

General information		
Academic subject	Evolutionary	Paleoecology
Degree course	Science of Na	ature and Environment
Academic Year	2021-2022	
European Credit Transfer and Accumulation System (ECTS) 6		
Language	Italian	
Academic calendar (starting and ending date)		4 October 2021-21 January 2022
Attendance	Strongly reco	ommended

Professor/ Lecturer	
Name and Surname	Maria Marino
E-mail	maria.marino@uniba.it
Telephone	0805443454 - 3397429003
Department and address	Dipartimento di Scienze della Terra e Geoambientali, Campus universitario, via
	Orabona 4 -70125 Bari
Virtual headquarters	
Tutoring (time and day)	Monday h 15-17, Thuesday h 15-17, Palazzo di Scienze della Terra, Universitary
	Campus. Always after appointment by email

Syllabus	
Learning Objectives	To knowledge the history of Life evolution through time combined with the
	evolution of Earth and its components. To knowledge the cultural value of
	paleontological heritage of the Earth.
Course prerequisites	Geologic Time Scale, Plate tectonics
Contents	General introduction on the course teaching
	5 CFU/ECTS of oral teaching, 0,5 CFU/ECTS class exercises, 0,5 CFU/ECTS field
	exercise
	Main topics
	Basic elements of Paleoecology and Paleobiogeography. Evolution of marine and
	terrestrial ecosystems through Phanerozoic by examining the main biological
	changes provided by fossil record.
	Paleozoic
	Paleogeography and Climate from Cambrian to Permian. Cambrian Life Radiation.
	Lagerstatten of Burgess Shales, Chengjiang, Hunsruck, Rhynie, Mazon Creek,
	Karoo. Marine invertebrates. First vertebrates, evolution from fish to amphibious
	and reptiles. First plants. Failure of Carboniferous forests. Changes at the end of
	Paleozoic and Permian mass extinction.
	Mesozoic
	Paleogeography and Climate from Trias to Cretaceous. Increase of biodiversity.
	Lagerstatten of Holzmaden Shale, Morrison, Jehol. Marine invertebrates. Rudists,
	Ammonoids. Marine vertebrates, first avial reptiles. First dinosaurs, their evolution
	and "extinction". First Mammalia. Dinosauria-Birds. Archaeopteryx and other new
	findings on dinosaur-bird transition. Vegetation, radiation of angiosperms, co-
	evolution of insects. Phytoplankton evolution
	Cenozoic
	Paleogeography and Climate. Paleocene-Eocene Thermal maximum. Antarctic
	glaciation (Eocene-Oligocene). Lagerstatten of Grube Messel, Bolca. The big
	benthic foraminifera and new planktonic foraminifera. Radiation of mammal
	fauna. Gigant birds. Equid and climate evolution. Messinian salinity crisis. Panama

DIPARTIMENTO DI BIOLOGIA

	Isthmus closure. The Gulf Current. Thermohaline circulation, Arctic ice sheet and	
	biotic consequence in marine and terrestrial flora and fauna.	
	Quaternary	
	Paleogeography and Climate. Calcareous plankton and climate changes at orbital	
	and sub-orbital scale (Heinrich and D-O events). Extinction of mega-fauna. Main	
	changes of mollusc fauna in Mediterranean Sea.	
	Class exercises	
	Study of samples with different invertebrate fossil content based on macroscopic	
	and microscopic analyses. Paleoecological indices, cluster analysis, PCA. Basic	
	spectral analysis.	
	Field activity	
	Field location is chosen year by year to improve paleontological methods of	
	investigation or to visit paleontological site/museum.	
Books and bibliography	Palaeoecology: Ecosystems, environments and Evolution. Brenchley P.J. and	
	Harper D.A.T., Chapman & Hall Editors (available online).	
	Cause of Quaternary Megafauna extinction by Marianne Lehnert (available online)	
	Evolution of fossil ecosystems. Selden P. & Nudds J., II Edition, 2012. ISBN: 987-1-	
	84076-160-3 (available online)	
	The first Vertebrate, oceans of the Paleozoic Era. Holmes T. 2008. ISBN ISBN 978-	
	0-8160-59584 (available online).	
	MANUALE di PALEONTOLOGIA FONDAMENTI – APPLICAZIONI. Edizioni Idelson	
	Gnocchi 1908 Srl, aprile 2020. 472 pp. ISBN: 9788879477147	
Additional materials	Other scientific papers from online literature. Electronic lectures performed in the	
	classroom	

