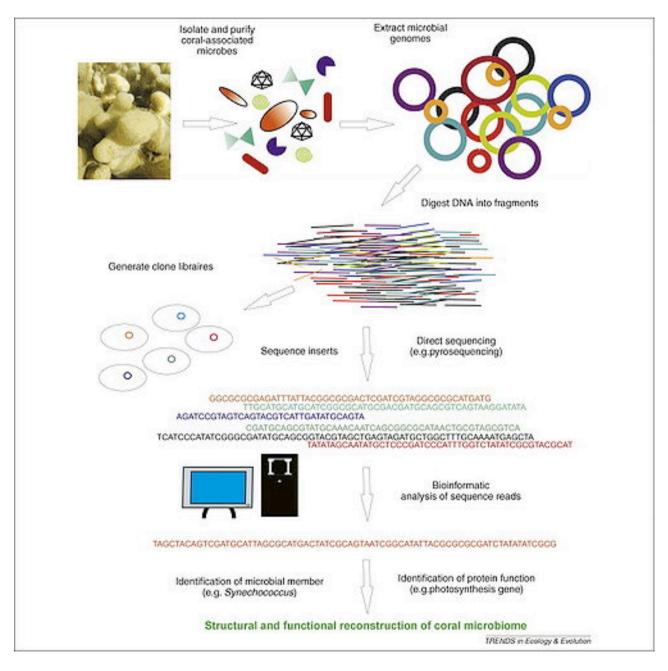
http://www.caspur.it/ExpEdit/

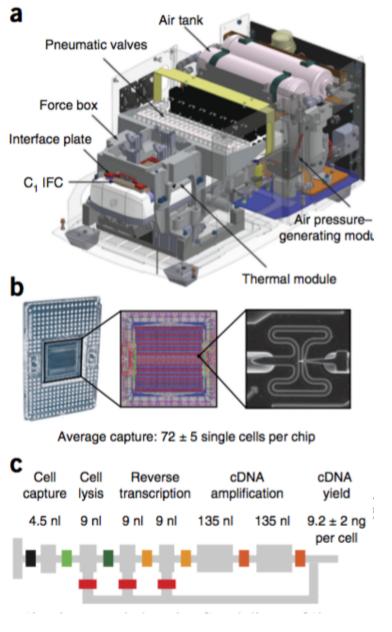

qDNA	AGCTGGCCAGATACATTAAGACCAGTGCTCACTATGAAG
92111	G
[r1	GCTGGCCAGATACATT <mark>G</mark> AGACCAGTGCTCAC
r2	GCTGGCCAGATACATTAAGACCAGTGCTCAC
r3	CTGGCCAGATACATT <mark>G</mark> AGACCAGTGCTCACTATGAAG
RNA-Seq r4	CTGGCCAGATACATT <mark>G</mark> AGACCAGTGCTCACTATG
- r5	CTGGCCAGATACATTAAGACCAGTGCTCACTATGAAG
r6	CTGGCCAGATACATTAAGACCAGTGCTCACTATGAAG
r7	CTGGCCAGATACATT <mark>G</mark> GGACCAGTGCTCACTATGAAG
r8	CTGGCCAGATACATT <mark>G</mark> AGACCAGTGCTCACT
lr9	CTGGCCAGATACATT <mark>G</mark> AGACCAGTGCTCACTATGAAG

