Esercitazione n. 09 (svolgimento)

1) Per le funzioni assegnate, risultano le seguenti convessità:

a) Data la funzione $f(x) = \frac{x-1}{\sqrt{x^2-4}}$, il dominio risulta $\forall x \in]-\infty, -2[\bigcup]2, +\infty[$; ed essendo

$$f'(x) = \frac{\sqrt{x^2 - 4} - (x - 1)\frac{2x}{2\sqrt{x^2 - 4}}}{(x^2 - 4)} = \frac{x^2 - 4 - x^2 + x}{(x^2 - 4)\sqrt{x^2 - 4}} = \frac{x - 4}{(x^2 - 4)\sqrt{x^2 - 4}}, \text{ si ha:}$$

$$f''(x) = \frac{\left(x^2 - 4\right)\sqrt{x^2 - 4} - \left(x - 4\right)\left[2x\sqrt{x^2 - 4} + \frac{\left(x^2 - 4\right)2x}{2\sqrt{x^2 - 4}}\right]}{\left(\left(x^2 - 4\right)\sqrt{x^2 - 4}\right)^2} \Leftrightarrow f''(x) = \frac{\left(x^2 - 4\right)\left(x^2 - 4\right) - \left(x - 4\right)\left(2x\left(x^2 - 4\right) + \left(x^2 - 4\right)x\right)}{\left(\left(x^2 - 4\right)\sqrt{x^2 - 4}\right)^2\sqrt{x^2 - 4}} \Leftrightarrow f''(x) = \left(x^2 - 4\right)\frac{\left(x^2 - 4\right) - \left(x - 4\right)\left(3x\right)}{\left(x^2 - 4\right)^3\sqrt{x^2 - 4}} = \frac{-2x^2 + 12x - 4}{\left(x^2 - 4\right)^2\sqrt{x^2 - 4}}, \quad \text{pertanto} \quad \text{essendo} \quad \text{il}$$

denominatore sempre positivo nell'insieme di definizione della funzione, per studiare f''(x) > 0 è sufficiente studiare $-2x^2 + 12x - 4 > 0 \Leftrightarrow 2x^2 - 12x + 4 < 0$, per cui essendo il delta del polinomio di secondo grado positivo, $f''(x) > 0 \Leftrightarrow x \in \left|3 - \sqrt{7}, 3 + \sqrt{7}\right|$ pertanto la funzione è strettamente convessa in $\forall x \in \left|3 - \sqrt{7}, 3 + \sqrt{7}\right| \cap \left(\left|-\infty, -2\right| \cup \left|2, +\infty\right|\right) \Leftrightarrow \forall x \in \left|2, 3 + \sqrt{7}\right|$ ed è strettamente concava in $\forall x \in \left(\left|-\infty, -2\right| \cup \left|2, +\infty\right|\right) \cap -\left|3 - \sqrt{7}, 3 + \sqrt{7}\right| \Leftrightarrow \forall x \in \left|-\infty, -2\right| \cup \left|3 + \sqrt{7}, +\infty\right|$, con punto di flesso proprio in $3 + \sqrt{7}$.

b) Data la funzione $f(x) = \log_{1/2} \log_2 x \in R$, il dominio risulta $\forall x \in]1, +\infty[\cap]0, +\infty[\Leftrightarrow \forall x \in]1, +\infty[$; ed essendo

$$f'(x) = \log_{1/2} \log_2 x = \frac{\log_{1/2} e}{\log_2 x} \frac{\log_2 e}{x} = \log_2 e \log_{1/2} e \frac{1}{x \log_2 x}$$
, si ha:

$$f''(x) = \frac{-\log_2 e \log_{1/2} e \left[\log_2 x + \frac{x}{x} \log_2 e\right]}{\left(x \log_2 x\right)^2} = \frac{-\log_2 e \log_{1/2} e \left(\log_2 x + \log_2 e\right)}{\left(x \log_2 x\right)^2}; \text{ ed essendo il}$$

denominatore sempre positivo nell'insieme di definizione della funzione, per studiare f''(x) > 0 è sufficiente studiare $-\log_2 e \log_{1/2} e (\log_2 x - \log_2 e) > 0$, per cui si osserva che $\log_{1/2} e < 0$ e che $\log_2 e > 0$ pertanto $-\log_{1/2} e \log_2 e > 0$, per cui essendo $\log_2 x + \log_2 e > 0 \Leftrightarrow \log_2 x > -\log_2 e \Leftrightarrow x > \frac{1}{e}$, ovvero risulta $f''(x) > 0 \Leftrightarrow \forall x \in [1, +\infty] \cap [1, +\infty] \Leftrightarrow \forall x \in [1, +\infty]$ pertanto la funzione è strettamente

- $f''(x) > 0 \Leftrightarrow \forall x \in \left[\frac{1}{e}, +\infty\right[\cap] 1, +\infty\right[\Leftrightarrow \forall x \in \cap] 1, +\infty\right[$ pertanto la funzione *è strettamente convessa* nel suo dominio.
- c) Data la funzione $f(x) = 2^{x^2-1} 3 \in R$, il dominio risulta $\forall x \in R$; ed essendo $f'(x) = \frac{2^{x^2-1}}{\log_2 e} 2x$, si ha: $f''(x) = \frac{2^{x^2-1}}{\log_2 e} (2 + 4x^2 \log_e 2)$, che come si può osservare risulta $f''(x) > 0 \Leftrightarrow x \in R$ e conseguentemente $f''(x) < 0 \Leftrightarrow x \in \emptyset$ pertanto la funzione è strettamente convessa nel suo dominio.
- d) Data la funzione $f(x) = arcsen(2x-1) \in R$, il dominio risulta $\forall x \in [0,1]$; ed essendo $f'(x) = \frac{2}{\sqrt{1-(2x-1)^2}}$, si ha:

$$f''(x) = -\frac{\frac{4(2x-1)2}{2\sqrt{1-(2x-1)^2}}}{\left(\sqrt{1-(2x-1)^2}\right)^2} = -\frac{4(2x-1)}{\left(\sqrt{1-(2x-1)^2}\right)^2\sqrt{1-(2x-1)^2}}, \quad \text{pertanto} \quad \text{risulta}$$

