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What Are Statistics
by Mikki Hebl

Learning Objectives
1. Describe the range of applications of statistics
2. Identify situations in which statistics can be misleading
3. Define "Statistics"

Statistics include numerical facts and figures. For instance:

• The largest earthquake measured 9.2 on the Richter scale.

• Men are at least 10 times more likely than women to commit murder.

• One in every 8 South Africans is HIV positive.

• By the year 2020, there will be 15 people aged 65 and over for every new baby 
born.

The study of statistics involves math and relies upon calculations of numbers. But 
it also relies heavily on how the numbers are chosen and how the statistics are 
interpreted. For example, consider the following three scenarios and the 
interpretations based upon the presented statistics. You will find that the numbers 
may be right, but the interpretation may be wrong. Try to identify a major flaw 
with each interpretation before we describe it.

1) A new advertisement for Ben and Jerry's ice cream introduced in 
late May of last year resulted in a 30% increase in ice cream sales for 
the following three months. Thus, the advertisement was effective.

A major flaw is that ice cream consumption generally increases in the 
months of June, July, and August regardless of advertisements. This 
effect is called a history effect and leads people to interpret outcomes 
as the result of one variable when another variable (in this case, one 
having to do with the passage of time) is actually responsible. 

2) The more churches in a city, the more crime there is. Thus, 
churches lead to crime.
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A major flaw is that both increased churches and increased crime rates 
can be explained by larger populations. In bigger cities, there are both 
more churches and more crime. This problem, which we will discuss 
in more detail in Chapter 11, refers to the third-variable problem. 
Namely, a third variable can cause both situations; however, people 
erroneously believe that there is a causal relationship between the two 
primary variables rather than recognize that a third variable can cause 
both. 

3) 75% more interracial marriages are occurring this year than 25 
years ago. Thus, our society accepts interracial marriages.

A major flaw is that we don't have the information that we need. What 
is the rate at which marriages are occurring? Suppose only 1% of 
marriages 25 years ago were interracial and so now 1.75% of 
marriages are interracial (1.75 is 75% higher than 1). But this latter 
number is hardly evidence suggesting the acceptability of interracial 
marriages. In addition, the statistic provided does not rule out the 
possibility that the number of interracial marriages has seen dramatic 
fluctuations over the years and this year is not the highest. Again, 
there is simply not enough information to understand fully the impact 
of the statistics.

As a whole, these examples show that statistics are not only facts and figures; they 
are something more than that. In the broadest sense, "statistics" refers to a range of 
techniques and procedures for analyzing, interpreting, displaying, and making 
decisions based on data.
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Importance of  Statistics
by Mikki Hebl

Learning Objectives
1. Give examples of statistics are encountered in everyday life
2. Give examples of how statistics can lend credibility to an argument
Like most people, you probably feel that it is important to "take control of your 
life." But what does this mean? Partly, it means being able to properly evaluate the 
data and claims that bombard you every day. If you cannot distinguish good from 
faulty reasoning, then you are vulnerable to manipulation and to decisions that are 
not in your best interest. Statistics provides tools that you need in order to react 
intelligently to information you hear or read. In this sense, statistics is one of the 
most important things that you can study.

To be more specific, here are some claims that we have heard on several 
occasions. (We are not saying that each one of these claims is true!)
• 4 out of 5 dentists recommend Dentine.
• Almost 85% of lung cancers in men and 45% in women are tobacco-related.
• Condoms are effective 94% of the time.
• Native Americans are significantly more likely to be hit crossing the street than 

are people of other ethnicities.
• People tend to be more persuasive when they look others directly in the eye and 

speak loudly and quickly.
• Women make 75 cents to every dollar a man makes when they work the same 

job.
• A surprising new study shows that eating egg whites can increase one's life span.
• People predict that it is very unlikely there will ever be another baseball player 

with a batting average over 400.
• There is an 80% chance that in a room full of 30 people that at least two people 

will share the same birthday.
• 79.48% of all statistics are made up on the spot.
All of these claims are statistical in character. We suspect that some of them sound 
familiar; if not, we bet that you have heard other claims like them. Notice how 
diverse the examples are. They come from psychology, health, law, sports, 
business, etc. Indeed, data and data interpretation show up in discourse from 
virtually every facet of contemporary life.
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Statistics are often presented in an effort to add credibility to an argument or 
advice. You can see this by paying attention to television advertisements. Many of 
the numbers thrown about in this way do not represent careful statistical analysis. 
They can be misleading and push you into decisions that you might find cause to 
regret. For these reasons, learning about statistics is a long step towards taking 
control of your life. (It is not, of course, the only step needed for this purpose.) The 
present electronic textbook is designed to help you learn statistical essentials. It 
will make you into an intelligent consumer of statistical claims.