Human Transcriptome profile

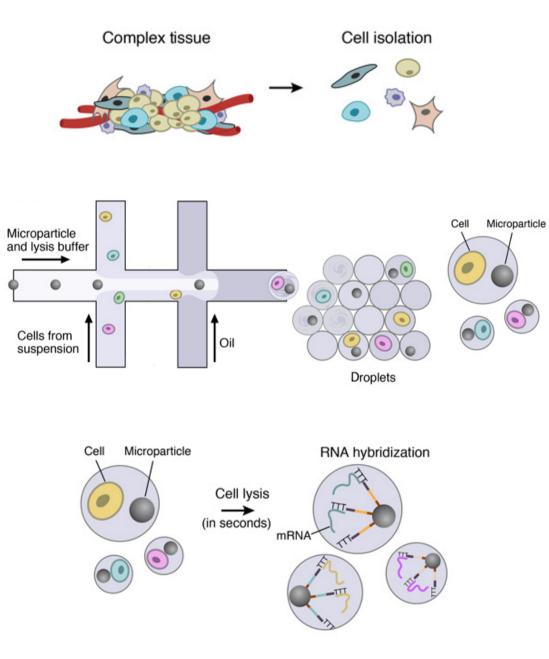


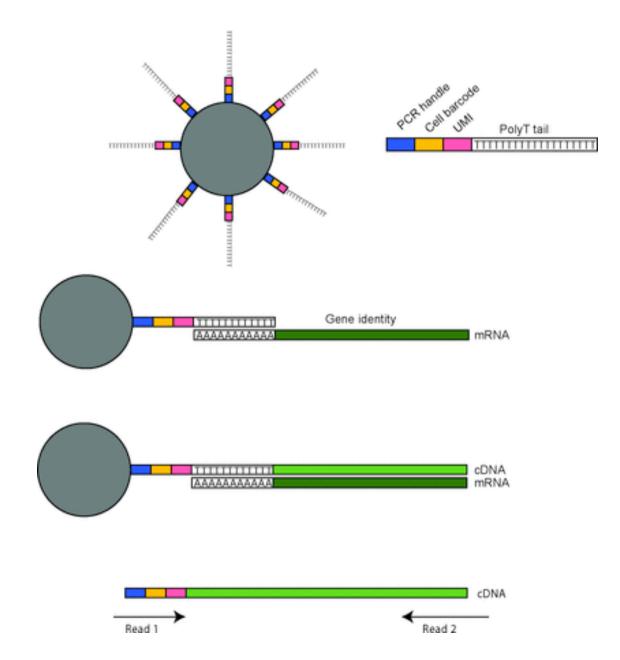
Melè et al. 2015 Science


ChIP-Seq

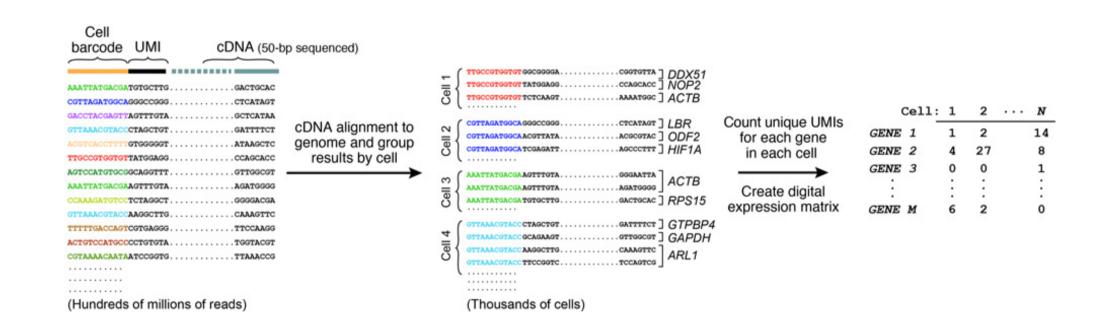

ChIP-Seq

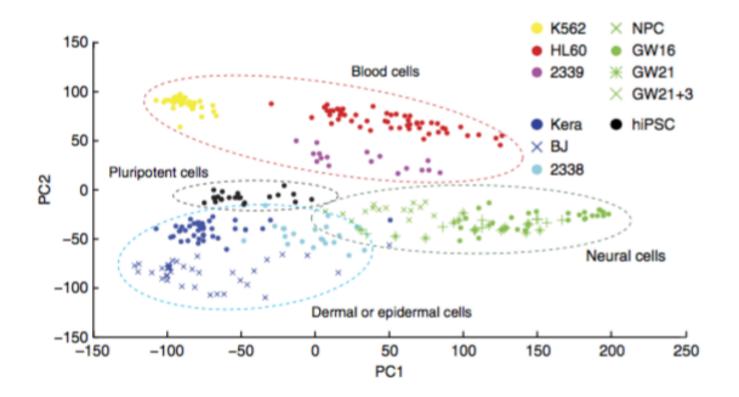
Metagenomics


Single-cell sequencing – C1


Capturing single cells and quantifying mRNA levels using the C1 Single-Cell Auto Prep System. (a) Key functional components of the C1 System are labeled, including the pneumatic components necessary for control of the microfluidic integrated fluidic circuit (IFC) and the thermal components necessary for preparatory chemistry. (b) Left, complete IFC with carrier; reagents and cells are loaded into dedicated carrier wells, and reaction products are exported to other dedicated carrier wells.(c) Schematic for a C1 reaction line, with the reaction line colored light gray and the isolation valves shown in varied colors.

Pollen et al. 2014 Nature Biotech.