 $f''(x) > 0 \Leftrightarrow -4(2x-1) > 0 \Leftrightarrow 2x-1 < 0$ quindi la funzione è strettamente convessa per $x \in \left[0, \frac{1}{2}\right[$, mentre risulta strettamente concava per $x \in \left[\frac{1}{2}, 1\right]$, conseguentemente il punto $\left(\frac{1}{2}, 0\right)$ risulterà un punto di flesso proprio per f.

e) Data la funzione $f(x) = \log_{1/2}(2senx - 1) \in R$, il dominio risulta $\forall x \in \left[\frac{\pi}{6}, \frac{5\pi}{6} \right]$, di periodo 2π ; ed essendo $f'(x) = \log_{1/2}(2senx - 1) = 2\log_{1/2}e\frac{\cos x}{(2senx - 1)}$, si ha: $f''(x) = 2\log_{1/2}e\frac{-senx(2senx - 1) - 2\cos^2 x}{(2senx - 1)^2} = 2\log_{1/2}e\frac{-2 + senx}{(2senx - 1)^2}$, pertanto si osserva che

2) In merito alle ipotesi dei teoremi di Weierstrass e/o di Bolzano per le funzioni assegnate, risulta:

- a) La funzione $f(x) = \begin{cases} e^{\frac{1}{x}} & \forall x \le 1 \\ \log_2 2^{\frac{e}{x}} & \forall x > 1 \end{cases}$, è definita in $R \{0\}$; composta da funzioni elementari, ed osservando che $f(1) = e^{\frac{1}{1}} = e$, il $\lim_{x \to 1^-} f(x) = e$ ed il $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \log_2 2^{\frac{e}{x}} = e$; pertanto la funzione è continua anche nel punto 1, e quindi continua nell'insieme di definizione $\forall x \in]-\infty, 0[\cup]0, +\infty[$, ma non essendo questo un intervallo, ne tantomeno una parte chiusa e limitata, la funzione *non soddisfa le ipotesi dei due Teoremi*.
- b) La funzione $f(x) = \begin{cases} e^{\log(x-1)} & \forall x > 1 \\ \arccos x & \forall x \le 1 \end{cases}$, è definita $\forall x \in [-1, +\infty[$; composta da funzioni elementari, ed osservando che $f(1) = \arccos 1 = 0$, il $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \arccos x = 0$ ed il $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} e^{\log(x-1)} = 0$, quindi continua nel suo dominio, pertanto la funzione soddisfa le ipotesi del Teorema Bolzano, ma non quelle del teorema di Weierstrass, in quanto il dominio è chiuso, ma non limitato.
- c) La funzione $f(x) = sen2x e^x arctg^2x$, definita $\forall x \in \{1,2,3\} \cup [0,1[\Leftrightarrow \forall x \in \{2,3\} \cup [0,1];$ risulta continua nel suo insieme di definizione, in quanto somma e prodotto di funzioni continue, ed osservando che il suo dominio risulta $\{2,3\} \cup [0,1] \subseteq R$ chiusa e limitata, la funzione soddisfa le ipotesi del Teorema Weierstrass, ma non quelle del teorema di Bolzano, in quanto il dominio non è un intervallo.
- d) La funzione $f(x) = arctg \frac{1}{x}$, definita $\forall x \in [-1,0[\cup]0,1] \cup \{2,3,5\}$ risulta continua nel suo insieme di definizione, che risulta essere $([-1,0[\cup]0,1] \cup \{2,3,5\}) \subseteq R$, quindi né un intervallo, né una parte di R chiusa e limitata, pertanto la funzione non soddisfa le ipotesi dei due teoremi.

e) La funzione $f(x) = \begin{cases} -h\frac{\pi}{2} & \text{se } x > -1 \\ \pi & \text{se } x = -1 \text{, definita in } R \text{, ed osservando che} \\ arc \cot g \frac{1}{x+1} & \text{se } x < -1 \end{cases}$

 $f(-1) = \pi$, il $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} arc \cot g \frac{1}{x+1} = \pi$ ed il $\lim_{x \to -1^+} f(x) = -h \frac{\pi}{2}$, risulta continua anche nel punto -1 se $-h \frac{\pi}{2} = \pi \Leftrightarrow h = -2$, in tal caso la funzione risulterebbe continua nel suo insieme di definizione R, pertanto la funzione soddisfa le ipotesi del Teorema Bolzano, ma non soddisfa le ipotesi del teorema di Weierstrass.

