Principi di Econometria

lezione 4

OLS inferenza

assunzioni OLS

distribuzione campionaria d $\hat{\beta}_0, \hat{\beta}_1$

Principi di Econometria

lezione 4

AA 2016-2017

Paolo Brunori

- abbiamo individuato la regressione lineare semplice (OLS) come modo immediato per sintetizzare una relazione fra una variabile dipendente (Y) e una indipendente (X)
- i parametri β_0 e β_1 che consideriamo migliori sono quelli tali per cui la somma degli errori di interpilazione al quadrato è minima: $\hat{\beta}_0$ e $\hat{\beta}_1$
- ma le stime che otteniamo sono variabili casuali che dipendono dal campione osservato
- sotto alcune assunzioni però possiamo stare tranquilli, le stime che otteniamo hanno valore atteso pari ai veri parametri nella popolazione (in media ci azzecchiamo)

retta dei minimi quadrati

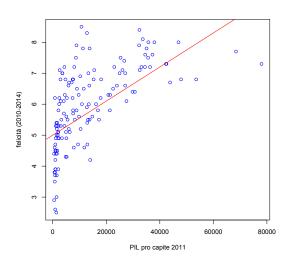
Principi di Econometria

lezione 4

OLS inferenza

assunzioni OLS

distribuzione campionaria di \hat{eta}_0 , \hat{eta}_1



fonte: elaborazione su dati World Bank

assunzioni ${\it OLS}$

distribuzione campionaria di $\hat{\beta}_0, \hat{\beta}_1$

- 1) la distribuzione di u_i condizionata a X_i ha media nulla
- 2) X, Y sono indipendentemente e identicamente distribuite
- 3) valori estremi (outlier) devono essere improbabili

$\hat{\beta}_0, \hat{\beta}_1$ sono stimatori non-distorti

- $\hat{\beta}_0, \hat{\beta}_1$ sono variabili casuali: il loro valore dipende dal campione selezionato
- se valgono le condizioni il loro valore si distribuisce attorno al vero valore (β_0, β_1)
- come accade per la media di un campione: la media campionaria è uno stimatore non distorto della vera media della popolazione
- così accade per i parametri $\hat{\beta}_0, \hat{\beta}_1$ se si verificano le condizioni

- se le assunzioni 1-3 si verificano sono non distorti: $E(\hat{\beta}_0) = \beta_0$ e $E(\hat{\beta}_1) = \beta_1$
- inoltre se n è abbastanza grande la loro distribuzione è ben approssimata da una normale bivariata
- si può applicare il teorema del limite centrale:

$$\hat{\beta}_0 \sim (\beta_0, \sigma_{\beta_0})$$

$$\hat{\beta}_1 \sim (\beta_1, \sigma_{\beta_1})$$

- il teorema del limite centrale ci consente di sfruttare le informazioni contenute nel campione per quantificare l'incertezza delle stime ottenute
- quanto è probabile che la relazione che osservo fra Y e X sia veramente positiva?
- è possibile, ammettendo un certo grado di incertezza, individuare una stima minima e massima per il valore del coefficiente?

 il grado di incertezza delle nostre stime è quantificabile guardando alla varianza dei due stimatori:

$$var(\hat{\beta}_0) = \frac{1}{n} \frac{var(H_i u_i)}{[E(H_i^2)]^2}$$
 dove $H_i = 1 - \left[\frac{\mu_x}{E(X_i^2)}\right] X_i$
$$var(\hat{\beta}_1) = \frac{1}{n} \frac{var[(X_i - \mu_x) u_i]}{[var(X_i)]^2}$$

dove σ^2 è la varianza del termine errore u

- il grado di incertezza delle nostre stime è quantificabile guardando alla varianza dei due stimatori:

$$var(\hat{\beta}_0) = \sigma^2 \frac{\sum_{i=1}^{n} X_i^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$
$$var(\hat{\beta}_1) = \frac{\sigma^2}{n \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