Droplet-Sequencing (Drop-Seq)

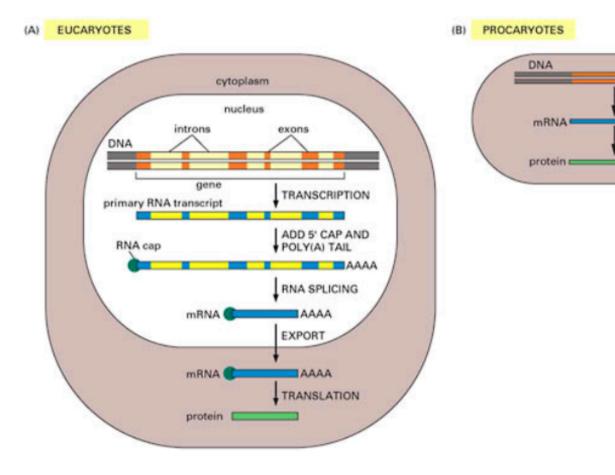

Droplet-Sequencing (Drop-Seq)

Droplet-Sequencing (Drop-Seq)

Single-cell transcriptome

Distinct groups of cells corresponding to pluripotent, blood, skin and neural cells can be identified by PCA. NPC, neural progenitor cell.

Program	Categories	Author(s)	Reference	LIBI
Cross_match	Alignment	Phil Green, Brent Ewing and David Gordon	Reference	http://www.phrap.org/phredphrapconsed.html
ELAND	Alignment	Anthony J. Cox		http://www.illumina.com/
	-		70	
Exonerate	Alignment	Guy S. Slater and Ewan Birney	72	http://www.ebi.ac.uk/~guy/exonerate
MAQ	Alignment and variant detection	Heng Li	37	http://maq.sourceforge.net
Mosaik	Alignment	Michael Strömberg and Gabor Marth		http://bioinformatics.bc.edu/marthlab/Mosaik
RMAP	Alignment	Andrew Smith, Zhenyu Xuan and Michael Zhang	73	http://rulai.cshl.edu/rmap
SHRiMP	Alignment	Michael Brudno and Stephen Rumble		http://compbio.cs.toronto.edu/shrimp
SOAP	Alignment	Ruiqiang Li et al.	35	http://soap.genomics.org.cn
SSAHA2	Alignment	Zemin Ning et al.	36	http://www.sanger.ac.uk/Software/analysis/SSAHA2
SXOligoSearch	Alignment	Synamatix		http://synasite.mgrc.com.my:8080/sxog/NewSXOligoSearch.php
ALLPATHS	Assembly	Jonathan Butler et al.	38	
Edena	Assembly	David Hernandez et al.	74	http://www.genomic.ch/edena
Euler-SR	Assembly	Mark Chaisson and Pavel Pevzner	75	
SHARCGS	Assembly	Juliane Dohm et al.	76	http://sharcgs.molgen.mpg.de
SHRAP	Assembly	Andreas Sundquist et al.	39	
SSAKE	Assembly	René Warren et al.	40	http://www.bcgsc.ca/platform/bioinfo/software/ssake
VCAKE	Assembly	William Jeck	77	http://sourceforge.net/projects/vcake
Velvet	Assembly	Daniel Zerbino and Ewan Birney	41	http://www.ebi.ac.uk/%7Ezerbino/velvet
PyroBayes	Base caller	Aaron Quinlan et al.	34	http://bioinformatics.bc.edu/marthlab/PyroBayes
PbShort	Variant detection	Gabor Marth		http://bioinformatics.bc.edu/marthlab/PbShort
ssahaSNP	Variant detection	Zemin Ning et al.		http://www.sanger.ac.uk/Software/analysis/ssahaSNP


Incomplete list compiled from sources, including http://seqanswers.com/forums/showthread.php?t=43 and http://www.sanger.ac.uk/Users/lh3/seq-nt.html.

What is Computational Gene Finding?

Given an uncharacterized DNA sequence, find out:

- Which region codes for a protein?
- Which DNA strand is used to encode the gene?
- Which reading frame is used in that strand?
- Where does the gene starts and ends?
- Where are the exon-intron boundaries (in eukaryotes)?
- (optionally) Where are the regulatory sequences for that gene?