3) In merito alle ipotesi del teorema di Rolle, per le funzioni assegnate, risulta:

- a) Essendo la funzione $f(x) = kx^2 2x + \frac{1}{2}$, definita $\forall x \in [0,1]$, quindi continua e derivabile nel suo dominio, ed osservando che il $f(0) = \frac{1}{2}$ ed $f(1) = k \frac{3}{2}$, affinché soddisfi tutte le ipotesi del Teorema di Rolle deve risultare $f(0) = f(1) \Leftrightarrow \frac{1}{2} = k \frac{3}{2} \Leftrightarrow k = 2$; pertanto per il parametro k = 2 la funzione *soddisfa le ipotesi* del Teorema di Rolle.
- b) Data la funzione $f(x) = \begin{cases} 1+h & x=0 \\ e^x \frac{arcsen\log(x+1)}{x} hx & \forall x \in]0,1 \end{cases}$, ed osservando che f(0) = 1+h, il $\lim_{x\to 0^-} f(x) = 1+h$ ed il $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} e^x \frac{arcsen\log(x+1)}{x} hx$, ovvero $\lim_{x\to 0^+} e^x \cdot \lim_{x\to 0^+} \frac{arcsen\log(x+1)}{\log(x+1)} \frac{\log(x+1)}{x} hx = 1$, quindi risulta continua in [0,1] nel caso $1+h=1 \Leftrightarrow h=0$, ed essendo derivabile [0,1[, ed osservando che f(0) = 1+h ed $f(1) = e \cdot arcsen\log 2 h$ per soddisfare le ipotesi del Teorema di Rolle deve risultare $f(0) = f(1) \Leftrightarrow 1+h = e \cdot arcsen\log 2 h \Leftrightarrow h = \frac{e \cdot arcsen\log 2 1}{2} \neq 0$, quindi la funzione non soddisfa le ipotesi del teorema di Rolle.
- c) Data la funzione $f(x) = \begin{cases} h & \forall x = \{-1,1\} \\ (1-x^2) arcsenx & \forall x \in]-1,1 \end{cases}$ ed osservando che f(-1) = f(1) = h e che il $\lim_{x \to 1^+} (1-x^2) arcsenx = 0$ ed il $\lim_{x \to 1^-} (1-x^2) arcsenx = 0$, la funzione risulterebbe

continua se h = 0; ed essendo derivabile in -1,1, in quanto $f'(x) = -2x \arcsin x + \frac{(1-x^2)}{\sqrt{1-x^2}}$, la funzione *soddisfa le ipotesi* del Teorema di Rolle.

- d) Data la funzione $f(x) = \begin{cases} 2x + h & \forall x = [-2,1[\\ 2^x h & \forall x \in [1,2] \end{cases}$, ed osservando che f(1) = 2 h, e che il $\lim_{x \to 1^-} f(x) = 2 + h$ ed il $\lim_{x \to 1^+} f(x) = 2 h$, la funzione risulta continua se $2 + h = 2 h \Leftrightarrow h = 0$; ed inoltre essendo derivabile in [-2,2], per soddisfare tutte le ipotesi deve essere $f(-2) = f(2) \Leftrightarrow h 4 = 4 h \Leftrightarrow h = 4$, ma in tal caso non sarebbe continua, pertanto *non soddisfa le ipotesi del Teorema di Rolle*.
- e) Essendo la funzione $f(x) = k2x^2 2kx \frac{1}{3}$ definita $\forall x \in [-1,1]$, quindi continua e derivabile nel suo dominio, ed osservando che il $f(-1) = f(1) \Leftrightarrow 4k \frac{1}{3} = -\frac{1}{3} \Leftrightarrow k = 0$, pertanto per il parametro k = 0 la funzione soddisfa le ipotesi del Teorema di Rolle.

4) Le funzioni assegnate, soddisfano le seguenti ipotesi del teorema del Punto Fisso:

- a) Essendo la funzione $f(x) = hx^2 2h$, definita $\forall x \in [0,1]$, quindi continua nel suo dominio, ed osservando che il f(0) = -2h ed f(1) = -h; per soddisfare tutte le ipotesi del Teorema del Punto Fisso, deve anche risultare $f(0) \in [0,1] \Leftrightarrow -2h \in [0,1] \Leftrightarrow 0 \le -2h \le 1 \Leftrightarrow h \in \left[-\frac{1}{2},0\right]$, ed anche $f(1) \in [0,1] \Leftrightarrow -h \in [0,1] \Leftrightarrow h \in [-1,0]$, quindi $h \in \left(\left[-\frac{1}{2},0\right] \cap \left[-1,0\right]\right) \Leftrightarrow h \in \{0\}$. Pertanto solo nel caso del parametro h = 0 la funzione soddisfare le ipotesi del Teorema del Punto Fisso.
- b) Essendo la funzione $f(x) = \begin{cases} h & \forall x = \{-1,1\} \\ (1-x^2)sen(1-x^2) & \forall x \in]-1,1[\end{cases}$, ed osservando che f(-1) = f(1) = h e che il $\lim_{x \to -1^+} (1-x^2)sen(1-x^2) = 0$ ed il $\lim_{x \to 1^-} (1-x^2)sen(1-x^2) = 0$, la funzione risulterebbe continua nel suo dominio per h = 0; ed in tal caso $f(-1) = f(1) = 0 \in [-1,1]$, quindi per il parametro h = 0, la funzione soddisfa le ipotesi del Teorema del Punto Fisso.

