Matematica per l'Economia (A-K) e Matematica Generale 06 febbraio 2019 (prof. Bisceglia)

Traccia A

- 1. Trovare, se possibile un punto di approssimazione con un errore $\in \le 6^{-1}$ dell'equazione $x^3 \log(x+2)$, nell'intervallo $\left[-\frac{1}{2},1\right]$.
- 2. Dopo averne *accertata* l'esistenza, *calcolare* il seguente limite $\lim_{x\to -\infty} 2^x$ e *verificare* l'esattezza del suo risultato.
- 3. Studiare la funzione $x \to f(x) = \arccos(2^x 1)$, e tracciarne approssimativamente il grafico.
- 4. Data la funzione $h(x) = \begin{cases} e^{\frac{1}{x-1}} + 1 & \text{se } x > 1 \\ 0 & \text{se } x = 1 \\ arcsenx & \text{se } x < 1 \end{cases}$ individuare *eventuali* punti di discontinuità, e *classificarli*.
- 5. Calcolare l'area sottostante la funzione $p(x) = 2^{\frac{2x-1}{3}} + 1$, nell'intervallo [1,2].

risulta:

6. Data la matrice $A = \begin{pmatrix} 1 & k & 1 \\ 0 & 1 & k \end{pmatrix}$, determinare la sua *caratteristica* al variare di k, e la *matrice* A^{-1} .

Svolgimento traccia A

1. Data la funzione $x^3 \log(x+2)$, definita e continua nell'intervallo $\left[-\frac{1}{2},1\right]$, e risultando $f\left(-\frac{1}{2}\right) \cdot f(1) < 0$, ricorrono tutte le ipotesi del teorema degli zeri, pertanto $\exists x_0 \in \left] -\frac{1}{2}, 1\right[/ f(x_0) = 0$. Per cui sapendo che $|x_0 - c_n| < c_n - a_n = \frac{b-a}{2^{n+1}} \le 6^{-1}$, si ha $\frac{b-a}{2^{n+1}} \le 6^{-1} \Leftrightarrow \frac{b-a}{6^{-1}} \le 2^{n+1} \Leftrightarrow n \ge \frac{\log((b-a)6)}{\log 2} - 1$ quindi $n \ge \frac{\log\left(1+\frac{1}{2}\right)6}{\log 2} - 1 = 2.5$ pertanto, posto n = 3 si osserva che il punto di approssimazione con un errore $\epsilon \le 6^{-1}$

N	A _n	c _n	B _n	f(a _{n)}	f(c _{n)}	f(b _{n)}
0	-1/2	1/4	1	_	+	+
1	-1/2	-1/8	1/4	_	_	+
2	-1/8	1/16	1/4	_	+	+

3

essere $c_2 = -\frac{1}{32}$, in quanto $\left| \frac{1}{16} + \frac{1}{32} \right| = \frac{3}{32} \le \frac{1}{6}$.

- 2. Il seguente limite, $\lim_{x\to -\infty} 2^x$ esiste, se il dominio della funzione non è limitato inferiormente, ed essendo la funzione esponenziale definita in R, il limite assegnato esiste e risulta $\lim_{x\to -\infty} 2^x = 0$ ovvero, per la definizione di limite : $\forall \varepsilon > 0 \ \exists \delta > 0$, tale che se $x \in R$ e se $x < -\delta$ risulta che $f(x) \in I_L \Leftrightarrow |f(x) L| < \varepsilon$ Pertanto fissato $\varepsilon > 0$, e considerato che si tratta di una funzione esponenziale sempre positiva, si ha $|2^x 0| < \varepsilon \Leftrightarrow 2^x < \varepsilon \Leftrightarrow x < \log_2 \varepsilon$; pertanto per $\varepsilon < 1$ ponendo $\delta = -\log_2 \varepsilon$; e per $\varepsilon \ge 1$ ponendo $\delta = 0$, risulta $x < -\delta$ quindi è verificata l'esattezza del suo risultato.
- 3. Data la funzione $x \to f(x) = \arccos(2^x 1)$

Insieme di definizione:

Essendo una funzione arcocoseno, deve essere $-1 \le 2^x - 1 \le 1 \Leftrightarrow 0 \le 2^x \le 2 \Leftrightarrow x \le 1$, pertanto $X =]-\infty,1]$

Quindi tale funzione è definita $\forall x \in [-\infty,1]$, ovvero

$$f:]-\infty,1] \rightarrow f(x) = \arccos(2^x - 1) \in R$$

Segno della funzione:

Deve essere $f(x) > 0 \Leftrightarrow \arccos(2^x - 1) > 0 = \arccos(\cos 0) \Leftrightarrow 2^x - 1 < 1 \Leftrightarrow 2^x < 2 \Leftrightarrow x < 1$.