Gene Structure

TRANSCRIPTION

TRANSLATION

Prokaryotic Vs. Eukaryotic Gene Finding

Prokaryotes:

- small genomes $0.5 10.10^6$ bp
- high coding density (>90%)
- no introns
- Gene identification relatively easy, with success rate ~ 99%

Problems:

- overlapping ORFs
- short genes
- finding TSS and promoters

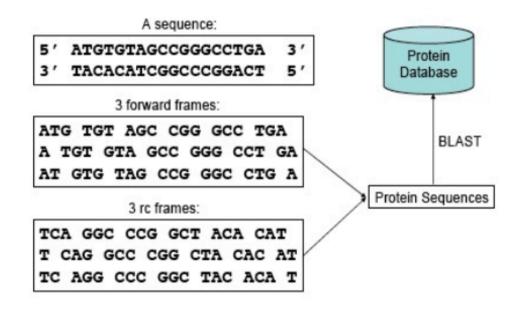
Eukaryotes:

- large genomes 10⁷ 10¹⁰ bp
- low coding density (<50%)
- intron/exon structure
- Gene identification a complex problem, gene level accuracy ~50%

Problems:

many

Gene Finding: Different Approaches


- Similarity-based methods (extrinsic) use similarity to annotated sequences:
 - proteins
 - cDNAs
 - ESTs
- Comparative genomics Aligning genomic sequences from different species
- Ab initio gene-finding (intrinsic)
- Integrated approaches

Similarity-based methods

- Based on sequence conservation due to functional constraints
- Use local alignment tools (Smith-Waterman algo, BLAST, FASTA) to search protein, cDNA, and EST databases
- Will not identify genes that code for proteins not already in databases (cannot identify new genes)
- Limits of the regions of similarity not well defined

Similarity-based methods

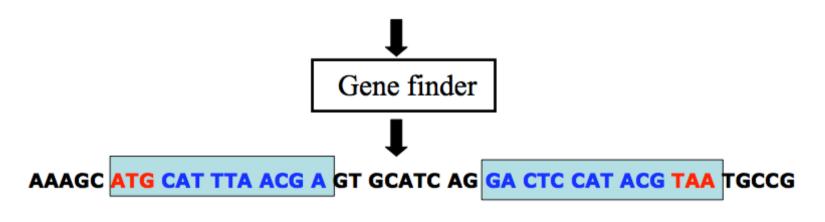
Similarity search for genes

Summary for Extrinsic Approaches

Strengths:

 Rely on accumulated pre-existing biological data, thus should produce biologically relevant predictions

Weaknesses:


- Limited to pre-existing biological data
- Errors in databases
- Difficult to find limits of similarity

Ab initio Gene Finding, Part 1

Input: A DNA string over the alphabet {A,C,G,T}

Output: An annotation of the string showing for every nucleotide whether it is coding or non-coding

AAAGCATGCATTTAACGAGTGCATCAGGACTCCATACGTAATGCCG

80/53

Coding Statistics, Part 1

- Unequal usage of codons in the coding regions is a universal feature of the genomes
 - uneven usage of amino acids in existing proteins
 - uneven usage of synonymous codons (correlates with the abundance of corresponding tRNAs)
- We can use this feature to differentiate between coding and noncoding regions of the genome
- Coding statistics a function that for a given DNA sequence computes a likelihood that the sequence is coding for a protein

Coding Statistics, Part 2

- Many different ones
 - codon usage
 - hexamer usage
 - GC content
 - compositional bias between codon positions
 - nucleotide periodicity

- ...

An Example of Coding Statistics, Part 1

				Т	he H	uman	Cod	lon L	Isagi	e Tab	le				
Gly	666	17.08	0.23	Arg	AGG	12.09	0.22	Trp	TGG	14.74	1.00	Arg	C66	10.40	0.1
Gly	GGA	19.31	0.26	Arg	AGA	11.73	0.21	End	TGA	2.64	0.61	Arg	CGA	5.63	0.1
Gly	GGT	13.66	0.18	Ser	AGT	10.18	0.14	Cys	TOT	9.99	0.42	Arg	COT	5.16	0.0
Gly	66C	24.94	0.33	Ser	AGC	18.54	0.25	Cys	TGC	13.86	0.58	Arg	COC	10.82	0.1
Glu	GAG	38.82	0.59	Lys	AAG	33.79	0.60	End	TAG	0.73	0.17	Gin	CAG	32.95	0.7
Glu	GAA	27.51	0.41	Lys	AAA	22.32	0.40	End	TAA	0.95	0.22	Gin	CAA	11.94	0.2
Asp	GAT	21.45	0.44	Asn	AAT	16.43	0.44	Tyr	TAT	11.80	0.42	His	CAT	9.56	0.4
Asp	GAC	27.06	0.56	Asn	AAC	21.30	0.56	Tyr	TAC	16.48	0.58	His	CAC	14.00	0.5
Val	616	28.60	0.48	Met	ATG	21.86	1.00	Leu	TTG	11.43	0.12	Leu	сто	39.93	0.4
Val	GTA	6.09	0.10	lle	ATA	6.05	0.14	Leu	TTA	5.55	0.06	Leu	CTA	6.42	0.0
Val	GTT	10.30	0.17	lle	ATT	15.03	0.35	Phe	TTT	15.36	0.43	Leu	CTT	11.24	0.1
Val	GTC	15.01	0.25	lle	ATC	22.47	0.52	Phe	TTC	20.72	0.57	Leu	CIC	19.14	0.2
Ala	606	7.27	0.10	Thr	ACG	6.80	0.12	Ser	тсө	4.38	0.06	Pro	CCG	7.02	0.1
Ala	GCA	15.50	0.22	Thr	ACA	15.04	0.27	Ser	TCA	10.96	0.15	Pro	CCA	17.11	0.2
Ala	GCT	20.23	0.28	Thr	ACT	13.24	0.23	Ser	TCT	13.51	0.18	Pro	CCT	18.03	0.2
Ala	GCC	28.43	0.40	Thr	ACC	21.52	0.38	Ser	TCC	17.37	0.23	Pro	CCC	20.51	0.5