Work schedule				
Total	Lectures		Hands on (Laboratory, working groups, seminars,	Out-of-class study
			field trips)	hours/ Self-study
				hours
Hours	_			
157.5	40		7.5+10	100
ECTS				
6	5		0.5 exercise +0.5 field trip	
Teaching strategy	/			
		Lectures	and exercises as blended learning, field trip	
Expected learning	g outcomes			
Knowledge and u	Inderstanding	The stud	ent has to know all topics developed during the semester in order to	
on:		understa	nd evolution of Earth's terrestrial and marine eco	systems through the
		Cambriar	n - Recent time by scrutinizing the most important Li	fe evolutionary steps
		documer	ited in the fossil record. The knowledge of main phy	sical modifications of
		Earth thr	ough geologic time and the comprehension of relation	onships among all the
		compone	ents of our planet including marine and terrestrial	Biota represent the
		most imp	portant issue of the teaching. The taught class is the	main didactic tool to
		acquire t	his knowledge.	
Applying knowle	dge and	The stud	ent has to improve its ability to connect the mod	ifications of physical
understanding on: paleoenv		paleoenv	rironmens with Life evolution during the Phanerozoic. He must to	
		recognize	e the evolutionary processes, which drove the most i	important changes of
		terrestria	I and marine organisms during the different clin	nate phases, diverse
		paleogec	graphic and geological settings characterizing the	past 600 Ma. Such
		abilities a	are acquired through taught class and class discussic	on on paleoecological

	and paleoenvironmental key topics concerning crucial changes of Earth's history.
Soft skills	 Making informed judgments and choices At the end of course, the student has to be able to: critically argue and discuss the meaning of the fossils for the reconstruction of Earth's history and past ecosystems; interpret the evolutionary innovations of Life and their relations with past paleoenvironments. These abilities are improved during class discussion of paleobiological problems. Communicating knowledge and understanding At the end of course, the student has to have acquired the scientific glossary to carefully describe concepts on the past ecosystems evolution by means of specific paleontological terminology. The student is stimulated to work and discuss together with other colleagues during class teaching in order to improve the communication skills. Capacities to continue learning At the end of course, the student has to have acquired i) the capability to obtain additional scientific information and integration with different disciplines; ii) the ability to recognize the main evolutionary phases of biodiversity changes and the
	relations between biotic and abiotic factors, which acted through time; iii) the ability to provide deeper knowledge on some paleontological topics of crucial interest by means of personal bibliographic research.

Assessment and feedback	
Methods of assessment	Oral exam concerning the topics of the course + a free lecture (15 minutes, by ppt) on a scientific article from open literature concerning a topic of the course and indicated by the teacher
Evaluation criteria	Knowledge and understanding
	The student has to demonstrate to know all the themes of the course. This is necessary to achieve a positive evaluation.
	Ability to apply knowledge and understanding
	The student has to discuss carefully the complex relationships between abiotic and biotic factors, which controlled the Life evolution. This is necessary to achieve a positive evaluation.
	Autonomy of judgment
	The student has to show ability to discuss evolutionary problematics by connecting information from many integrated disciplines such as geology, botanic, ecology, zoology. This is necessary to obtain a very positive evaluation.
	A very positive evaluation is based on the student skill concerning good and
	appropriate scientific terminology and clear exposition of complex concepts. Capacities to continue learning
	The student has to document its ability to acquire independent advanced
	knowledge and critical thinking during discussion of paleontological themes. This may provide an excellent evaluation.
Criteria for assessment and	Appropriate scientific terminology and clear exposition of complex concepts
attribution of the final mark	related to contents of the course and other disciplines such as Geology, Ecology,
	Zoology. Degree of participation to lecture, discussion and exercises performed in
	classroom.
Additional information	

UNIVERSITÀ DEGLI STUDI DI BARI ALDO MORO

DIPARTIMENTO DI BIOLOGIA