- c) Essendo la funzione $f(x) = \sqrt{x^2 x 1}$, definita $\forall x \in \left[\frac{1 + \sqrt{5}}{2}, 2\right]$, quindi continua nel suo dominio, ed osservando che il $f\left(\frac{1 + \sqrt{5}}{2}\right) = 0$ ed f(2) = 1; per cui $f\left(\frac{1 + \sqrt{5}}{2}\right) = 0 \notin \left[\frac{1 + \sqrt{5}}{2}, 2\right]$, ed anche $f(2) = 1 \notin \left[\frac{1 + \sqrt{5}}{2}, 2\right]$, pertanto la funzione non soddisfa le ipotesi del Teorema del Punto Fisso.
- d) Essendo la funzione $f(x) = |x^2 h|$, definita $\forall x \in [-1,2]$, quindi continua nel suo dominio, ed osservando che il f(-1) = |1 h| ed f(2) = |4 h|; per soddisfare le ipotesi del Teorema del Punto Fisso, deve risultare $f(-1) \in [-1,2] \Leftrightarrow -1 \le |1 h| \le 2 \Leftrightarrow |1 h| \le 2 \Leftrightarrow h \in [-1,3]$, ed anche $f(2) \in [-1,2] \Leftrightarrow -1 \le |4 h| \le 2 \Leftrightarrow |4 h| \le 2 \Leftrightarrow h \in [2,6]$, ovvero $h \in ([-1,3] \cap [2,6]) \Leftrightarrow h \in [2,3]$, in tale ipotesi la funzione soddisfa le ipotesi del Teorema del Punto Fisso.
- e) Data la funzione $f(x) = \begin{cases} x^2 + 1 & \forall x \in [-1,0[\\ 3x 1 & \forall x \in [01] \end{cases}$, si osserva che f(0) = -1 e che il $\lim_{x \to 0^-} x^2 + 1 = 1$ ed il $\lim_{x \to 0^+} 3x 1 = -1$, la funzione non risulta continua in 0, quindi *non soddisfa le ipotesi del Teorema del Punto Fisso*.

\$\ \text{Per quanto riguarda il codominio limitato e gli eventuali punti di minimo e/o di massimo relativi ed assoluti delle funzioni assegnate, risulta:

a) Data la funzione $f(x) = sen(x^2)$, definita $\forall x \in \left[0, \sqrt{\frac{5}{2}\pi}\right]$, quindi continua nel suo dominio, parte chiusa e limitata, pertanto per il teorema di Weierstrass, è dotata di minimo e di massimo assoluti, quindi la *funzione è limitata*. Servendosi del teorema dei Punti Critici, si nota che $f'(x) = 2x \cos x^2$, per cui la funzione è derivabile nel suo dominio, quindi non ci sono punti in cui la derivata non esiste; osserviamo ora che $f'(x) = 0 \Leftrightarrow 2x \cos x^2 = 0$, quindi x = 0 e $\cos x^2 = 0 = \cos \arccos 0 \Leftrightarrow x^2 = \arccos 0 \Leftrightarrow x^2 = \frac{\pi}{2} \Leftrightarrow x = \pm \sqrt{\frac{\pi}{2}}$ e notando che $-\sqrt{\frac{\pi}{2}} \notin \left[0, \sqrt{\frac{5}{2}\pi}\right]$ restano i punti in cui $\sqrt{\frac{\pi}{2} + k\pi} \in \left[0, \sqrt{\frac{5}{2}\pi}\right]$, $\forall k \in \mathbb{Z}$, ovvero la funzione derivata prima si annulla nei punti $S = \left\{0, \sqrt{\frac{\pi}{2}}, \sqrt{3\frac{\pi}{2}}, \sqrt{5\frac{\pi}{2}}\right\}$, che come

possiamo osservare comprendono anche i punti di frontiera; e risultando f(0)=0, $f\left(\sqrt{\frac{\pi}{2}}\right)=1$, $f\left(\sqrt{3\frac{\pi}{2}}\right)=-1$ ed $f\left(\sqrt{5\frac{\pi}{2}}\right)=1$; la funzione ha massimo assoluto pari a 1 e due punti di massimo assoluto; inoltre ha minimo assoluto pari a -1 ed un punto di minimo assoluto ed un minimo relativo pari a 0.

- b) Data la funzione $f(x) = |x^2 x|$, definita $\forall x \in [-1,2]$, quindi continua nel suo dominio, parte chiusa e limitata, pertanto per il teorema di Weierstrass, è dotata di minimo e di massimo assoluti, quindi la *funzione è limitata*. Servendosi del teorema dei Punti Critici, essendo $f'(x) = \frac{|x^2 x|}{x^2 x}(2x 1)$ si nota che la funzione data non è derivabile in $x^2 x = 0 \Leftrightarrow x(x 1) = 0$ ovvero $C = \{0,1\}$; mentre per i punti in cui la derivata si annulla, si ha $f'(x) = 0 \Leftrightarrow 2x 1 = 0 \Leftrightarrow x = \frac{1}{2}$, quindi $S = \{\frac{1}{2}\}$ ed infine i punti di frontiera $F = \{-1,2\}$; pertanto possiamo calcolare la funzione in tali punti ed osservare che f(-1) = 2, f(0) = 0, $f(\frac{1}{2}) = \frac{1}{4}$, f(1) = 0 ed f(2) = 2; quindi la funzione ha *massimo assoluto* pari a 2 e due punti di massimo assoluto, *minimo assoluto* pari a 0 e due punti di minimo assoluto ed un *massimo relativo* pari a $\frac{1}{4}$, ed un punto di *massimo relativo*.
- c) Data la funzione $f(x) = e^{-x^2} \sqrt{x}$, definita $\forall x \in [0,2]$, quindi continua nel suo dominio, parte chiusa e limitata, pertanto per il teorema di Weierstrass, è dotata di minimo e di massimo assoluti, quindi la *funzione è limitata*. Servendosi del teorema dei Punti Critici, essendo $f'(x) = -2xe^{-x^2} \sqrt{x} + e^{-x^2} \frac{1}{2\sqrt{x}} = \frac{e^{-x^2} \left(1 4x^2\right)}{2\sqrt{x}}$, per cui la funzione è derivabile in $[0,2] \{0\}$ e quindi $S = \{0\}$; ed inoltre risulta $f'(x) = 0 \Leftrightarrow 1 4x^2 = 0 \Leftrightarrow 1 4x^2 = 0 \Leftrightarrow x = \pm \frac{1}{2}$, quindi $S = \left\{\frac{1}{2}\right\}$ ed $F = \{0,2\}$ possiamo pertanto calcolare la funzione in tali punti ed osservare che f(0) = 0, $f\left(\frac{1}{2}\right) = \frac{1}{e\sqrt{2}}$ ed $f(2) = \frac{\sqrt{2}}{e^4}$; ed essendo $\frac{1}{e\sqrt{2}} > \frac{\sqrt{2}}{e^4}$ risulta che la funzione ha *massimo assoluto* pari a $\frac{1}{e\sqrt{2}}$ ed un punto di massimo assoluto, e *minimo assoluto* pari a 0 ed un punto di minimo assoluto ed un *minimo relativo* pari a $\frac{\sqrt{2}}{e^4}$ ed un punto di minimo relativo.