You can take the first step right away. To be an intelligent consumer of 
statistics, your first reflex must be to question the statistics that you encounter. The 
British Prime Minister Benjamin Disraeli is quoted by Mark Twain as having said, 
"There are three kinds of lies -- lies, damned lies, and statistics." This quote 
reminds us why it is so important to understand statistics. So let us invite you to 
reform your statistical habits from now on. No longer will you blindly accept 
numbers or findings. Instead, you will begin to think about the numbers, their 
sources, and most importantly, the procedures used to generate them.

We have put the emphasis on defending ourselves against fraudulent claims 
wrapped up as statistics. We close this section on a more positive note. Just as 
important as detecting the deceptive use of statistics is the appreciation of the 
proper use of statistics. You must also learn to recognize statistical evidence that 
supports a stated conclusion. Statistics are all around you, sometimes used well, 
sometimes not. We must learn how to distinguish the two cases.
 
Now let us get to work!
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Descriptive Statistics
by Mikki Hebl

Prerequisites
• none

Learning Objectives
1. Define "descriptive statistics"
2. Distinguish between descriptive statistics and inferential statistics
Descriptive statistics are numbers that are used to summarize and describe data. 
The word "data" refers to the information that has been collected from an 
experiment, a survey, an historical record, etc. (By the way, "data" is plural. One 
piece of information is called a "datum.") If we are analyzing birth certificates, for 
example, a descriptive statistic might be the percentage of certificates issued in 
New York State, or the average age of the mother. Any other number we choose to 
compute also counts as a descriptive statistic for the data from which the statistic is 
computed. Several descriptive statistics are often used at one time to give a full 
picture of the data.

Descriptive statistics are just descriptive. They do not involve generalizing 
beyond the data at hand. Generalizing from our data to another set of cases is the 
business of inferential statistics, which you'll be studying in another section. Here 
we focus on (mere) descriptive statistics.

Some descriptive statistics are shown in Table 1. The table shows the 
average salaries for various occupations in the United States in 1999. 

14



Table 1. Average salaries for various occupations in 1999.

$112,760 pediatricians

$106,130 dentists

$100,090 podiatrists

$76,140 physicists

$53,410 architects,

$49,720 school, clinical, and counseling 
psychologists

$47,910 flight attendants

$39,560 elementary school teachers

$38,710 police officers

$18,980 floral designers

Descriptive statistics like these offer insight into American society. It is interesting 
to note, for example, that we pay the people who educate our children and who 
protect our citizens a great deal less than we pay people who take care of our feet 
or our teeth.

For more descriptive statistics, consider Table 2. It shows the number of 
unmarried men per 100 unmarried women in U.S. Metro Areas in 1990. From this 
table we see that men outnumber women most in Jacksonville, NC, and women 
outnumber men most in Sarasota, FL. You can see that descriptive statistics can be 
useful if we are looking for an opposite-sex partner! (These data come from the 
Information Please Almanac.)

Table 2. Number of unmarried men per 100 unmarried women in U.S. Metro Areas 
in 1990.

Cities with mostly 
men

Men per 100 
Women

Cities with mostly 
women

Men per 100 
Women

1. Jacksonville, 
NC

224 1. Sarasota, FL 66
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2. Killeen-Temple, 
TX

123 2. Bradenton, FL 68

3. Fayetteville, 
NC

118 3. Altoona, PA 69

4. Brazoria, TX 117 4. Springfield, IL 70

5. Lawton, OK 116 5. Jacksonville, 
TN

70

6. State College, 
PA

113 6. Gadsden, AL 70

7. Clarksville-
Hopkinsville, TN-
KY

113 7. Wheeling, WV 70

8. Anchorage, 
Alaska

112 8. Charleston, WV 71

9. Salinas-
Seaside-
Monterey, CA

112 9. St. Joseph, MO 71

10. Bryan-
College Station, 
TX

111 10. Lynchburg, VA 71

NOTE: Unmarried includes never-married, widowed, and divorced persons, 15 years or older.

These descriptive statistics may make us ponder why the numbers are so disparate 
in these cities. One potential explanation, for instance, as to why there are more 
women in Florida than men may involve the fact that elderly individuals tend to 
move down to the Sarasota region and that women tend to outlive men. Thus, more 
women might live in Sarasota than men. However, in the absence of proper data, 
this is only speculation.

You probably know that descriptive statistics are central to the world of 
sports. Every sporting event produces numerous statistics such as the shooting 
percentage of players on a basketball team. For the Olympic marathon (a foot race 
of 26.2 miles), we possess data that cover more than a century of competition. (The 
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first modern Olympics took place in 1896.) The following table shows the winning 
times for both men and women (the latter have only been allowed to compete since 
1984).

Table 3. Winning Olympic marathon times.