An Example of Coding Statistics, Part 2

- Let F(c) be the frequency (probability) of codon c in the genes of the species under consideration
- Given the sequence of codons C=c₁c₂...c_m and assuming independence between adjacent codons:

 $P(C)=F(c_1)F(c_2)\dots F(c_m)$

is probability of finding C, knowing that C codes for protein

Example: S=AGGACC c_1 =AGG c_2 = ACC $P(S) = F(AGG) \cdot F(ACC) = 0.022 \cdot 0.038 = 0.000836$

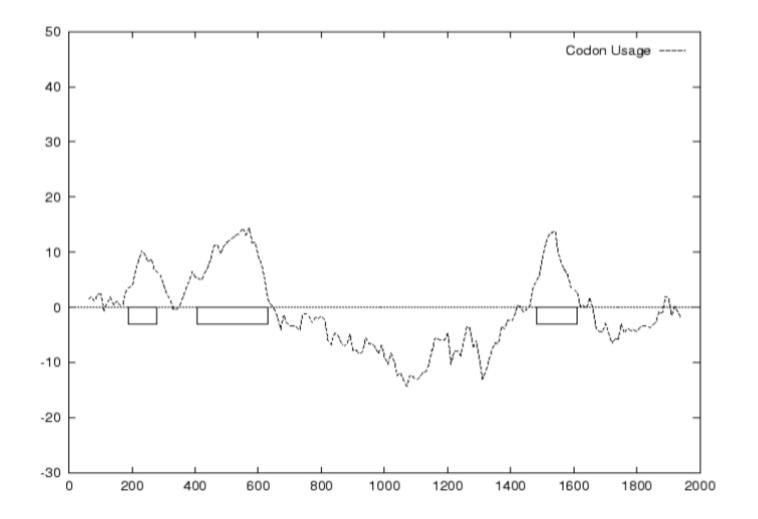
An Example of Coding Statistics, Part 3

• Let $F_0(c)$ be the frequency of codon c in a non-coding sequence.

 $P_0(C) = F_0(c_1)F_0(c_2)...F_0(c_m)$

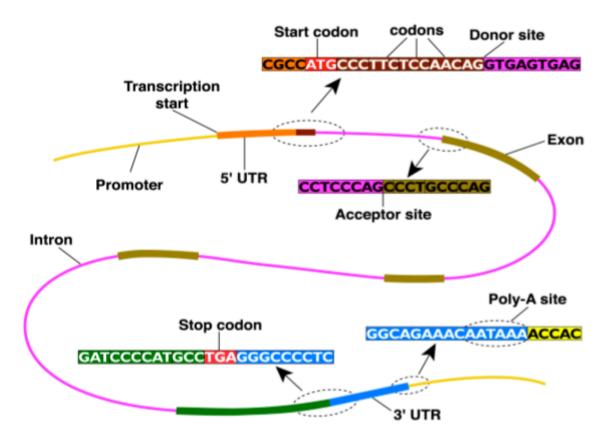
is the probability of finding C, knowing that C is non-coding

 Assuming the random model of non-coding DNA, F₀(c) = 1/64= 0.0156 for all codons


 P_0 (S) = 0.0156 · 0.0156 = 0.000244

• The log-likelihood (LP) ratio for S is:

LP(S) = log(0.000836/0.000244) = log(3.43) = 0.53


 $LP(S) > 0 \implies S \text{ is coding}$

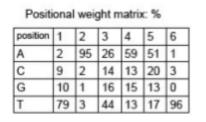
Coding Profile of ß-globin gene

Signal Sensors, Part 1

• Signal – a string of DNA recognized by the cellular machinery

Signal Sensors, Part 2

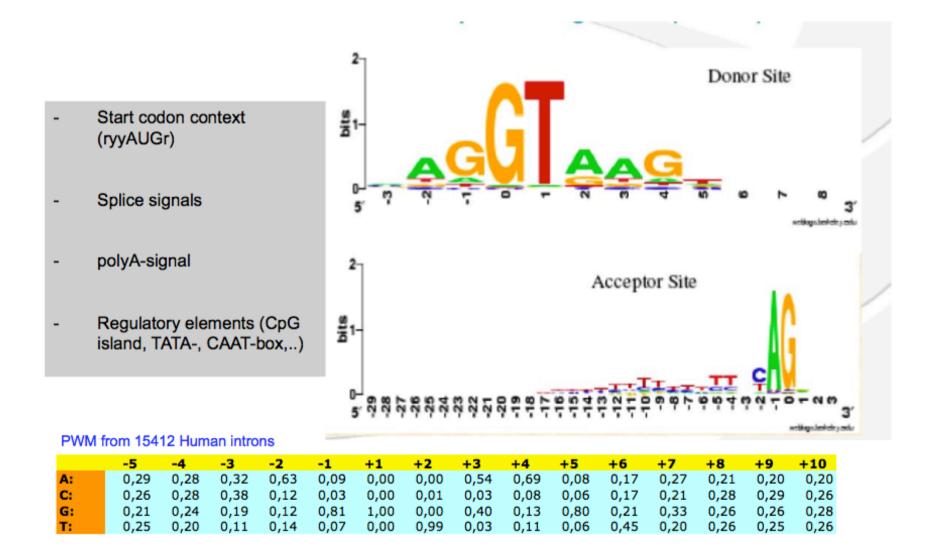
- Various pattern recognition method are used for identification of these signals:
 - consensus sequences
 - weight matrices
 - weight arrays
 - decision trees
 - Hidden Markov Models (HMMs)
 - neural networks


- ...

Prokaryotic Vs. Eukaryotic Gene Signals

Prokaryotes:

- Start codon: ATG
- Stop codon: TAA, TGA, TAG
- Promoters: TATAAT, -10 upstream
- Codon bias

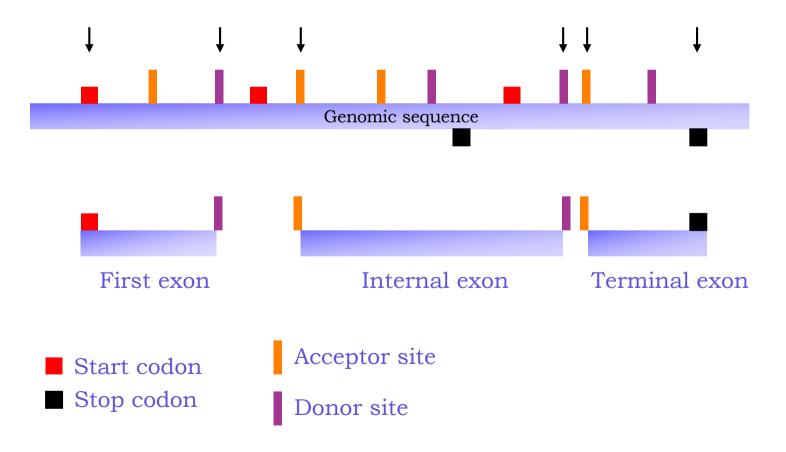

Signal recognition for TATAAT

Eukaryotes:

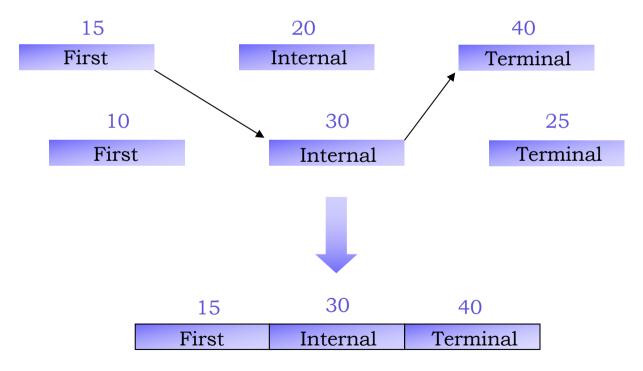
- Core promoter (CpG-rich, TATAbox, CAAT-box, ..)
- Start codon: ATG
- Stop codon: TAA, TGA, TAG
- · Donor site: GT
- Acceptor site: AG
- Branching site
- Poly-A tail

Eukaryotic Gene Signals

GeneID ... in action


First step: splice sites, start and stop codons are predicted and scored along the sequence using Position Weight Matrices (PWMs)

