Esercitazione n. 06 (svolgimento)

Per i seguenti limiti, si ha:

- a) Essendo f(x) = 2x 1, tale funzione è definita in R, pertanto 0 è un punto di accumulazione per f, e risulta $\lim_{x\to 0}(2x-1)=-1$ ovvero per la definizione di limite : $\forall \varepsilon>0 \ \exists \delta>0$, tale che se $x\in R$ e se $0<|x-x_0|<\delta$ risulta che $|f(x)-L|<\varepsilon$. Pertanto fissato $\varepsilon>0$, si ha: $|2x-1+1|<\varepsilon\Leftrightarrow -\varepsilon<2x<\varepsilon\Leftrightarrow -\frac{\varepsilon}{2}< x<\frac{\varepsilon}{2}$, quindi posto $\delta=\frac{\varepsilon}{2}$, esiste il delta in funzione di epsilon che soddisfatta il limite trovato.
- b) Essendo $f(x) = \frac{1}{(1-x)^2}$, tale funzione è definita in $R \{1\}$, pertanto 1 è un punto di accumulazione per f, e risulta $\lim_{x\to 1} \frac{1}{(1-x)^2} = +\infty$ ovvero, per la definizione di limite : $\forall \varepsilon > 0$ $\exists \delta > 0$, tale che se $x \in R$ e se $0 < |x-x_0| < \delta$ risulta che $f(x) \in I_{+\infty} \Leftrightarrow f(x) > \epsilon$ Pertanto fissato $\varepsilon > 0$, si ha: $\frac{1}{(1-x)^2} > \varepsilon \Leftrightarrow \frac{1}{\varepsilon} > (1-x)^2 \Leftrightarrow |1-x| < \frac{1}{\sqrt{\varepsilon}} \Leftrightarrow -\frac{1}{\sqrt{\varepsilon}} < 1-x < \frac{1}{\sqrt{\varepsilon}}$, ovvero $-\frac{1}{\sqrt{\varepsilon}} 1 < -x < \frac{1}{\sqrt{\varepsilon}} 1 \Leftrightarrow 1 \frac{1}{\sqrt{\varepsilon}} < x < 1 + \frac{1}{\sqrt{\varepsilon}}$ quindi posto $\delta = \frac{1}{\sqrt{\varepsilon}}$, esiste il delta in funzione di epsilon che soddisfatta il limite trovato.
- c) Essendo $f(x) = -\frac{1}{arcsen^2x}$, tale funzione è definita in $[1-,1]-\{0\}$, pertanto 0 è un punto di accumulazione per f, e risulta $\lim_{x\to 0} -\frac{1}{arcsen^2x} = -\infty$ ovvero, per la definizione di limite : $\forall \varepsilon > 0$ $\exists \delta > 0$, tale che se $x \in [1-,1]$ e se $0 < |x-x_0| < \delta$ risulta che $f(x) \in I_{-\infty} \Leftrightarrow f(x) < -\varepsilon$ Pertanto fissato $\varepsilon > 0$, si ha: $-\frac{1}{arcsen^2x} < -\varepsilon \Leftrightarrow \frac{1}{arcsen^2x} > \varepsilon \Leftrightarrow \frac{1}{\varepsilon} > arcsen^2x \Leftrightarrow -sen\frac{1}{\sqrt{\varepsilon}} < x < sen\frac{1}{\sqrt{\varepsilon}}$, quindi posto $\delta = sen\frac{1}{\sqrt{\varepsilon}}$, esiste il delta in funzione di epsilon che soddisfatta il limite trovato.