Pertanto
$$f(x) > 0 \Leftrightarrow x \in [-\infty,1] \cap X = [-\infty,1]$$

Conseguentemente $f(x) < 0 \Leftrightarrow x \in -] - \infty, 1 \cap X \Leftrightarrow x \in \emptyset$

Si osserva che $f(0) = \arccos(2^0 - 1) = \frac{\pi}{2}$, quindi passa per il punto $\left(0, \frac{\pi}{2}\right)$, mentre $f(1) = \arccos(1) = 0$, quindi la funzione tocca il punto $\left(1, 0\right)$.

Limiti significativi:

Essendo una funzione continua, per ogni punto di accumulazione interno al suo insieme di definizione il $\lim_{x \to x_0} f(x) = f(x_0)$, pertanto ha senso calcolare solo il limite nell'estremo inferiore.

 $\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} \arccos(2^x - 1) = \pi \text{ , in quanto trattandosi di funzione composta, si ha}$ $\lim_{x\to -\infty} (2^x - 1) = -1 \text{ quindi } \lim_{y\to -1} \arccos y = \pi$

Pertanto la retta $y = \pi$ è un asintoto orizzontale a sinistra.

Derivata prima e monotonia:

$$f'(x) = \arccos(2^x - 1) = -\frac{2^x \log_e 2}{\sqrt{1 - (2^x - 1)^2}}$$
, quindi $f'(x) > 0 \Leftrightarrow -\frac{2^x \log_e 2}{\sqrt{1 - (2^x - 1)^2}} > 0$, ovvero

 $\frac{2^{x} \log_{e} 2}{\sqrt{1 - \left(2^{x} - 1\right)^{2}}} < 0$ ed osservando che sia numeratore che il denominatore sono strettamente positivi,

tranne nel punto 1, in cui la funzione derivata non è definita e si osserva che $-\lim_{x\to 1^-}\frac{2^x\log_e 2}{\sqrt{1-\left(2^x-1\right)^2}}=-2\log_e 2\big(+\infty\big)=-\infty \ , \ \text{pertanto} \ f'(x)>0 \Leftrightarrow x\in\varnothing \ \text{conseguentemente}$

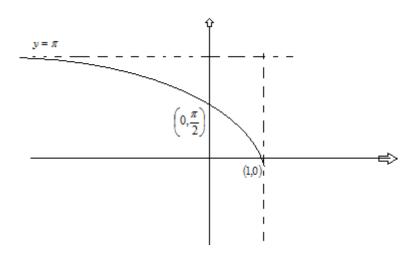
 $f'(x) < 0 \Leftrightarrow x \in]-\infty,1[\bigcup \{1\}]$ quindi la funzione è strettamente decrescente nel suo insieme di definizione.

Derivata seconda e concavità:

$$f''(x) = -\log_e 2 \frac{2^x \log_e 2(1 - (2^x - 1)^2) + 2^x (2^x - 1) 2^x \log 2}{\sqrt{1 - (2^x - 1)^2} \left(\sqrt{1 - (2x - 1)^2}\right)^2},$$
 ovvero

$$f''(x) = -2^{x} (\log_{e} 2)^{2} \frac{2^{x}}{\sqrt{1 - (2^{x} - 1)^{2}} \left(\sqrt{1 - (2^{x} - 1)^{2}}\right)^{2}}$$
 che come si può osservare risulta

 $f''(x) > 0 \Leftrightarrow x \in \emptyset$ e conseguentemente $f''(x) < 0 \Leftrightarrow x \in]-\infty,1]$ quindi la funzione è strettamente concava nel suo insieme di definizione.



e quindi dedurre che:

 $f(]-\infty,1]) = [0,\pi[$, la funzione è biunivoca su $[0,\pi[$.