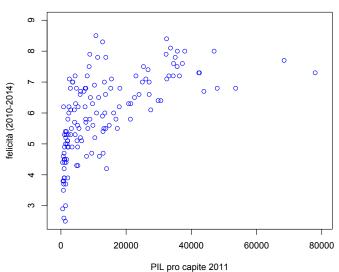
$$var(\hat{\beta}_1) = \frac{\sigma}{n \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

dove σ^2 è la varianza del termine errore u

- tanto maggiore σ^2 tanta più alta è l'incertezza riguardo ai coefficienti
- tanto minore la variabilità di X tanto più alta l'incertezza riguardo ai coefficienti

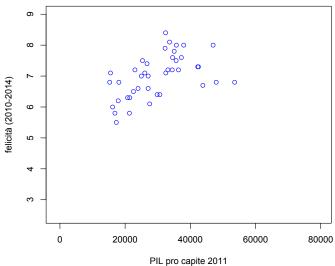
assunzioni OLS

distribuzione campionaria di $\hat{\beta}_0, \hat{\beta}_1$



assunzioni OLS

distribuzione campionaria di $\hat{\beta}_0, \hat{\beta}_1$



- se è valido il teorema del limite centrale sarà anche possibile effettuare test delle ipotesi
- "con quale grado di confidenza possiamo affermare che un aumento del PIL si traduce in un aumento della felicità?"
- ciò equivale a testare l'ipotesi:

$$H_0: \beta_1=0$$

contro l'ipotesi:

$$H_1: \beta_1 \neq 0$$

test delle ipotesi

- per effettuare il test si deve costruire la statistica \hat{t} :

$$\hat{t} = \frac{\hat{\beta}_1 - \beta_1^{H_0}}{\sqrt{var(\hat{\beta}_1)}}$$

- rifiutiamo l'ipotesi nulla (H_0) se \hat{t} è significativamente diversa da zero
- l'ipotesi H_0 può essere rigettata se:

$$|\hat{t}| > t^*$$

- t* è il valore critico che dipende dal numero di osservazioni (gradi di libertà) e dal livello di confidenza
- nel nostro caso 139 gradi di libertà e 95% $\rightarrow 1.96$

 $\hat{\beta}_0, \hat{\beta}_1$

- allo stesso modo possiamo individuare l'intervallo nel quale al 95% si trova il vero parametro β_1
- se l'intervallo vero al 95% include la nostra ipotesi nulla (in questo caso $\beta_1 = 0$) non possiamo rifiutarla
- l'intervallo si ottiene con la formula:

$$\left[\hat{\beta}_1 - \sqrt{var(\hat{\beta}_1)} \times |t^*|, \quad \hat{\beta}_1 + \sqrt{var(\hat{\beta}_1)} \times |t^*|\right]$$

- ci possiamo anche chiedere quale sia la probabilità che l'ipotesi nulla sia vera dato il valore \hat{t} che osserviamo
- il valore p si ottiene confrontando la statistica \hat{t} con la probabilità di osservare un valore così estremo nella distribuzione della t
- con 139 gradi di libertà un p-value pari a 0.05 si associa a una statistica $t^*=1.96$
- se osserviamo un $\hat{t}=9.314$ la probabilità che β_1 sia pari a 0.000000000000000% !
- se n è maggiore di qualche decina possiamo abbandonare la t e usare i valori critici della normale standardizzata z

- una volta stimato un modello di regressione OLS possiamo valutare il livello di certezza che si associa alle nostre stime che dipende:
 - 1 dalla numerosità campionaria
 - 2 dalla variabilità dell'errore
 - 3 dalla variabilità di X
- la stima della statistica \hat{t} ci consente di:
 - testare ipotesi sul parametri
 - stimare intervalli di confidenza per i parametri
 - calcolare la probabilità che il vero parametro sia zero dato il campione che osserviamo

	coefficiente	se	t	p-value
β_0	5.197	0.1184	43.893	0.0000
$PIL(\beta_1)$	0.00005	0.0000	9.314	0.0000

- ▶ gradi di libertà: 139 (141 osservazioni uno per ogni parametro stimato)
- ▶ errore standard dei residui: 1.031
- $R^2 = 0.3843$