Matematica per l'Economia (A-K) e Matematica Generale 26 giugno 2019 (prof. Bisceglia)

Traccia A

- 1. Trovare, se possibile un punto di approssimazione con un errore $\varepsilon \le 9^{-1}$ dell'equazione $x^3 + e^{2x} + 1 = 0$, nell'intervallo [0,1].
- 2. Data la funzione $f(x) = \frac{arcsen(2^x 1) + senx}{\log_2(1 x)}$, dire se regolare in $x_0 = 0$ e verificare la sua eventuale convergenza.
- 3. Studiare la funzione $x \to f(x) = arcsen(2^x 1)$, e tracciarne approssimativamente il grafico.
- 4. Data la seguente funzione: $g: x \in [0,3] \rightarrow \begin{cases} 2x+1 & x \in [0,1] \\ 2^x+3x-2 & x \in [1,3] \end{cases}$, dire se soddisfa *le ipotesi* dei teoremi di Bolzano e/o di Weierstrass.
- 5. Data la funzione $p(x) = \frac{2x+1}{x^2+2x+1}$, calcolare la primitiva P tale che P(0) = 1 e scrivere l'equazione della tangente sulla primitiva P, nel punto 0.
- 6. Data la matrice $A = \begin{pmatrix} -1 & h \\ 0 & 1 \end{pmatrix}$, determinare la sua *caratteristica* al variare di h, e la *matrice* A^{-1} .

Svolgimento traccia A

- 1. Data la funzione $x^3 + e^{2x} + 1 = 0$, funzione continua, definita in un intervallo chiuso e limitato, ed osservando che f(0) = 2, ed $f(1) = 2 + e^2 > 0$, pertanto $f(0) \cdot f(1) > 0$, quindi non ricorrono tutte le ipotesi del teorema degli zeri, e conseguentemente $\exists x_0 \in]0,1[/f(x_0) = 0$.
- 2. La funzione $f(x) = \frac{arcsen(2^x-1) + senx}{\log_2(1-x)}$, per essere regolare in $x_0 = 0$, tale punto deve essere di accumulazione per il dominio della funzione, pertanto, per la funzione arcoseno, si ha $(2^x-1) \in [-1,1] \Leftrightarrow 2^x \in [0,2] \Leftrightarrow \forall x \in]-\infty,1]$, mentre la funzione seno è definita in R e per la funzione logaritmo si ha $1-x \in]0,+\infty[\Leftrightarrow \forall x \in]-\infty,1[$, ed inoltre $\log_2(1-x) \neq 0 \Leftrightarrow 1-x \neq 1 \Leftrightarrow x \neq 0$; pertanto il dominio della funzione risulta $\forall x \in (]-\infty,1] \cap R \cap]-\infty,1[-\{0\}) \Leftrightarrow \forall x \in]-\infty,0[\cup]0,1[$, per cui essendo zero, un punto di accumulazione per il dominio della funzione, questa è regolare nel punto $x_0 = 0$, è risulta

$$\lim_{x \to 0} \frac{\arccos(2^{x} - 1) + senx}{\log_{2}(1 - x)} = \lim_{x \to 0} \frac{\frac{\arccos(2^{x} - 1)}{2^{x} - 1} \cdot \frac{(2^{x} - 1)}{x} + senx}{\frac{\log_{2}(1 - x)}{-x}(-x)} = -\log^{2} 2 \text{ e quindi la funzione}$$

risulta convergente nel punto $x_0 = 0$.

3. Data la seguente funzione: $x \to f(x) = arcsen(2^x - 1)$.

I. Dominio:

Essendo una funzione arcocoseno, deve essere $-1 \le 2^x - 1 \le 1 \Leftrightarrow 0 \le 2^x \le 2 \Leftrightarrow x \le 1$, pertanto $X = [-\infty, 1]$ Quindi tale funzione è definita $\forall x \in [-\infty, 1]$, ovvero

$$f:]-\infty,1] \rightarrow f(x) = arcsen(2^x - 1) \in R$$

II. Segno:

Deve essere $f(x) > 0 \Leftrightarrow arcsen(2^x - 1) > 0 = arcsen(sen0) \Leftrightarrow 2^x - 1 > 0 \Leftrightarrow 2^x > 1 \Leftrightarrow x > 0$. Pertanto $f(x) > 0 \Leftrightarrow x \in [0, +\infty[\cap X = [0, 1]]$

Consequentemente $f(x) < 0 \Leftrightarrow x \in -[0,+\infty[\cap X \Leftrightarrow x \in]-\infty,0[$

Si osserva che $f(0) = arcsen(2^0 - 1) = 0$, quindi passa per il punto (0,0), mentre $f(1) = arcsen(1) = \frac{\pi}{2}$, quindi la funzione tocca il punto $\left(1, \frac{\pi}{2}\right)$.

III. Asintoti:

Essendo una funzione continua, per ogni punto di accumulazione interno al suo insieme di definizione il $\lim_{x\to x_0} f(x) = f(x_0)$, pertanto ha senso calcolare solo il limite nell'estremo inferiore.

 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} arcsen(2^x - 1) = -\frac{\pi}{2}$, in quanto trattandosi di funzione composta, si ha

$$\lim_{x \to -\infty} (2^x - 1) = -1 \text{ quindi } \lim_{y \to -1} \operatorname{arcseny} = -\frac{\pi}{2}$$

Pertanto la retta $y = -\frac{\pi}{2}$ è un asintoto orizzontale a sinistra.