WomenWomenWomenWomen

Year Winner Country Time

1984 Joan Benoit USA 2:24:52

1988 Rosa Mota POR 2:25:40

1992 Valentina Yegorova UT 2:32:41

1996 Fatuma Roba ETH 2:26:05

2000 Naoko Takahashi JPN 2:23:14

2004 Mizuki Noguchi JPN 2:26:20

MenMenMenMen

Year Winner Country Time

1896 Spiridon Louis GRE 2:58:50

1900 Michel Theato FRA 2:59:45

1904 Thomas Hicks USA 3:28:53

1906 Billy Sherring CAN 2:51:23

1908 Johnny Hayes USA 2:55:18

1912 Kenneth McArthur S. Afr. 2:36:54

1920 Hannes Kolehmainen FIN 2:32:35

1924 Albin Stenroos FIN 2:41:22

1928 Boughra El Ouafi FRA 2:32:57

1932 Juan Carlos Zabala ARG 2:31:36

1936 Sohn Kee-Chung JPN 2:29:19
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1948 Delfo Cabrera ARG 2:34:51

1952 Emil Ztopek CZE 2:23:03

1956 Alain Mimoun FRA 2:25:00

1960 Abebe Bikila ETH 2:15:16

1964 Abebe Bikila ETH 2:12:11

1968 Mamo Wolde ETH 2:20:26

1972 Frank Shorter USA 2:12:19

1976 Waldemar Cierpinski E.Ger 2:09:55

1980 Waldemar Cierpinski E.Ger 2:11:03

1984 Carlos Lopes POR 2:09:21

1988 Gelindo Bordin ITA 2:10:32

1992 Hwang Young-Cho S. Kor 2:13:23

1996 Josia Thugwane S. Afr. 2:12:36

2000 Gezahenge Abera ETH 2:10.10

2004 Stefano Baldini ITA 2:10:55

There are many descriptive statistics that we can compute from the data in the 
table. To gain insight into the improvement in speed over the years, let us divide 
the men's times into two pieces, namely, the first 13 races (up to 1952) and the 
second 13 (starting from 1956). The mean winning time for the first 13 races is 2 
hours, 44 minutes, and 22 seconds (written 2:44:22). The mean winning time for 
the second 13 races is 2:13:18. This is quite a difference (over half an hour). Does 
this prove that the fastest men are running faster? Or is the difference just due to 
chance, no more than what often emerges from chance differences in performance 
from year to year? We can't answer this question with descriptive statistics alone. 
All we can affirm is that the two means are "suggestive."

Examining Table 3 leads to many other questions. We note that Takahashi 
(the lead female runner in 2000) would have beaten the male runner in 1956 and all 
male runners in the first 12 marathons. This fact leads us to ask whether the gender 
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gap will close or remain constant. When we look at the times within each gender, 
we also wonder how far they will decrease (if at all) in the next century of the 
Olympics. Might we one day witness a sub-2 hour marathon? The study of 
statistics can help you make reasonable guesses about the answers to these 
questions.
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Inferential Statistics
by Mikki Hebl

Prerequisites
• Chapter 1: Descriptive Statistics 

Learning Objectives
1. Distinguish between a sample and a population
2. Define inferential statistics
3. Identify biased samples
4. Distinguish between simple random sampling and stratified sampling
5. Distinguish between random sampling and random assignment

Populations and samples
In statistics, we often rely on a sample --- that is, a small subset of a larger set of 
data --- to draw inferences about the larger set. The larger set is known as the 
population from which the sample is drawn.

Example #1: You have been hired by the National Election Commission to 
examine how the American people feel about the fairness of the voting 
procedures in the U.S. Who will you ask?

It is not practical to ask every single American how he or she feels about the 
fairness of the voting procedures. Instead, we query a relatively small number of 
Americans, and draw inferences about the entire country from their responses. The 
Americans actually queried constitute our sample of the larger population of all 
Americans. The mathematical procedures whereby we convert information about 
the sample into intelligent guesses about the population fall under the rubric of 
inferential statistics.

A sample is typically a small subset of the population. In the case of voting 
attitudes, we would sample a few thousand Americans drawn from the hundreds of 
millions that make up the country. In choosing a sample, it is therefore crucial that 
it not over-represent one kind of citizen at the expense of others. For example, 
something would be wrong with our sample if it happened to be made up entirely 
of Florida residents. If the sample held only Floridians, it could not be used to infer 
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the attitudes of other Americans. The same problem would arise if the sample were 
comprised only of Republicans. Inferential statistics are based on the assumption 
that sampling is random. We trust a random sample to represent different segments 
of society in close to the appropriate proportions (provided the sample is large 
enough; see below).