4. Essendo
$$h(x) = \begin{cases} e^{\frac{1}{x-1}} + 1 & \text{se } x > 1 \\ 0 & \text{se } x = 1 \\ arcsen x & \text{se } x < 1 \end{cases}$$
, definita in $[-1, +\infty[$; si osserva che $f(1) = 0$, il

 $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} e^{\frac{1}{x-1}} + 1 = +\infty \text{ ed il } \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \operatorname{arcsen} x = \frac{\pi}{2}; \text{ pertanto il punto 1 per la funzione data, è un punto di discontinuità di } \operatorname{seconda specie.}$

- 5. Data la funzione $p(x) = 2^{\frac{2x-1}{3}} + 1$ si tratta di calcolare il seguente integrale $\int_{1}^{2} \left(2^{\frac{2x-1}{3}} + 1\right) dx$ e per la proprietà additiva risulta $\int 2^{\frac{2x-1}{3}} dx + \int 1 dx = \frac{3}{2} 2^{\frac{2x-1}{3}} + x + c$ e per il teorema Fondamentale del calcolo integrale, si ha: $\left[\frac{3}{2\log 2} 2^{\frac{2x-1}{3}} + x + c\right]_{1}^{2} = \frac{3}{2\log 2} \left(2 \sqrt[3]{2}\right) + 1$.
- 6. Per poter calcolare la caratteristica, troviamo il determinante della matrice A, e quindi considerando la matrice quadrata $A' = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ si ha $\det(A) = 1$, pertanto la Car(A) = 2; inoltre essendo $A^{-1} = \frac{Agg(A)}{\det(A)} = \frac{C^T}{\det(A)}$, si osserva che, essendo $C = \begin{pmatrix} 1 & 0 \\ -k & 1 \end{pmatrix}$, conseguentemente $C^T = \begin{pmatrix} 1 & -k \\ 0 & 1 \end{pmatrix}$, quindi $A^{-1} = \begin{pmatrix} 1 & -k \\ 0 & 1 \end{pmatrix}$.

Traccia B

- 1. Trovare, se possibile un punto di approssimazione con un errore $\in \le 7^{-1}$ dell'equazione $x^3\sqrt[3]{x+1}$, nell'intervallo $\left[-\frac{2}{3},\frac{3}{4}\right]$.
- 2. Dopo averne *accertata* l'esistenza, *calcolare* il seguente limite $\lim_{x\to +\infty} \left(\frac{1}{2}\right)^x$ e *verificare* l'esattezza del suo risultato.
- 3. Studiare la funzione $x \to f(x) = arcsen(2^x 1)$, e tracciarne approssimativamente il grafico.
- 4. Data la funzione $h(x) = \begin{cases} e^{x-1} 1 & \text{se } x > 1 \\ 1 & \text{se } x = 1 \\ \arccos x & \text{se } x < 1 \end{cases}$ individuare *eventuali* punti di discontinuità, e arccos x se x < 1
- 5. Calcolare l'area sottostante la funzione $p(x) = 2^{-\frac{x-1}{2}} 1$, nell'intervallo [0,1].
- 6. Data la matrice $A = \begin{pmatrix} 1 & k & 0 \\ k & 1 & 1 \end{pmatrix}$, determinare la sua *caratteristica* al variare di k, e la *matrice* A^{-1} .

Svolgimento traccia B

1. Data la funzione $x^3\sqrt[3]{x+1}$, definita e continua nell'intervallo $\left[-\frac{2}{3},\frac{3}{4}\right]$, e risultando $f\left(-\frac{2}{3}\right)\cdot f\left(\frac{3}{4}\right)<0$, ricorrono tutte le ipotesi del teorema degli zeri, pertanto $\exists x_0 \in \left]-\frac{2}{3},\frac{3}{4}\right[/f(x_0)=0$. Per cui sapendo che $\left|x_0-c_n\right|< c_n-a_n=\frac{b-a}{2^{n+1}}\leq 7^{-1}$, si ha

$$\frac{b-a}{2^{n+1}} \le 7^{-1} \Leftrightarrow \frac{b-a}{7^{-1}} \le 2^{n+1} \Leftrightarrow n \ge \frac{\log((b-a)7)}{\log 2} - 1 \qquad \text{quindi} \qquad n \ge \frac{\log\left(\frac{3}{4} + \frac{2}{3}\right)7}{\log 2} - 1 = 2.5$$

pertanto, posto n = 3 si osserva che il punto di approssimazione con un errore $\in \le 6^{-1}$ risulta:

