Pubblicazioni

Some relevant publications (a more complete list is avalable at DBLP and Google Scholar):

Papers in International Journals

  • M. Ceci, C. Loglisci, E. Salvemini, D D’Elia & D. Malerba (2010). Mining Spatial Association Rules for Composite Motif Discovery . Chapter 5 in R. Bruni (Ed.), Mathematical Approaches to Polymer Sequence Analysis and Related Problems, , pp. 87-109, Springer.

  • M. Ceci, A. Appice & D. Malerba (2010). Transductive Learning for Spatial Data Classification. In J. Koronacki et al. (Eds.): Advances in Machine Learning I, pp. 189-207, Springer.

  • M. May, B. Berendt, A. Cornuejols, J. Gama, F. Giannotti, A. Hotho, D. Malerba, E. Menesalvas, K. Morik, R. Pedersen, L. Saitta, Y. Saygin, A. Schuster & K. Vanhoof (2009). Research Challenges in Ubiquitous Knowledge Discovery. Chapter 7 in H. Kargupta, J. Han, P.S. Yu, R. Motwani, & V. Kumar (Eds.), Next Generation Data Mining, pp. 131-150, Chapman & Hall / Crc.

  • D. Malerba, A. Lanza, & A. Appice (2009). Leveraging the power of spatial data mining to enhance the applicability of GIS technology. Chapter 10 in J. Han & R. Cohen (Eds.), Geographic Knowledge Discovery and Data Mining. 2nd Edition, pp. 258-291, CRC Press - Taylor and Francis.

  • M. Berardi, D. Malerba, R. Piredda, M. Attimonelli, G. Scioscia & P. Leo (2008). Biomedical Literature Mining for Biological Databases Annotation. Chapter 16 in E.G. Giannopoulou (Ed.), Data Mining in Medical and Biological Research, pp. 267-290, IN-TECH Publisher: Vienna.

  • D. Malerba, M. Ceci, & M. Berardi (2008). Machine Learning for Reading Order Detection in Document Image Understanding. In S. Marinai & H. Fujisawa (Eds.), Database Support for Data Mining Applications, Studies in Computational Intelligence, pp. 45-69, Springer-Verlag: Berlin.

  • D. Malerba, F. Esposito, & A. Appice (2008). Exporting symbolic objects to databases. Chapter 3 in E. Diday & M. Noirhomme-Fraiture (Eds.), Symbolic Data Analysis and the SODAS Software, pp. 123-148, John Wiley & Sons: Chichester.

  • F. Esposito, D. Malerba, & A. Appice (2008). Dissimilarity and matching. Chapter 8 in E. Diday & M. Noirhomme-Fraiture (Eds.), Symbolic Data Analysis and the SODAS Software, pp. 61-66, John Wiley & Sons: Chichester.

  • D. Malerba, A. Appice, & M. Ceci (2004). A Data Mining Query Language for Knowledge Discovery in a Geographical Information System. Chapter 5 in R. Meo, P. Lanzi, & M. Klemettinen (Eds.), Machine Learning in Document Analysis and Recognition, LNCS 2682, pp. 95-116, Springer-Verlag: Berlin.

  • D. Malerba, F. Esposito, A. Lanza, & F.A. Lisi (2001). Machine learning for information extraction from topographic maps. In H. J. Miller & J. Han (Eds.), Geographic Data Mining and Knowledge Discovery, 291-314, Taylor and Francis, London, UK.

  • F. Esposito, D. Malerba, & F.A. Lisi (2000). Matching Symbolic Objects. Chapter 8.4 in in H.-H. Bock and E. Diday (Eds.), Analysis of Symbolic Data. Exploratory methods for extracting statistical information from complex data, Series: Studies in Classification, Data Analysis, and Knowledge Organization, vol. 15, Springer-Verlag:Berlin, 186-197.

  • F. Esposito, D. Malerba, & V. Tamma (2000). Dissimilarity Measures for Symbolic Objects. Chapter 8.3 in in H.-H. Bock and E. Diday (Eds.), Analysis of Symbolic Data. Exploratory methods for extracting statistical information from complex data, Series: Studies in Classification, Data Analysis, and Knowledge Organization, vol. 15, Springer-Verlag:Berlin, 165-185.

  • F. Esposito, D. Malerba, V. Tamma, & H.-H. Bock (2000). Classical resemblance measures. Chapter 8.1 in in H.-H. Bock and E. Diday (Eds.), Analysis of Symbolic Data. Exploratory methods for extracting statistical information from complex data, Series: Studies in Classification, Data Analysis, and Knowledge Organization, vol. 15, Springer-Verlag:Berlin, 139-152.

  • M.F. Costabile, D. Malerba, M. Hemmje, & A. Paradiso (1998). Building metaphors for supporting user interaction in multimedia databases, Chapter 3 in Y. Ioannides and W. Klas (Eds.), Visual Database Systems 4 (VDB4), 47-65, Chapman & Hall, London.

  • D. Malerba, G. Semeraro and F. Esposito (1997). A Multistrategy Approach to Learning Multiple Dependent Concepts. Chapter 4 in C.,Taylor and R., Nakhaeizadeh (Eds.), Machine Learning and Statistics: The Interface, pp. 87-106, Wiley, London, England.

     

    Papers in International Collections

  • M.F. Costabile, D. Malerba, M. Hemmje & A. Paradiso (1998). Building metaphors for supporting user interaction in multimedia databases - A demonstration , Chapter 10 in Y. Ioannides and W. Klas (Eds.), Visual Database Systems 4 (VDB4), 154-160, Chapman & Hall, London.

     

 

pubblicato il 10/06/2018 ultima modifica 10/06/2018

Azioni sul documento