Example #2: We are interested in examining how many math classes have 
been taken on average by current graduating seniors at American colleges 
and universities during their four years in school. Whereas our population in 
the last example included all US citizens, now it involves just the graduating 
seniors throughout the country. This is still a large set since there are 
thousands of colleges and universities, each enrolling many students. (New 
York University, for example, enrolls 48,000 students.) It would be 
prohibitively costly to examine the transcript of every college senior. We 
therefore take a sample of college seniors and then make inferences to the 
entire population based on what we find. To make the sample, we might first 
choose some public and private colleges and universities across the United 
States. Then we might sample 50 students from each of these institutions. 
Suppose that the average number of math classes taken by the people in our 
sample were 3.2. Then we might speculate that 3.2 approximates the number 
we would find if we had the resources to examine every senior in the entire 
population. But we must be careful about the possibility that our sample is 
non-representative of the population. Perhaps we chose an overabundance of 
math majors, or chose too many technical institutions that have heavy math 
requirements. Such bad sampling makes our sample unrepresentative of the 
population of all seniors.

To solidify your understanding of sampling bias, consider the following 
example. Try to identify the population and the sample, and then reflect on 
whether the sample is likely to yield the information desired.
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Example #3: A substitute teacher wants to know how students in the class 
did on their last test. The teacher asks the 10 students sitting in the front row 
to state their latest test score. He concludes from their report that the class 
did extremely well. What is the sample? What is the population? Can you 
identify any problems with choosing the sample in the way that the teacher 
did?

In Example #3, the population consists of all students in the class. The sample is 
made up of just the 10 students sitting in the front row. The sample is not likely to 
be representative of the population. Those who sit in the front row tend to be more 
interested in the class and tend to perform higher on tests. Hence, the sample may 
perform at a higher level than the population.

Example #4: A coach is interested in how many cartwheels the average 
college freshmen at his university can do. Eight volunteers from the 
freshman class step forward. After observing their performance, the coach 
concludes that college freshmen can do an average of 16 cartwheels in a row 
without stopping.

In Example #4, the population is the class of all freshmen at the coach's university. 
The sample is composed of the 8 volunteers. The sample is poorly chosen because 
volunteers are more likely to be able to do cartwheels than the average freshman; 
people who can't do cartwheels probably did not volunteer! In the example, we are 
also not told of the gender of the volunteers. Were they all women, for example? 
That might affect the outcome, contributing to the non-representative nature of the 
sample (if the school is co-ed).

Simple Random Sampling
Researchers adopt a variety of sampling strategies. The most straightforward is 
simple random sampling. Such sampling requires every member of the population 
to have an equal chance of being selected into the sample. In addition, the selection 
of one member must be independent of the selection of every other member. That 
is, picking one member from the population must not increase or decrease the 
probability of picking any other member (relative to the others). In this sense, we 
can say that simple random sampling chooses a sample by pure chance. To check 
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your understanding of simple random sampling, consider the following example. 
What is the population? What is the sample? Was the sample picked by simple 
random sampling? Is it biased?

Example #5: A research scientist is interested in studying the experiences of 
twins raised together versus those raised apart. She obtains a list of twins 
from the National Twin Registry, and selects two subsets of individuals for 
her study. First, she chooses all those in the registry whose last name begins 
with Z. Then she turns to all those whose last name begins with B. Because 
there are so many names that start with B, however, our researcher decides 
to incorporate only every other name into her sample. Finally, she mails out 
a survey and compares characteristics of twins raised apart versus together.

In Example #5, the population consists of all twins recorded in the National Twin 
Registry. It is important that the researcher only make statistical generalizations to 
the twins on this list, not to all twins in the nation or world. That is, the National 
Twin Registry may not be representative of all twins. Even if inferences are limited 
to the Registry, a number of problems affect the sampling procedure we described. 
For instance, choosing only twins whose last names begin with Z does not give 
every individual an equal chance of being selected into the sample. Moreover, such 
a procedure risks over-representing ethnic groups with many surnames that begin 
with Z. There are other reasons why choosing just the Z's may bias the sample. 
Perhaps such people are more patient than average because they often find 
themselves at the end of the line! The same problem occurs with choosing twins 
whose last name begins with B. An additional problem for the B's is that the 
“every-other-one” procedure disallowed adjacent names on the B part of the list 
from being both selected. Just this defect alone means the sample was not formed 
through simple random sampling.

Sample size matters
Recall that the definition of a random sample is a sample in which every member 
of the population has an equal chance of being selected. This means that the 
sampling procedure rather than the results of the procedure define what it means 
for a sample to be random. Random samples, especially if the sample size is small, 
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are not necessarily representative of the entire population. For example, if a 
random sample of 20 subjects were taken from a population with an equal number 
of males and females, there would be a nontrivial probability (0.06) that 70% or 
more of the sample would be female. (To see how to obtain this probability, see the 
section on the binomial distribution.) Such a sample would not be representative, 
although it would be drawn randomly. Only a large sample size makes it likely that 
our sample is close to representative of the population. For this reason, inferential 
statistics take into account the sample size when generalizing results from samples 
to populations. In later chapters, you'll see what kinds of mathematical techniques 
ensure this sensitivity to sample size.