IV. Monotonia:

$$f'(x) = arcsen(2^x - 1) = \frac{2^x \log_e 2}{\sqrt{1 - (2^x - 1)^2}}$$
, quindi $f'(x) > 0 \Leftrightarrow \frac{2^x \log_e 2}{\sqrt{1 - (2^x - 1)^2}} > 0$, ed osservando

che sia numeratore che il denominatore sono strettamente positivi, tranne nel punto 1, in cui la

funzione derivata non è definita e si osserva che
$$\lim_{x\to 1^-} \frac{2^x \log_e 2}{\sqrt{1-(2^x-1)^2}} = 2\log_e 2(+\infty) = +\infty$$
,

pertanto $f'(x) > 0 \Leftrightarrow x \in]-\infty, 1[\bigcup \{1\}$ conseguentemente $f'(x) < 0 \Leftrightarrow x \in \emptyset$ quindi la funzione è strettamente crescente nel suo insieme di definizione.

V. Convessità:

Risultando infine: $f''(x) = \log_e 2 \frac{2^x \log_e 2(1 - (2^x - 1)^2) + 2^x (2^x - 1)2^x \log 2}{\sqrt{1 - (2^x - 1)^2} (\sqrt{1 - (2x - 1)^2})^2}$, ovvero

$$f''(x) = 2^{x} (\log_{e} 2)^{2} \frac{2^{x}}{\sqrt{1 - (2^{x} - 1)^{2}} (\sqrt{1 - (2^{x} - 1)^{2}})^{2}}$$
 che come si può osservare risulta

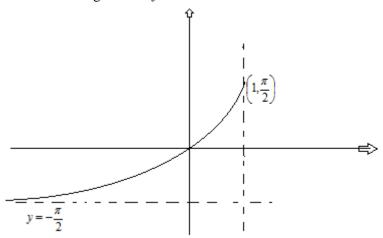
$$f''(x) > 0 \Leftrightarrow x \in]-\infty,1[$$
 ed osservando che

$$\lim_{x \to 1^{-}} 2^{2x} (\log_{e} 2)^{2} \frac{1}{\sqrt{1 - (2^{x} - 1)^{2}} (\sqrt{1 - (2^{x} - 1)^{2}})^{2}} = 4 \log_{e} 2(+\infty) = +\infty \quad , \quad \text{consequentemente}$$

 $f''(x) < 0 \Leftrightarrow x \in \emptyset$ quindi la funzione è strettamente convessa nel suo insieme di definizione.

VI. Punti di flesso: conseguentemente non ha punti di flesso.

Siamo ora in grado di tracciare il grafico di f:



e quindi dedurre che:

$$f(-\infty,1] = -\frac{\pi}{2}, \frac{\pi}{2}$$
, la funzione è biunivoca su $-\frac{\pi}{2}, \frac{\pi}{2}$.

- 4. Essendo $g: x \in [0,3] \rightarrow \begin{cases} 2x+1 & x \in [0,1] \\ 2^x+3x-2 & x \in]1,3 \end{cases}$, è continua in $[0,3]-\{1\}$ e risultando g(1)=3, $\lim_{x\to 1^-} g(x) = \lim_{x\to 1^-} (2x+1) = 3$ e $\lim_{x\to 1^+} g(x) = \lim_{x\to 1^+} (2^x+3x-2) = 3$ la funzione g è continua ed è definita in un intervallo di R quindi g soddisfa le ipotesi del teorema di BOLZANO ed essendo [0,3] una parte chiusa e limitata di R, g soddisfa pure le ipotesi del teorema di WEIERSTRASS.
- 5. Data la funzione $p(x) = \frac{2x+1}{x^2+2x+1}$, l'insieme delle primitive della seguente funzione è dato da:

$$\int \frac{2x+1}{x^2+2x+1} dx \qquad , \qquad \text{per} \qquad \text{cui} \qquad \grave{e}:$$

$$\int \frac{2x+1}{x^2+2x+1} dx = \int \frac{2x+2}{x^2+2x+1} dx - \int \frac{1}{x^2+2x+1} dx = \log |x^2+2x+1| + \frac{1}{x+1} , \text{ pertanto si ha}$$
 che l'insieme delle primitive dell'integrale assegnato, risulta: $P(x) = \log |x^2+2x+1| + \frac{1}{x+1} + c$ e conseguentemente $P(0) = 1 \Leftrightarrow \log |1| + 1 + c = 1 \Leftrightarrow c = 0$; quindi la primitiva cercata risulta $P(x) = \log |x^2+2x+1| + \frac{1}{x+1}$; conseguentemente la retta tangente sulla primitiva P nel punto zero, essendo $y = P'(0)(x-0) + P(0)$, per cui $P'(0) = p(0) = 1$ e $P(0) = 0 + 1 = 1$, si ha che la retta tangente risulta: $y = x+1$.

6. Per poter calcolare la caratteristica, troviamo il $\det(A) = \begin{vmatrix} -1 & h \\ 0 & 1 \end{vmatrix} = -1$ si ha $\det(A) = -1$, pertanto la Car(A) = 2; inoltre essendo $A^{-1} = \frac{Agg(A)}{\det(A)} = \frac{C^T}{\det(A)}$, si osserva che, essendo $C = \begin{pmatrix} 1 & 0 \\ -h & -1 \end{pmatrix}$, conseguentemente $C^T = \begin{pmatrix} 1 & -h \\ 0 & -1 \end{pmatrix}$, quindi $A^{-1} = \begin{pmatrix} -1 & h \\ 0 & 1 \end{pmatrix}$.