- d) Essendo $f(x) = \left(\frac{1}{2}\right)^x$, tale funzione è definita in R, non limitata superiormente, pertanto è possibile fare il limite che tende a $+\infty$, e risulta $\lim_{x\to+\infty}\left(\frac{1}{2}\right)^x=0$ ovvero, per la definizione di limite : $\forall \varepsilon>0 \ \exists \delta>0$, tale che se $x\in R$ e se $x>\delta$ risulta che $f(x)\in I_L\Leftrightarrow |f(x)-L|<\varepsilon$ Pertanto fissato $\varepsilon>0$, e considerato che si tratta di una funzione esponenziale sempre positiva, si ha: $\left(\frac{1}{2}\right)^x<\varepsilon\Leftrightarrow x>\log_{\frac{1}{2}}\varepsilon$, quindi posto $\delta=\log_{\frac{1}{2}}\varepsilon$ per $\varepsilon<1$, e $\delta=0$ per $\varepsilon>1$ si determina un intorno $+\infty$ in funzione di epsilon che soddisfatta il limite trovato.
- e) Essendo $f(x) = 2^x$, tale funzione è definita in R, non limitata inferiormente, pertanto è possibile fare il limite che tende a $-\infty$., e risulta $\lim_{x\to-\infty} 2^x = 0$ ovvero, per la definizione di limite : $\forall \varepsilon > 0 \ \exists \delta > 0$, tale che se $x \in R$ e se $x < -\delta$ risulta che $f(x) \in I_L \Leftrightarrow |f(x) L| < \varepsilon$ Pertanto fissato $\varepsilon > 0$, e considerato che si tratta di una funzione esponenziale sempre positiva, si ha: $2^x < \varepsilon \Leftrightarrow x < \log_2 \varepsilon$, pertanto con $\varepsilon < 1$, posto $\delta = -\log_2 \varepsilon$, si ha $x < -\delta \Leftrightarrow x < -(-\log_2 \varepsilon) \Leftrightarrow x < \log_2 \varepsilon$ si determina un intorno $-\infty$ in funzione di epsilon che soddisfatta il limite trovato.
- f) Essendo $f(x) = 3^x$, tale funzione è definita in R, non limitata superiormente, pertanto è possibile fare il limite che tende a $+\infty$, e risulta $\lim_{x\to +\infty} 3^x = +\infty$ ovvero, per la definizione di limite : $\forall \varepsilon > 0 \ \exists \delta > 0$, tale che se $x \in R$ e se $x > \delta$ risulta che $f(x) \in I_{+\infty} \Leftrightarrow f(x) > \varepsilon$ Pertanto fissato $\varepsilon > 0$, e considerato che si tratta di una funzione esponenziale sempre positiva, si ha: $3^x > \varepsilon \Leftrightarrow x > \log_3 \varepsilon$, pertanto posto $\delta = \log_3 \varepsilon$, nel caso di $\varepsilon < 1$ e $\delta = 0$ nel caso di $\varepsilon > 1$ si determina un intorno $+\infty$ in funzione di epsilon che soddisfatta il limite trovato.
- g) Essendo $f(x) = \log_{2/3} x$, tale funzione è definita in $]0,+\infty[$, non limitata superiormente, pertanto è possibile fare il limite che tende a $+\infty$, e risulta $\lim_{x\to +\infty} \log_{2/3} x = -\infty$ ovvero, per la definizione di limite : $\forall \varepsilon > 0 \quad \exists \delta > 0$, tale che se $x \in]0,+\infty[$ e se $x > \delta$ risulta che $f(x) \in I_{-\infty} \Leftrightarrow f(x) < -\varepsilon$ Pertanto fissato $\varepsilon > 0$, si ha: $\log_{2/3} x < -\varepsilon \Leftrightarrow 2/3^{\log_{2/3} x} < 2/3^{-\varepsilon} \Leftrightarrow x > 2/3^{-\varepsilon}$, pertanto posto $\delta = \left(\frac{2}{3}\right)^{-\varepsilon}$, si determina un intorno $+\infty$ in funzione di epsilon che soddisfatta il limite trovato.
- h) Essendo $f(x) = x^3$, tale funzione è definita in R, non limitata inferiormente, pertanto è possibile fare il limite che tende a $-\infty$, e risulta $\lim_{x\to -\infty} x^3 = -\infty$ ovvero, per la definizione di limite : $\forall \varepsilon > 0 \ \exists \delta > 0$, tale che se $x \in R$ e se $x < -\delta$ risulta che $f(x) \in I_{-\infty} \Leftrightarrow f(x) < -\varepsilon$

Pertanto fissato $\varepsilon > 0$, si ha: $x^3 < -\varepsilon \Leftrightarrow x < \sqrt[3]{-\varepsilon}$, pertanto posto $\delta = \sqrt[3]{-\varepsilon}$, si determina un intorno $-\infty$ in funzione di epsilon che soddisfatta il limite trovato.