- d) Data la funzione $f(x) = \arccos(\log x)^2$, risulta definita per $-1 \le (\log x)^2 \le 1 \Leftrightarrow 0 \le (\log x)^2 \le 1$ ovvero $|\log x| \le 1 \Leftrightarrow -1 \le \log x \le 1 \Leftrightarrow \frac{1}{e} \le x \le e$ ovvero definita $\forall x \in \left[\frac{1}{e}, e\right]$, quindi continua nel suo dominio, parte chiusa e limitata, pertanto per il teorema di Weierstrass, la *funzione è limitata*. Servendosi del teorema dei Punti Critici, si nota che $f'(x) = -\frac{2\log x}{x\sqrt{1-(\log x)^4}}$, per cui la funzione non è derivabile in $x\sqrt{1-(\log x)^4} = 0$ ovvero per x = 0 e $(\log x)^4 = 1 \Leftrightarrow |\log x| = 1 = \log e \Leftrightarrow x = \pm e$; pertanto è derivabile in $\left[\frac{1}{e}, e\right] \{e\}$ e quindi $C = \{e\}$; inoltre risulta che $f'(x) = 0 \Leftrightarrow \log x = 0 \Leftrightarrow x = 1$, quindi $S = \{1\}$ ed essendo $F = \left\{\frac{1}{e}, e\right\}$; possiamo calcolare la funzione in tali punti ed osservare che: $f\left(\frac{1}{e}\right) = 0$, $f(1) = \frac{\pi}{2}$ ed f(e) = 0 quindi la funzione ha *massimo assoluto* pari a $\frac{\pi}{2}$ ed un punto di massimo assoluto, e *minimo assoluto* pari a 0 e due punti di minimo assoluto.
- e) Data la funzione $f(x) = arcsen(e^x 1)$, risulta definita per $-1 \le e^x 1 \le 1 \Leftrightarrow 0 \le e^x \le 2$ ovvero $e^x \le e^{\log 2} \Leftrightarrow x \le \log 2$ ovvero definita $\forall x \in]-\infty, \log 2]$, quindi continua nel suo dominio, parte chiusa ma non limitata, quindi la *funzione non è limitata*. Servendosi del teorema dei Punti Critici, si nota che $f'(x) = \frac{e^x}{\sqrt{1 (e^x 1)^2}}$, per cui la funzione è derivabile in $]-\infty, \log 2]-\{\log 2\}$ e quindi $C = \{\log 2\}$, e risulta che $f'(x) = 0 \Leftrightarrow e^x = 0 \Leftrightarrow x \in \emptyset$, quindi $S = \{\emptyset\}$ ed $F = \{\log 2\}$ possiamo pertanto calcolare la funzione in tali punti ed osservare che $f(\log 2) = \frac{\pi}{2}$ ed osservando che $\lim_{x \to -\infty} arcsen(e^x 1) = -\frac{\pi}{2}$, la funzione ha *massimo assoluto* pari a $\frac{\pi}{2}$ ed un punto di massimo assoluto.

6) I limiti significativi delle funzioni assegnate, risultano:

a) Data la funzione $f(x) = \frac{\sqrt{x+2}}{x-1}$ essendo definita $\forall x \in [-2,1[\ \ \]],+\infty[$, ha senso calcolare i seguenti $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \sqrt{x+2} \lim_{x\to 1^-} \frac{1}{x-1} = \sqrt{3}(-\infty) = -\infty;$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \sqrt{x+2} \lim_{x \to 1^+} \frac{1}{x-1} = \sqrt{3} (+\infty) = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\sqrt{x+2}}{x-1} = \lim_{x \to +\infty} \frac{\sqrt{x^2 \left(\frac{1}{x} + \frac{2}{x^2}\right)}}{x \left(1 - \frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{|x| \sqrt{\left(\frac{1}{x} + \frac{2}{x^2}\right)}}{x \left(1 - \frac{1}{x}\right)} = 0. \quad \text{Pertanto} \quad \text{la} \quad \text{retta}$$

y = 0 è un asintoto orizzontale a destra, mentre la retta x = 1 è un asintoto verticale sia a sinistra che a destra.