N	A _n	c _n	B _n	f(a _{n)}	f(c _{n)}	f(b _{n)}
0	-2/3	1/24	3/4	_	+	+
1	-2/3	-15/48	1/24	_	_	+
2	-15/48	-13/96	1/24	_	_	+
3	-13/96	-3/64	1/24	_	_	+
	2	1 2	7 1			

essere
$$c_2 = -\frac{3}{64}$$
, in quanto $\left| \frac{1}{24} + \frac{3}{64} \right| = \frac{7}{96} \le \frac{1}{7}$.

- 2. Essendo $f(x) = \left(\frac{1}{2}\right)^x$, tale funzione è definita in R, non limitata superiormente, pertanto è possibile calcolare il limite che tende $a + \infty$, e risulta $\lim_{x \to +\infty} \left(\frac{1}{2}\right)^x = 0$ ovvero, per la definizione di limite : $\forall \varepsilon > 0 \ \exists \delta > 0$, tale che se $x \in R$ e se $x > \delta$ risulta che $f(x) \in I_L \Leftrightarrow |f(x) L| < \varepsilon$ Pertanto fissato $\varepsilon > 0$, e considerato che si tratta di una funzione esponenziale sempre positiva, si ha: $\left|\left(\frac{1}{2}\right)^x 0\right| < \varepsilon \Leftrightarrow \left(\frac{1}{2}\right)^x < \varepsilon \Leftrightarrow x > \log_{\frac{1}{2}} \varepsilon$, quindi posto $\delta = \log_{\frac{1}{2}} \varepsilon$ per $\varepsilon < 1$, e $\delta = 0$ per $\varepsilon > 1$ risulta $x > \delta$, si determina un intorno $+\infty$ in funzione di epsilon che soddisfatta il limite
- 3. Data la funzione $x \to f(x) = arcsen(2^x 1)$ *Insieme di definizione:*

Essendo una funzione arcocoseno, deve essere $-1 \le 2^x - 1 \le 1 \iff 0 \le 2^x \le 2 \iff x \le 1$, pertanto $X =]-\infty,1]$

Quindi tale funzione è definita $\forall x \in]-\infty,1]$, ovvero

$$f:]-\infty,1] \rightarrow f(x) = arcsen(2^x - 1) \in R$$

Segno della funzione:

trovato.

Deve essere $f(x) > 0 \Leftrightarrow arcsen(2^x - 1) > 0 = arcsen(sen0) \Leftrightarrow 2^x - 1 > 0 \Leftrightarrow 2^x > 1 \Leftrightarrow x > 0$. Pertanto $f(x) > 0 \Leftrightarrow x \in [0, +\infty[\cap X =]0,1]$

Consequentemente $f(x) < 0 \Leftrightarrow x \in -]0, +\infty[\cap X \Leftrightarrow x \in]-\infty,0[$

Si osserva che $f(0) = arcsen(2^0 - 1) = 0$, quindi passa per il punto (0,0), mentre $f(1) = arcsen(1) = \frac{\pi}{2}$, quindi la funzione tocca il punto $\left(1, \frac{\pi}{2}\right)$.

Limiti significativi:

Essendo una funzione continua, per ogni punto di accumulazione interno al suo insieme di definizione il $\lim_{x\to x_0} f(x) = f(x_0)$, pertanto ha senso calcolare solo il limite nell'estremo inferiore.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \arcsin(2^x - 1) = -\frac{\pi}{2}$$
, in quanto trattandosi di funzione composta, si ha

$$\lim_{x \to -\infty} (2^x - 1) = -1 \text{ quindi } \lim_{y \to -1} \operatorname{arcseny} = -\frac{\pi}{2}$$

Pertanto la retta $y = -\frac{\pi}{2}$ è un asintoto orizzontale a sinistra.