- i) Essendo $f(x) = 4^{-x}$, tale funzione è il reciproco di una funzione esponenziale, pertanto definita in R, non limitata inferiormente, pertanto è possibile fare il limite che tende a $-\infty$, e risulta $\lim_{x\to-\infty} 4^{-x} = +\infty$ ovvero, per la definizione di limite : $\forall \varepsilon > 0 \ \exists \delta > 0$, tale che se $x \in R$ e se $x < -\delta$ risulta che $f(x) \in I_{+\infty} \Leftrightarrow f(x) > \varepsilon$ Pertanto fissato $\varepsilon > 0$, si ha: $4^{-x} > \varepsilon \Leftrightarrow x < -\log_4 \varepsilon$, pertanto posto $\delta = \log_4 \varepsilon$, nel caso di $\varepsilon < 1$ e $\delta = 0$ nel caso di $\varepsilon > 1$, si determina un intorno $-\infty$ in funzione di epsilon che soddisfatta il limite trovato.
- j) Essendo $f(x) = e^{x+1}$, tale funzione è definita in R, pertanto 0 è un punto di accumulazione per f, e risulta $\lim_{x\to 0} e^{x+1} = e$ ovvero per la definizione di limite : $\forall \varepsilon > 0 \ \exists \delta > 0$, tale che se $x \in R$ e se $0 < |x-x_0| < \delta$ risulta che $|f(x)-L| < \varepsilon$. Pertanto fissato $\varepsilon > 0$, si ha: $|e^{x+1}-e| < \varepsilon \Leftrightarrow -\varepsilon < e^{x+1}-e < \varepsilon \Leftrightarrow \log(e-\varepsilon)-1 < x < \log(e+\varepsilon)-1$, ed osservando che $\log(e-\varepsilon)-1 < \log(e+\varepsilon)-1$ e che $\log(e-\varepsilon)-1 < 0$ quindi ponendo $\delta = -(\log(e-\varepsilon)-1)$, esiste il delta in funzione di epsilon che soddisfatta il limite trovato.

Per quanto riguarda i limiti significativi delle seguenti funzioni, si ha:

- a) Essendo $f: X \to f(x) = \frac{\sqrt{x+2}}{x-1}$ una funzione razionale, il numeratore è definito $x+2 \ge 0 \Leftrightarrow x \in [-2,+\infty[$, il denominatore $\forall x \in R-\{1\}$, pertanto $X = [-2,+\infty[\cap(R-\{1\})] = [-2,1[\cup]],+\infty[$. Quindi i limiti significativi risultano: $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \sqrt{x+2} \lim_{x\to 1^-} \frac{1}{x-1} = \sqrt{3}(-\infty) = -\infty$; $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} \sqrt{x+2} \lim_{x\to 1^+} \frac{1}{x-1} = \sqrt{3}(+\infty) = +\infty$ e $\lim_{x\to 1^+} f(x) = \lim_{x\to +\infty} \frac{\sqrt{x+2}}{x-1} = \lim_{x\to +\infty} \frac{\sqrt{x^2(\frac{1}{x}+\frac{2}{x^2})}}{x(1-\frac{1}{x})} = \lim_{x\to +\infty} \frac{|x|\sqrt{(\frac{1}{x}+\frac{2}{x^2})}}{x(1-\frac{1}{x})} = 0.$
- b) Essendo $f: X \to f(x) = \frac{x-1}{\sqrt{x^2-4}} \in R$ una funzione razionale, il numeratore è definito $\forall x \in R$, il denominatore, $x^2-4>0 \Leftrightarrow (x-2)(x+2)>0 \Leftrightarrow x \in]-\infty,-2[\bigcup]2,+\infty[$ pertanto $X=x\in]-\infty,-2[\bigcup]2,+\infty[\cap R=x\in]-\infty,-2[\bigcup]2,+\infty[$. Quindi i limiti significativi risultano:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x - 1}{\sqrt{x^2 - 4}} = \lim_{x \to -\infty} \frac{x \left(1 - \frac{1}{x}\right)}{\sqrt{x^2 \left(1 - \frac{4}{x^2}\right)}} = \lim_{x \to -\infty} \frac{x \left(1 - \frac{1}{x}\right)}{|x|\sqrt{1 - \frac{4}{x^2}}} = -1;$$

