Corso di Laurea in Chimica e Tecnologia Farmaceutiche Esame di Chimica Analitica e Complementi di Chimica Modulo di Chimica Analitica – 06 Ottobre 2015

Nome e Cognome	matricola
1. Calcolare, servendosi del diagramma logaritmico, il una soluzione di NaHSO ₄ a concentrazione analitica tramite risoluzione sistematica.	• •
	$[K_a NaHSO_4 = 1.02*10^{-2}]$
2. Calcolare il pH e il potere tampone di una soluzione M di NaH_2PO_4 con 0.45 L di una soluzione $1.0*10^{-3}$ M d	
	$[K_{a2} H_3 PO_4 = 6.23*10^{-8}]$
3. Calcolare quanti grammi di AgSCN precipitano quan di AgNO $_3$ con 500 mL di una soluzione $1.0*10^{-3}$ M di tiocianato di argento rimasto in soluzione.	
	[P.M. AgSCN = 165.95 g/mol; K _{ps} AgSCN= 1.03*10 ⁻¹²]