b) Data la funzione $f(x) = \frac{x-1}{\sqrt{x^2-4}}$ essendo definita $\forall x \in]-\infty, -2[\cup]2, +\infty[$, ha senso calcolare i seguenti limiti:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x - 1}{\sqrt{x^2 - 4}} = \lim_{x \to -\infty} \frac{x \left(1 - \frac{1}{x}\right)}{\sqrt{x^2 \left(1 - \frac{4}{x^2}\right)}} = \lim_{x \to -\infty} \frac{x \left(1 - \frac{1}{x}\right)}{|x|\sqrt{1 - \frac{4}{x^2}}} = -1;$$

$$\lim_{x \to -2^{-}} f(x) = \lim_{x \to -2^{-}} (x-1) \lim_{x \to -2^{-}} \frac{1}{\sqrt{x^2 - 4}} = -3(+\infty) = -\infty;$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x - 1) \lim_{x \to 2^{+}} \frac{1}{\sqrt{x^{2} - 4}} = 1(+\infty) = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x - 1}{\sqrt{x^2 - 4}} = \lim_{x \to +\infty} \frac{x \left(1 - \frac{1}{x}\right)}{\sqrt{x^2 \left(1 - \frac{4}{x^2}\right)}} = \lim_{x \to +\infty} \frac{x \left(1 - \frac{1}{x}\right)}{|x|\sqrt{1 - \frac{4}{x^2}}} = 1. \text{ Pertanto la retta } y = -1 \text{ è}$$

un asintoto orizzontale a sinistra e la retta y = 1 è un asintoto orizzontale a destra, mentre le rette x = -2 ed x = 2 sono rispettivamente due asintoti verticali a sinistra ed a destra.

- c) Data la funzione $f(x) = \log_{1/2}(\log_2(x))$ essendo definita $\forall x \in]1,+\infty[$, ha senso calcolare i seguenti limiti: $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (\log_{1/2}\log_2 x) = +\infty$, in quanto trattasi di funzione composta, per cui $\lim_{x\to 1^+}\log_2 x = 0$ e conseguentemente $\lim_{y\to 0}\log_{1/2} y = +\infty$ ed il $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} (\log_{1/2}\log_2 x) = -\infty$, in quanto $\lim_{x\to +\infty}\log_2 x = +\infty$ e conseguentemente $\lim_{x\to +\infty}\log_{1/2} y = -\infty$.
- d) Data la funzione $f(x) = \log_2(x+2)$ essendo definita $\forall x \in]-2,+\infty[$, ha senso calcolare i seguenti limiti: $\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} \log_2(x+2) = -\infty$, in quanto trattasi di funzione composta, per cui $\lim_{x \to -2^+} (x+2) = 0$ e conseguentemente $\lim_{y \to 0} \log_2 y = -\infty$ ed il $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \log_2(x+2) = +\infty$, sempre trattandosi di funzione composta, si ha

 $\lim_{x\to +\infty} (x+2) = +\infty$ e conseguentemente $\lim_{y\to +\infty} \log_2 y = +\infty$. Pertanto la retta x=-2 è un asintoto verticale a destra.

- e) Data la funzione $f(x) = 2^{x^2-1} 3$ essendo definita $\forall x \in R$, ha senso calcolare i seguenti limiti: $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (2^{x^2-1} 3) = +\infty$, in quanto trattandosi di funzione composta, si ha $\lim_{x \to -\infty} (x^2 1) = +\infty$ e conseguentemente $\lim_{y \to +\infty} 2^y 3 = +\infty$ e $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (2^{x^2-1} 3) = +\infty$, in quanto trattandosi di funzione composta, si ha $\lim_{x \to +\infty} (x^2 1) = +\infty$ e conseguentemente $\lim_{x \to +\infty} 2^y 3 = +\infty$.
- f) Data la funzione $f(x) = \log_{1/5}(1-2^x)$ essendo definita $\forall x \in]-\infty,0[$, ha senso calcolare i seguenti limiti: $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \log_{1/5}(1-2^x) = 0$, in quanto trattandosi di funzione composta, si ha $\lim_{x\to\infty} (1-2^x) = 1$ e conseguentemente $\lim_{y\to 1} \log_{1/5} y = 0$ ed il $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \log_{1/5}(1-2^x) = +\infty$, in quanto trattasi di funzione composta, per cui $\lim_{x\to 0^-} (1-2^x) = 0$ e conseguentemente $\lim_{y\to 0} \log_{1/5} y = +\infty$. Pertanto la retta y=0 è un asintoto orizzontale a sinistra.
- g) Data la funzione $f(x) = \log_2 \frac{x-1}{x+1}$ essendo definita $\forall x \in]-\infty, -1[\bigcup]1, +\infty[$, ha senso calcolare i seguenti limiti: $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} \log_2 \frac{x-1}{x+1} = 0$, trattandosi di funzione composta, si ha $\lim_{x \to -\infty} \frac{x-1}{x+1} = 1$ e conseguentemente $\lim_{y \to 1} \log_2 y = 0$; $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \log_2 \frac{x-1}{x+1} = +\infty$, in quanto trattasi di funzione composta, per cui $\lim_{x \to -1^-} \frac{x-1}{x+1} = \lim_{x \to -1^-} (x-1) \lim_{x \to -1^-} \frac{1}{x+1} = -2 \lim_{x \to -1^-} \frac{1}{x+1} = -2(-\infty) = +\infty$ e conseguentemente $\lim_{y \to 0} \log_2 y = +\infty$; $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \log_2 \frac{x-1}{x+1} = -\infty$, in quanto trattasi di funzione composta, per cui $\lim_{x \to 1^+} \frac{x-1}{x+1} = 0$ e conseguentemente $\lim_{y \to 0} \log_2 y = -\infty$ ed in fine il $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \log_2 \frac{x-1}{x+1} = 0$, trattandosi di funzione composta, si ha $\lim_{x \to +\infty} \frac{x-1}{x+1} = 1$ e conseguentemente $\lim_{y \to 1} \log_2 y = 0$. Pertanto la retta y = 0 è un asintoto orizzontale a sinistra e a destra, mentre le rette x = -1 ed x = 1 sono rispettivamente due asintoti verticali a sinistra ed a destra.