Start codon
Stop codon
Acceptor site
Donor site


GeneID ... in action

Second step: Exons are scored as the sum of the scores of the defining sites, plus the the log-likelihood ratio of a Markov Model for coding DNA

GeneID ... in action

Last step: from the set of predicted exons, the gene structure is assembled maximizing the sum of the scores of the assembled exons

Predicted gene with score (15+30+40)

Genome BioInformatics Research Lab

Help | News | People | Research Software Publications | Links Resources & Datasets | Gene Predictions | Seminars & Courses

IMIM + UPF + CRG + GRIB + m + Software + geneid + geneid server

geneid 1.2 Web Server 2005

Paste your FASTA sequence here

... or search a FASTA file to process

Sfoglia...

Paste	vour	GFF	evidences	here	(Field	separator: ta	ab)
							_

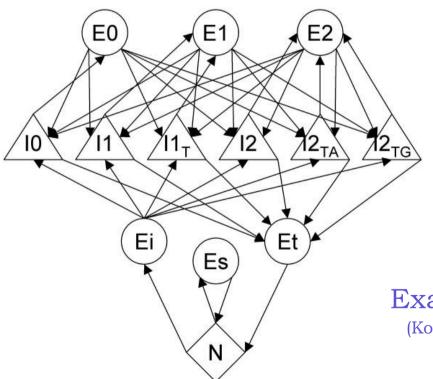
... or search a GFF file containing evidences to process

Sfoglia...

Do you want a graphical representation of the predictions ? (it might be time consuming depending on the size of the sequence) Maximum sequence size for plots: 100,000 bps http://genome.crg.es/geneid.html

Submit Reset form

Ab initio Gene Prediction Tools


Ab initio gene finders remain the simplest and cost-effective technology for translating a genome to a set of exon-intron structures and the proteins they encode.

A lot of such *ab initio* gene predictions are freely available on world wide web:

- **Genscan** (http://genes.mit.edu/)
- **FGENESH** (http://www.softberry.com/berry.phtml?topic=gfind)
- **GeneMark.hmm** (http://opal.biology.gatech.edu/GeneMark)
- **GlimmerHMM** (http://www.genomics.jhu.edu/GlimmerHMM)
- **SNAP** (http://homepage.mac.com/iankorf)
- **Genie** (http://www.fruitfly.org/~martinr/doc/genie.html)

Ab initio Gene Prediction Tools

A great part of these *ab initio* gene finders is based on HMM and thus on very complex probabilistic models.

LEGEND: N: intergenic, Es: single-exon gene Ei: initial exon Et terminal exon EO-E2: exons in phase O-2 IO-I2: introns in phases O-2

Example...from SNAP (Korf, 2004 BMC Bioinformatics)

The GENSCAN Web Server at MIT

Identification of complete gene structures in genomic DNA

For information about Genscan, click here

?

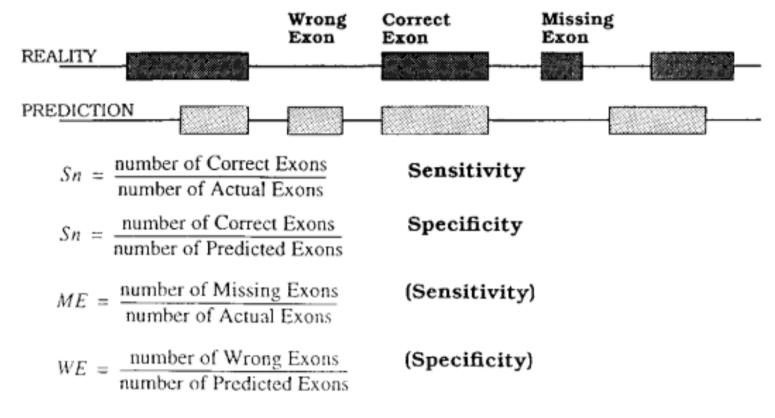
Server update, November, 2009: We've been recently upgrading the GENSCAN webserver hardware, which resulted in some problems in the output of GENSCAN. We apologize for the inconvenience. These output errors were resolved.
This server provides access to the program Genscan for predicting the locations and exon-intron structures of genes in genomic sequences from a variety of organisms.
This server can accept sequences up to 1 million base pairs (1 Mbp) in length. If you have trouble with the web server or if you have a large number of sequences to process, request a local copy of the program (see instructions at the bottom of this page).
Organism: Vertebrate 🛟 Suboptimal exon cutoff (optional): 1.00 💠
Sequence name (optional):
Print options: Predicted peptides only
Upload your DNA sequence file (upper or lower case, spaces/numbers ignored):
Or paste your DNA sequence here (upper or lower case, spaces/numbers ignored):