Derivata prima e monotonia:

$$f'(x) = arcsen(2^x - 1) = \frac{2^x \log_e 2}{\sqrt{1 - (2^x - 1)^2}}$$
, quindi $f'(x) > 0 \Leftrightarrow \frac{2^x \log_e 2}{\sqrt{1 - (2^x - 1)^2}} > 0$, ed osservando

che sia numeratore che il denominatore sono strettamente positivi, tranne nel punto 1, in cui la funzione derivata non è definita e si osserva che $\lim_{x\to 1^-} \frac{2^x \log_e 2}{\sqrt{1-\left(2^x-1\right)^2}} = 2\log_e 2\big(+\infty\big) = +\infty \ ,$

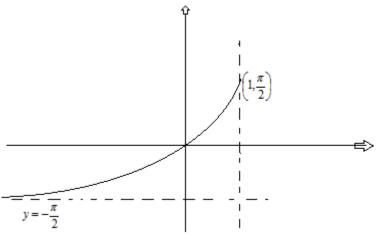
pertanto $f'(x) > 0 \Leftrightarrow x \in]-\infty,1[\bigcup\{1\}]$ conseguentemente $f'(x) < 0 \Leftrightarrow x \in \emptyset$ quindi la funzione è strettamente crescente nel suo insieme di definizione.

Derivata seconda e concavità:

$$f''(x) = \log_e 2 \frac{2^x \log_e 2(1 - (2^x - 1)^2) + 2^x (2^x - 1)2^x \log 2}{\sqrt{1 - (2^x - 1)^2} \left(\sqrt{1 - (2x - 1)^2}\right)^2},$$
 ovvero

$$f''(x) = 2^{x} \left(\log_{e} 2\right)^{2} \frac{2^{x}}{\sqrt{1 - \left(2^{x} - 1\right)^{2} \left(\sqrt{1 - \left(2^{x} - 1\right)^{2}}\right)^{2}}} \quad \text{che come si può osservare risulta}$$

 $f''(x) > 0 \Leftrightarrow x \in]-\infty,1]$ e conseguentemente $f''(x) < 0 \Leftrightarrow x \in \emptyset$ quindi la funzione è strettamente convessa nel suo insieme di definizione.



e quindi dedurre che:

$$f(]-\infty,1] =]-\frac{\pi}{2},\frac{\pi}{2}]$$
, la funzione è biunivoca su $]-\frac{\pi}{2},\frac{\pi}{2}]$.

- 4. Essendo $h(x) = \begin{cases} e^{x-1} 1 & \text{se } x > 1 \\ 1 & \text{se } x = 1 \end{cases}$, definita in $[-1, +\infty[$; si osserva che f(1) = 1, il $\underset{x \to 1^{+}}{\lim} f(x) = \underset{x \to 1^{+}}{\lim} e^{x-1} 1 = 0$ ed il $\underset{x \to 1^{-}}{\lim} f(x) = \underset{x \to 1^{-}}{\lim} \arccos x = 0$; pertanto il punto 1 per la funzione data, è un punto di discontinuità *eliminabile*.
- 5. Data la funzione $p(x) = 2^{-\frac{x-1}{2}} 1$ si tratta di calcolare il seguente integrale $\int_0^1 \left(2^{-\frac{x-1}{2}} 1\right) dx$ e per la proprietà additiva risulta $\int 2^{-\frac{x-1}{2}} dx \int 1 dx = \frac{-2}{\log 2} \cdot 2^{-\frac{x-1}{2}} x + c$ e per il teorema Fondamentale del calcolo integrale, si ha: $\left[\frac{-2}{\log 2} \cdot 2^{-\frac{x-1}{2}} x + c\right]_0^1 = \frac{2}{\log 2} \left(1 + \sqrt{2}\right)$.
- 6. Per poter calcolare la caratteristica, troviamo il determinante della matrice A, e quindi considerando la matrice quadrata $A' = \begin{pmatrix} k & 0 \\ 1 & 1 \end{pmatrix}$ si ha $\det(A) = k$, pertanto $\forall k \neq 0$ la Car(A) = 2, mentre per k = 0 la Car(A) = 1; inoltre essendo $A^{-1} = \frac{Agg(A)}{\det(A)} = \frac{C^T}{\det(A)}$, pertanto $\forall k \neq 0$ si osserva che, essendo $C = \begin{pmatrix} 1 & -1 \\ 0 & k \end{pmatrix}$, conseguentemente $C^T = \begin{pmatrix} 1 & 0 \\ -1 & k \end{pmatrix}$, quindi $A^{-1} = \frac{\begin{pmatrix} 1 & 0 \\ -1 & k \end{pmatrix}}{k}$.