More complex sampling
Sometimes it is not feasible to build a sample using simple random sampling. To 
see the problem, consider the fact that both Dallas and Houston are competing to 
be hosts of the 2012 Olympics. Imagine that you are hired to assess whether most 
Texans prefer Houston to Dallas as the host, or the reverse. Given the 
impracticality of obtaining the opinion of every single Texan, you must construct a 
sample of the Texas population. But now notice how difficult it would be to 
proceed by simple random sampling. For example, how will you contact those 
individuals who don’t vote and don’t have a phone? Even among people you find 
in the telephone book, how can you identify those who have just relocated to 
California (and had no reason to inform you of their move)? What do you do about 
the fact that since the beginning of the study, an additional 4,212 people took up 
residence in the state of Texas? As you can see, it is sometimes very difficult to 
develop a truly random procedure. For this reason, other kinds of sampling 
techniques have been devised. We now discuss two of them.

Random assignment
In experimental research, populations are often hypothetical. For example, in an 
experiment comparing the effectiveness of a new anti-depressant drug with a 
placebo, there is no actual population of individuals taking the drug. In this case, a 
specified population of people with some degree of depression is defined and a 
random sample is taken from this population. The sample is then randomly divided 
into two groups; one group is assigned to the treatment condition (drug) and the 
other group is assigned to the control condition (placebo). This random division of 
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the sample into two groups is called random assignment. Random assignment is 
critical for the validity of an experiment. For example, consider the bias that could 
be introduced if the first 20 subjects to show up at the experiment were assigned to 
the experimental group and the second 20 subjects were assigned to the control 
group. It is possible that subjects who show up late tend to be more depressed than 
those who show up early, thus making the experimental group less depressed than 
the control group even before the treatment was administered.

In experimental research of this kind, failure to assign subjects randomly to 
groups is generally more serious than having a non-random sample. Failure to 
randomize (the former error) invalidates the experimental findings. A non-random 
sample (the latter error) simply restricts the generalizability of the results.

Stratified Sampling
Since simple random sampling often does not ensure a representative sample, a 
sampling method called stratified random sampling is sometimes used to make the 
sample more representative of the population. This method can be used if the 
population has a number of distinct "strata" or groups. In stratified sampling, you 
first identify members of your sample who belong to each group. Then you 
randomly sample from each of those subgroups in such a way that the sizes of the 
subgroups in the sample are proportional to their sizes in the population.

Let's take an example: Suppose you were interested in views of capital 
punishment at an urban university. You have the time and resources to interview 
200 students. The student body is diverse with respect to age; many older people 
work during the day and enroll in night courses (average age is 39), while younger 
students generally enroll in day classes (average age of 19). It is possible that night 
students have different views about capital punishment than day students. If 70% 
of the students were day students, it makes sense to ensure that 70% of the sample 
consisted of day students. Thus, your sample of 200 students would consist of 140 
day students and 60 night students. The proportion of day students in the sample 
and in the population (the entire university) would be the same. Inferences to the 
entire population of students at the university would therefore be more secure.
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Variables
by Heidi Ziemer

Prerequisites
•none

Learning Objectives
1. Define and distinguish between independent and dependent variables
2. Define and distinguish between discrete and continuous variables
3. Define and distinguish between qualitative and quantitative variables

Independent and dependent variables
Variables are properties or characteristics of some event, object, or person that can 
take on different values or amounts (as opposed to constants such as π that do not 
vary). When conducting research, experimenters often manipulate variables. For 
example, an experimenter might compare the effectiveness of four types of 
antidepressants. In this case, the variable is "type of antidepressant." When a 
variable is manipulated by an experimenter, it is called an independent variable. 
The experiment seeks to determine the effect of the independent variable on relief 
from depression. In this example, relief from depression is called a dependent 
variable. In general, the independent variable is manipulated by the experimenter 
and its effects on the dependent variable are measured.

Example #1: Can blueberries slow down aging? A study indicates that 
antioxidants found in blueberries may slow down the process of aging. In 
this study, 19-month-old rats (equivalent to 60-year-old humans) were fed 
either their standard diet or a diet supplemented by either blueberry, 
strawberry, or spinach powder. After eight weeks, the rats were given 
memory and motor skills tests. Although all supplemented rats showed 
improvement, those supplemented with blueberry powder showed the most 
notable improvement. 