http://genes.mit.edu/GENSCAN.html

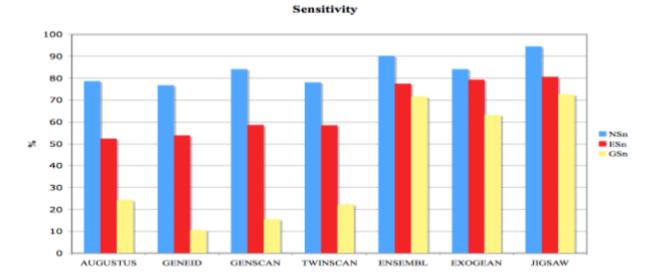
Eukaryotic Gene Finding: GenScan

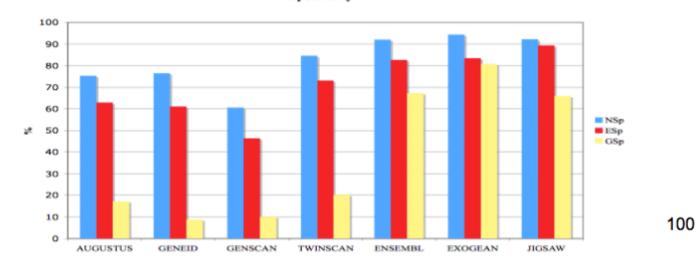
GENSCA	AN 1.	0	Date	e run:	7-No	v-1(05	Tiı	ne: 0	5:43:0	1	
Sequence 11 : 9164 bp : 37.79% C+G : Isochore 1 (0 - 43 C+G%)												
Parameter matrix: HumanIso.smat												
Predic	ted o	gei	nes/exor	15:								
Gn.Ex	Туре	s	.Begin	End	.Len	Fr	Ph	I/Ac	Do/T	CodRg	P	Tscr
		-										
1.04	PlyA	_	26	21	6							1.05
1.03	Term	-	262	134	129	1	0	116	43	119	0.963	7.40
1.02	Intr	-	1335	1113	223	2	1	100	96	217	0.999	20.91
1.01	Init	-	1557	1466	92	0	2	103	77	133	0.990	13.71
1.00	Prom	-	1644	1605	40							-4.75
2.04	PlyA	-	3125	3120	6							1.05
2.03	Term	-	7628	7500	129	2	0	101	50	83	0.373	3.00
2.02	Intr	-	8749	8527	223	0	1	83	96	181	0.999	15.61
2.01	Init	-	8969	8878	92	2	2	103	77	142	0.997	14.61
2.00	Prom	-	9056	9017	40							-2.75


Prokaryotic Gene Finding



A compilation of widespread *ab initio* and evidence-based gene prediction programs


Program	Web Page	Evidence
GENSCAN	http://genes.mit.edu/GENSCAN.html	No
GENEID	http://www1.imim.es/geneid.html	No
SNAP	http://homepage.mac.com/iankorf/	No
GlimmerHMM	http://www.genomics.jhu.edu/GlimmerHMM/	No
GeneMark	http://exon.gatech.edu/GeneMark/eukhmm.cgi	No
AUGUSTUS	http://augustus.gobics.de/	ESTs, cDNAs and proteins
SGP2	http://genome.imim.es/software/sgp2/sgp2.html	TBLASTX hits
GENOMESCAN	http://genes.mit.edu/genomescan.html	BLASTX hits
TWINSCAN	http://mblab.wustl.edu/nscan/submit/	BLASTN hits and ESTs
GENOMINER	http://pentagramma.caspur.it/GenoMinerNew/	Complete Genomes
ENSEMBL	http://www.ensembl.org/	ESTs, cDNAs and proteins
N-SCAN	http://mblab.wustl.edu/nscan/submit/	ESTs, complete genomes
EXOGEAN	http://www.biologie.ens.fr/dyogen/spip.php?rubrique4⟨=en	ESTs, cDNAs and proteins
GENEWISE	http://www.ebi.ac.uk/Wise2/index.html	Proteins
ASPIC	http://t.caspur.it/ASPIC/	ESTs and cDNAs
Eugène	http://www.inra.fr/mia/T/EuGene/	ESTs, cDNAs and proteins
GAZE	http://www.sanger.ac.uk/Software/analysis/GAZE/	All available + ab initio
JIGSAW	http://www.cbcb.umd.edu/software/jigsaw/	All available + ab initio


Exon Level

Efficiency of gene finding programs

Specificity