- h) Data la funzione $f(x) = \log ar \cos \log_{1/4} \left(2^x 1\right)$ essendo definita $\forall x \in \left[\log_2 \frac{5}{4}, \log_2 5\right]$, ha senso calcolare i seguenti limiti: $\lim_{x \to \left(\log_2 \frac{5}{4}\right)^-} f(x) = \lim_{x \to \left(\log_2 \frac{5}{4}\right)^-} \log ar \cos \log_{1/4} \left(2^x 1\right) = -\infty$, in quanto trattasi di funzione composta, per cui $\lim_{x \to \left(\log_2 \frac{5}{4}\right)^-} \left(2^x 1\right) = \frac{5}{4} \frac{4}{4} = \frac{1}{4}$, quindi $\lim_{x \to \left(\log_2 \frac{5}{4}\right)^-} \log_{1/4} y = 1$, ovvero $\lim_{z \to 1} arco \cos z = 0$ e $\lim_{k \to 0} \log_2 k = -\infty$ conseguentemente $\lim_{x \to \left(\log_2 \frac{5}{4}\right)^-} \log ar \cos \log_{1/4} \left(2^x 1\right) = -\infty$. Pertanto la retta $x = \log_2 \frac{5}{4}$ è un asintoto verticale a sinistra.
- i) Data la funzione $f(x) = arctg \log_{3/2} (3^x 9)$ essendo definita $\forall x \in]2,+\infty[$, ha senso calcolare i seguenti limiti: $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} arctg \log_{3/2} (3^x 9) = -\frac{\pi}{2}$, in quanto trattasi di funzione composta, per cui $\lim_{x \to 2^+} (3^x 9) = 0$, quindi $\lim_{y \to 0} \log_{3/2} y = -\infty$ e conseguentemente $\lim_{z \to -\infty} arctgz = -\frac{\pi}{2}$ ed il $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} arctg \log_{3/2} (3^x 9) = \frac{\pi}{2}$, in quanto trattandosi di funzione composta, si ha $\lim_{x \to +\infty} (3^x 9) = +\infty$ quindi $\lim_{y \to +\infty} \log_{3/2} y = +\infty$ e conseguentemente $\lim_{z \to +\infty} arctgz = \frac{\pi}{2}$. Pertanto la retta $y = \frac{\pi}{2}$ è un asintoto orizzontale a destra, mentre la funzione a sinistra, tende al punto $\left(2, -\frac{\pi}{2}\right)$.
- j) Data la funzione f(x) = arcsen(2x-1) essendo definita $\forall x \in [0,1]$, essendo una funzione continua per ogni punto di accumulazione interno al suo insieme di definizione il $\lim_{x \to x_0} f(x) = f(x_0)$, ed essendo definita in un intervallo chiuso e limitato non ha senso calcolare ulteriori limiti.
- k) Data la funzione $f(x) = arcsen(2^x 1)$ essendo definita $\forall x \in]-\infty,1]$, ha senso calcolare i seguenti limiti: $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} arcsen(2^x 1) = -\frac{\pi}{2}$, in quanto trattandosi di funzione composta, si ha $\lim_{x \to -\infty} (2^x 1) = -1$ quindi $\lim_{y \to -1} arcseny = -\frac{\pi}{2}$ Pertanto la retta $y = -\frac{\pi}{2}$ è un asintoto orizzontale a sinistra.
- 1) Data la funzione $f(x) = ar \cos(2 \log_{1/2}(2x+1))$ essendo definita $\forall x \in \left[-\frac{7}{16}, -\frac{1}{4}\right]$, essendo una funzione continua per ogni punto di accumulazione interno al suo insieme di definizione il $\lim_{x \to x_0} f(x) = f(x_0)$, ed essendo definita in un intervallo chiuso e limitato non ha senso calcolare ulteriori limiti.