1. What is the independent variable? (dietary supplement: none, blueberry, 
strawberry, and spinach)

26



2. What are the dependent variables? (memory test and motor skills test) 

Example #2: Does beta-carotene protect against cancer? Beta-carotene 
supplements have been thought to protect against cancer. However, a study 
published in the Journal of the National Cancer Institute suggests this is 
false. The study was conducted with 39,000 women aged 45 and up. These 
women were randomly assigned to receive a beta-carotene supplement or a 
placebo, and their health was studied over their lifetime. Cancer rates for 
women taking the beta-carotene supplement did not differ systematically 
from the cancer rates of those women taking the placebo. 

1. What is the independent variable? (supplements: beta-carotene or 
placebo)

2. What is the dependent variable? (occurrence of cancer)

Example #3: How bright is right? An automobile manufacturer wants to 
know how bright brake lights should be in order to minimize the time 
required for the driver of a following car to realize that the car in front is 
stopping and to hit the brakes.

1. What is the independent variable? (brightness of brake lights)

2. What is the dependent variable? (time to hit brakes)

Levels of an Independent Variable
If an experiment compares an experimental treatment with a control treatment, 
then the independent variable (type of treatment) has two levels: experimental and 
control. If an experiment were comparing five types of diets, then the independent 
variable (type of diet) would have 5 levels. In general, the number of levels of an 
independent variable is the number of experimental conditions.
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Qualitative and Quantitative Variables
An important distinction between variables is between qualitative variables and 
quantitative variables. Qualitative variables are those that express a qualitative 
attribute such as hair color, eye color, religion, favorite movie, gender, and so on. 
The values of a qualitative variable do not imply a numerical ordering. Values of 
the variable “religion” differ qualitatively; no ordering of religions is implied. 
Qualitative variables are sometimes referred to as categorical variables. 
Quantitative variables are those variables that are measured in terms of numbers. 
Some examples of quantitative variables are height, weight, and shoe size.

In the study on the effect of diet discussed previously, the independent 
variable was type of supplement: none, strawberry, blueberry, and spinach. The 
variable "type of supplement" is a qualitative variable; there is nothing quantitative 
about it. In contrast, the dependent variable "memory test" is a quantitative variable 
since memory performance was measured on a quantitative scale (number correct).

Discrete and Continuous Variables
Variables such as number of children in a household are called discrete variables 
since the possible scores are discrete points on the scale. For example, a household 
could have three children or six children, but not 4.53 children. Other variables 
such as "time to respond to a question" are continuous variables since the scale is 
continuous and not made up of discrete steps. The response time could be 1.64 
seconds, or it could be 1.64237123922121 seconds. Of course, the practicalities of 
measurement preclude most measured variables from being truly continuous.
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Measures of  Central Tendency
by David M. Lane

Prerequisites
• Chapter 1: Distributions
• Chapter 3: Central Tendency 

Learning Objectives
1. Compute mean
2. Compute median
3. Compute mode
In the previous section we saw that there are several ways to define central 
tendency. This section defines the three most common measures of central 
tendency: the mean, the median, and the mode. The relationships among these 
measures of central tendency and the definitions given in the previous section will 
probably not be obvious to you.

This section gives only the basic definitions of the mean, median and mode. 
A further discussion of the relative merits and proper applications of these statistics 
is presented in a later section.

Arithmetic Mean
The arithmetic mean is the most common measure of central tendency. It is simply 
the sum of the numbers divided by the number of numbers. The symbol "μ" is used 
for the mean of a population. The symbol "M" is used for the mean of a sample. 
The formula for μ is shown below:
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where ΣX is the sum of all the numbers in the population 
and
N is the number of numbers in the population.

The formula for M is essentially identical:
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where ΣX is the sum of all the numbers in the sample and
N is the number of numbers in the sample.

As an example, the mean of the numbers 1, 2, 3, 6, 8 is 20/5 = 4 regardless of 
whether the numbers constitute the entire population or just a sample from the 
population.

Table 1 shows the number of touchdown (TD) passes thrown by each of the 
31 teams in the National Football League in the 2000 season. The mean number of 
touchdown passes thrown is 20.4516 as shown below.
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Table 1. Number of touchdown passes.

37, 33, 33, 32, 29, 28, 
28, 23, 22, 22, 22, 21, 
21, 21, 20, 20, 19, 19, 
18, 18, 18, 18, 16, 15, 
14, 14, 14, 12, 12, 9, 6

Although the arithmetic mean is not the only "mean" (there is also a geometric 
mean), it is by far the most commonly used. Therefore, if the term "mean" is used 
without specifying whether it is the arithmetic mean, the geometric mean, or some 
other mean, it is assumed to refer to the arithmetic mean.

Median
The median is also a frequently used measure of central tendency. The median is 
the midpoint of a distribution: the same number of scores is above the median as 
below it. For the data in Table 1, there are 31 scores. The 16th highest score (which 
equals 20) is the median because there are 15 scores below the 16th score and 15 
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scores above the 16th score. The median can also be thought of as the 50th 
percentile.

Computation of the Median
When there is an odd number of numbers, the median is simply the middle number. 
For example, the median of 2, 4, and 7 is 4. When there is an even number of 
numbers, the median is the mean of the two middle numbers. Thus, the median of 
the numbers 2, 4, 7, 12 is:
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Mode
The mode is the most frequently occurring value. For the data in Table 1, the mode 
is 18 since more teams (4) had 18 touchdown passes than any other number of 
touchdown passes. With continuous data, such as response time measured to many 
decimals, the frequency of each value is one since no two scores will be exactly the 
same (see discussion of continuous variables). Therefore the mode of continuous 
data is normally computed from a grouped frequency distribution. Table 2 shows a 
grouped frequency distribution for the target response time data. Since the interval 
with the highest frequency is 600-700, the mode is the middle of that interval 
(650).
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Table 2. Grouped frequency distribution.

Range Frequency

500-600
600-700
700-800
800-900

900-1000
1000-1100

3
6
5
5
0
1
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Measures of  Variability
by David M. Lane

Prerequisites
• Chapter 1: Percentiles
• Chapter 1: Distributions
• Chapter 3: Measures of Central Tendency

Learning Objectives
1. Determine the relative variability of two distributions
2. Compute the range
3. Compute the inter-quartile range
4. Compute the variance in the population
5. Estimate the variance from a sample
6. Compute the standard deviation from the variance

What is Variability?
Variability refers to how "spread out" a group of scores is. To see what we mean by 
spread out, consider graphs in Figure 1. These graphs represent the scores on two 
quizzes. The mean score for each quiz is 7.0. Despite the equality of means, you 
can see that the distributions are quite different. Specifically, the scores on Quiz 1 
are more densely packed and those on Quiz 2 are more spread out. The differences 
among students were much greater on Quiz 2 than on Quiz 1.
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Quiz 2
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Figure 1. Bar charts of two quizzes.

The terms variability, spread, and dispersion are synonyms, and refer to how 
spread out a distribution is. Just as in the section on central tendency we discussed 
measures of the center of a distribution of scores, in this chapter we will discuss 
measures of the variability of a distribution. There are four frequently used 
measures of variability: range, interquartile range, variance, and standard 
deviation. In the next few paragraphs, we will look at each of these four measures 
of variability in more detail.

Range
The range is the simplest measure of variability to calculate, and one you have 
probably encountered many times in your life. The range is simply the highest 
score minus the lowest score. Let’s take a few examples. What is the range of the 
following group of numbers: 10, 2, 5, 6, 7, 3, 4? Well, the highest number is 10, 
and the lowest number is 2, so 10 - 2 = 8. The range is 8. Let’s take another 
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example. Here’s a dataset with 10 numbers: 99, 45, 23, 67, 45, 91, 82, 78, 62, 51. 
What is the range? The highest number is 99 and the lowest number is 23, so 99 - 
23 equals 76; the range is 76. Now consider the two quizzes shown in Figure 1. On 
Quiz 1, the lowest score is 5 and the highest score is 9. Therefore, the range is 4. 
The range on Quiz 2 was larger: the lowest score was 4 and the highest score was 
10. Therefore the range is 6.

Interquartile Range
The interquartile range (IQR) is the range of the middle 50% of the scores in a 
distribution. It is computed as follows:

IQR = 75th percentile - 25th percentile

For Quiz 1, the 75th percentile is 8 and the 25th percentile is 6. The interquartile 
range is therefore 2. For Quiz 2, which has greater spread, the 75th percentile is 9, 
the 25th percentile is 5, and the interquartile range is 4. Recall that in the 
discussion of box plots, the 75th percentile was called the upper hinge and the 25th 
percentile was called the lower hinge. Using this terminology, the interquartile 
range is referred to as the H-spread.

A related measure of variability is called the semi-interquartile range. The 
semi-interquartile range is defined simply as the interquartile range divided by 2. If 
a distribution is symmetric, the median plus or minus the semi-interquartile range 
contains half the scores in the distribution.

Variance
Variability can also be defined in terms of how close the scores in the distribution 
are to the middle of the distribution. Using the mean as the measure of the middle 
of the distribution, the variance is defined as the average squared difference of the 
scores from the mean. The data from Quiz 1 are shown in Table 1. The mean score 
is 7.0. Therefore, the column "Deviation from Mean" contains the score minus 7. 
The column "Squared Deviation" is simply the previous column squared.
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Table 1. Calculation of Variance for Quiz 1 scores.