- m) Data la funzione $f(x) = \sqrt{\frac{x^4 16}{3 + 2x x^2}}$ essendo definita $\forall x \in [-2, -1] \cup [2,3[$, ha senso calcolare i seguenti limiti: $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \sqrt{\frac{x^4 16}{3 + 2x x^2}} = +\infty$, in quanto trattasi di funzione composta, per cui $\lim_{x \to -1^-} \frac{x^4 16}{3 + 2x x^2} = \lim_{x \to -1^-} (x^4 16) = \lim_{x \to -1^-} \frac{1}{3 + 2x x^2} = -15(-\infty) = +\infty$, quindi $\lim_{x \to 3^-} \sqrt{y} = +\infty$ ed il $\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} \sqrt{\frac{x^4 16}{3 + 2x x^2}} = +\infty$, in quanto trattasi di funzione composta, per cui $\lim_{x \to 3^-} \frac{x^4 16}{3 + 2x x^2} = \lim_{x \to 3^-} (x^4 16) = \lim_{x \to 3^-} \frac{1}{3 + 2x x^2} = 65(+\infty) = +\infty$, quindi $\lim_{x \to +\infty} \sqrt{y} = +\infty$ Pertanto le rette x = -1 e x = 3 sono due asintoti verticali a sinistra.
- n) Data la funzione $f(x) = \log_{1/2}(2senx-1)$ essendo definita $\forall x \in \left] \frac{\pi}{6}, \frac{5}{6}\pi\right[$, ha senso calcolare i seguenti limiti: $\lim_{x \to \frac{\pi}{6}^+} f(x) = \lim_{x \to \frac{\pi}{6}^+} \log_{1/2}(2senx-1) = +\infty$, in quanto trattasi di funzione composta, per cui $\lim_{x \to \frac{\pi}{6}^+} (2senx-1) = 0$, quindi $\lim_{y \to 0} \log_{1/2} y = +\infty$ ed il $\lim_{x \to \frac{5}{6}\pi^-} f(x) = \lim_{x \to \frac{5}{6}\pi^-} \log_{1/2}(2senx-1) = +\infty$, in quanto trattasi di funzione composta, per cui $\lim_{x \to \frac{5}{6}\pi^-} (2senx-1) = 0$, quindi $\lim_{y \to 0} \log_{1/2} y = +\infty$ Pertanto le rette $x = \frac{\pi}{6}$ e $x = \frac{5}{6}\pi$ sono rispettivamente due asintoti verticali a destra ed a sinistra.
- o) Data la funzione $f(x) = \frac{x \cdot |x|}{1+x}$ essendo definita $\forall x \in R \{-1\}$, ha senso calcolare i seguenti limiti: $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{-x^2}{1+x} = \lim_{x \to -\infty} \frac{-x^2}{x(1/x+1)} = \lim_{x \to -\infty} \frac{-x}{1/x+1} = +\infty$, per cui si osserva che $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{-x}{1+x} = \lim_{x \to -\infty} \frac{-1}{1/x+1} = -1, \qquad \text{e} \qquad \text{conseguentemente}$ $\lim_{x \to -\infty} (f(x) + x) = \lim_{x \to -\infty} \left(\frac{-x^2}{1+x} + x \right) = \lim_{x \to -\infty} \frac{x}{1+x} = \lim_{x \to -\infty} \frac{1}{1/x+1} = 1;$ $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \frac{-x^2}{1+x} = -\lim_{x \to -1^-} x^2 \lim_{x \to -1^-} \frac{1}{1+x} = -(-\infty) = +\infty; \qquad \text{ed} \qquad \text{il}$ $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{-x^2}{1+x} = -\lim_{x \to -1^-} x^2 \lim_{x \to -1^+} \frac{1}{1+x} = -(+\infty) = -\infty; \text{ infine il } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{1+x} = \lim_{x \to +\infty} \frac{x^2}{1/x+1} = \lim_{x \to +\infty} \frac{x^2}{1/x+1} = +\infty, \qquad \text{per} \qquad \text{cui} \qquad \text{si} \qquad \text{osserva} \qquad \text{che}$

$$\lim_{x \to +\infty} \frac{f(x)}{r} = \lim_{x \to +\infty} \frac{x}{1+r} = \lim_{x \to -\infty} \frac{1}{1/r+1} = 1 \qquad \text{e} \qquad \text{conseguentemente} \qquad \lim_{x \to +\infty} (f(x)-x) = 1$$

$$= \lim_{x \to +\infty} \left(\frac{x^2}{1+x} - x \right) = \lim_{x \to +\infty} \frac{-x}{1+x} = \lim_{x \to +\infty} \frac{-1}{1/x+1} = -1.$$
 Pertanto la funzione f ha tre asintoti: la retta di

equazione y = -x + 1 asintoto obliquo a sinistra, la retta di equazione x = -1 asintoto verticale a sinistra e a destra e la retta di equazione y = x - 1 asintoto obliquo a destra.

p) Data la funzione $f(x) = \sqrt{x^2 + x + 1} + x$ essendo definita $\forall x \in R$, ha senso calcolare i seguenti

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\sqrt{x^2 + x + 1} + x \right) = \lim_{x \to -\infty} \frac{\left(\sqrt{x^2 + x + 1} + x \right) \left(\sqrt{x^2 + x + 1} - x \right)}{\sqrt{x^2 + x + 1} - x} = \lim_{x \to -\infty} \frac{x + 1}{\sqrt{x^2 + x + 1} - x} = \lim_{x \to -\infty} \frac{x + 1}{\sqrt{1 + \frac{1}{2} - x}} = -\lim_{x \to -\infty} \frac{1 + 1/x}{\sqrt{1 + \frac{1}{2} + 1}} = -\frac{1}{2}, \quad \text{ed} \quad \text{il}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\sqrt{x^2 + x + 1} + x \right) = +\infty \qquad \text{per} \qquad \text{cui} \qquad \text{si} \qquad \text{osserva} \qquad \text{che}$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{x} \left(x \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + x \right) = \lim_{x \to +\infty} \left(\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + 1 \right) = 2 \quad \text{e} \quad \text{conseguentemente}$$

$$\lim_{x\to +\infty} (f(x)-2x) =$$

$$= \lim_{x \to +\infty} \left(\sqrt{x^2 + x + 1} - x \right) = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + x + 1} - x \right) \left(\sqrt{x^2 + x + 1} + x \right)}{\sqrt{x^2 + x + 1} + x} = \lim_{x \to +\infty} \frac{x + 1}{\sqrt{x^2 +$$

$$\lim_{x \to +\infty} \frac{x+1}{x\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+x} = \lim_{x \to +\infty} \frac{1+1/x}{\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1} = \frac{1}{2}$$
. Pertanto la funzione f ha due asintoti: la retta

di equazione y = -1/2 asintoto orizzontale a sinistra e la retta di equazione y = 2x + 1/2 asintoto obliquo a destra.