Scores Deviation from Mean Squared Deviation

9 2 4

9 2 4

9 2 4

8 1 1

8 1 1

8 1 1

8 1 1

7 0 0

7 0 0

7 0 0

7 0 0

7 0 0

6 -1 1

6 -1 1

6 -1 1

6 -1 1

6 -1 1

6 -1 1

5 -2 4

5 -2 4

MeansMeansMeans

7 0 1.5

One thing that is important to notice is that the mean deviation from the mean is 0. 
This will always be the case. The mean of the squared deviations is 1.5. Therefore, 
the variance is 1.5. Analogous calculations with Quiz 2 show that its variance is 
6.7. The formula for the variance is:
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where σ2 is the variance, μ is the mean, and N is the number of numbers. For Quiz 
1, μ = 7 and N = 20.

If the variance in a sample is used to estimate the variance in a population, 
then the previous formula underestimates the variance and the following formula 
should be used:
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where s2 is the estimate of the variance and M is the sample mean. Note that M is 
the mean of a sample taken from a population with a mean of μ. Since, in practice, 
the variance is usually computed in a sample, this formula is most often used.

Let's take a concrete example. Assume the scores 1, 2, 4, and 5 were 
sampled from a larger population. To estimate the variance in the population you 
would compute s2 as follows:
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There are alternate formulas that can be easier to use if you are doing your 
calculations with a hand calculator:
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as with the other formula.

Standard Deviation
The standard deviation is simply the square root of the variance. This makes the 
standard deviations of the two quiz distributions 1.225 and 2.588. The standard 
deviation is an especially useful measure of variability when the distribution is 
normal or approximately normal (see Chapter 7) because the proportion of the 
distribution within a given number of standard deviations from the mean can be 
calculated. For example, 68% of the distribution is within one standard deviation 
of the mean and approximately 95% of the distribution is within two standard 
deviations of the mean. Therefore, if you had a normal distribution with a mean of 
50 and a standard deviation of 10, then 68% of the distribution would be between 
50 - 10 = 40 and 50 +10 =60. Similarly, about 95% of the distribution would be 
between 50 - 2 x 10 = 30 and 50 + 2 x 10 = 70. The symbol for the population 
standard deviation is σ; the symbol for an estimate computed in a sample is s. 
Figure 2 shows two normal distributions. The red distribution has a mean of 40 and  
a standard deviation of 5; the blue distribution has a mean of 60 and a standard 
deviation of 10. For the red distribution, 68% of the distribution is between 45 and 
55; for the blue distribution, 68% is between 40 and 60.
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Figure 2. Normal distributions with standard deviations of 5 and 10.
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Introduction to Normal Distributions
by David M. Lane

Prerequisites
• Chapter 1: Distributions
• Chapter 3: Central Tendency
• Chapter 3: Variability

Learning Objectives
1. Describe the shape of normal distributions
2. State 7 features of normal distributions
The normal distribution is the most important and most widely used distribution in 
statistics. It is sometimes called the "bell curve," although the tonal qualities of 
such a bell would be less than pleasing. It is also called the "Gaussian curve" after 
the mathematician Karl Friedrich Gauss. As you will see in the section on the 
history of the normal distribution, although Gauss played an important role in its 
history, de Moivre first discovered the normal distribution.

Strictly speaking, it is not correct to talk about "the normal distribution" 
since there are many normal distributions. Normal distributions can differ in their 
means and in their standard deviations. Figure 1 shows three normal distributions. 
The green (left-most) distribution has a mean of -3 and a standard deviation of 0.5, 
the distribution in red (the middle distribution) has a mean of 0 and a standard 
deviation of 1, and the distribution in black (right-most) has a mean of 2 and a 
standard deviation of 3. These as well as all other normal distributions are 
symmetric with relatively more values at the center of the distribution and 
relatively few in the tails.
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Figure 1. Normal distributions differing in mean and standard deviation.

The density of the normal distribution (the height for a given value on the x-axis) is 
shown below. The parameters μ and σ are the mean and standard deviation, 
respectively, and define the normal distribution. The symbol e is the base of the 
natural logarithm and π is the constant pi.
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Since this is a non-mathematical treatment of statistics, do not worry if this 
expression confuses you. We will not be referring back to it in later sections.

Seven features of normal distributions are listed below. These features are 
illustrated in more detail in the remaining sections of this chapter.
1. Normal distributions are symmetric around their mean.
2. The mean, median, and mode of a normal distribution are equal.
3. The area under the normal curve is equal to 1.0.
4. Normal distributions are denser in the center and less dense in the tails.
5. Normal distributions are defined by two parameters, the mean (μ) and the 

standard deviation (σ).
6. 68% of the area of a normal distribution is within one standard deviation of the 

mean.
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7. Approximately 95% of the area of a normal distribution is within two standard 
deviations of the mean.
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