$$\lim_{x \to -2^-} f(x) = \lim_{x \to -2^-} (x - 1) \lim_{x \to 2^-} \frac{1}{\sqrt{x^2 - 4}} = -3(+\infty) = -\infty;$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x - 1) \lim_{x \to 2^+} \frac{1}{\sqrt{x^2 - 4}} = 1(+\infty) = +\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x - 1}{\sqrt{x^2 - 4}} = \lim_{x \to +\infty} \frac{x \left(1 - \frac{1}{x}\right)}{\sqrt{x^2 \left(1 - \frac{4}{x^2}\right)}} = \lim_{x \to +\infty} \frac{x \left(1 - \frac{1}{x}\right)}{|x|\sqrt{1 - \frac{4}{x^2}}} = 1.$$

- c) Essendo $f: X \to f(x) = \log_{1/2} \log_2 x \in R$ una funzione composta della funzione logaritmica, per poter calcolare il $\log_{1/2}$, deve essere $\log_2 x > 0 = \log_2 1 \Leftrightarrow x \in]1, +\infty[$, e per poter calcolare il \log_2 , deve essere $x > 0 \Leftrightarrow x \in]0, +\infty[$, e pertanto $X =]1, +\infty[\cap]0, +\infty[\Leftrightarrow X =]1, +\infty[$. Quindi i limiti significativi risultano: $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (\log_{1/2} \log_2 x)$, trattasi di funzione composta, per cui $\lim_{x \to 1^+} \log_2 x = 0$ e conseguentemente $\lim_{y \to 0} \log_{1/2} y = +\infty$, quindi $\lim_{x \to 1^+} (\log_{1/2} \log_2 x) = +\infty$ e $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (\log_{1/2} \log_2 x) = -\infty$, in quanto $\lim_{x \to +\infty} \log_2 x = +\infty$ e conseguentemente $\lim_{x \to +\infty} \log_{1/2} y = -\infty$.
- d) Essendo $f: X \to f(x) = \log_2(x+2) \in R$ una funzione logaritmica, deve essere, $x+2>0 \Leftrightarrow x \in]-2,+\infty[$, pertanto $X=]-2,+\infty[$. Quindi i limiti significativi risultano: $\lim_{x\to -2^+} f(x) = \lim_{x\to -2^+} \log_2(x+2) = -\infty \text{ e } \lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \log_2(x+2) = +\infty.$
- e) Essendo $f: X \to f(x) = 2^{x^2-1} 3 \in R$ una funzione esponenziale meno una costante, è definita in tutto R, pertanto X = R. Quindi i limiti significativi risultano: $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} \left(2^{x^2-1} 3\right) = +\infty \text{ e } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(2^{x^2-1} 3\right) = +\infty.$
- f) Essendo $f: X \to f(x) = \log_{1/5}(1-2^x) \in R$ Essendo una funzione logaritmica, deve essere $1-2^x > 0 \Leftrightarrow 2^x < 1 = 2^0 \Leftrightarrow x \in]-\infty,0[$, pertanto $X =]-\infty,0[$. Quindi i limiti significativi risultano: $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \log_{1/5}(1-2^x) = 0$ e $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \log_{1/5}(1-2^x) = +\infty$.
- g) Essendo $f: X \to f(x) = \log_2 \frac{x-1}{x+1} \in R$ una funzione logaritmica, deve essere $\frac{x-1}{x+1} > 0$, quindi il numeratore è positivo $x \in]1,+\infty[$ il denominatore è positivo $x \in]-1,+\infty[$, conseguentemente

$$\frac{x-1}{x+1} > 0 \Leftrightarrow x \in]-\infty, -1[\bigcup]\mathbf{l}, +\infty[, \text{ pertanto } X =]-\infty, -1[\bigcup]\mathbf{l}, +\infty[. \text{ Quindi i limiti significativi risultano:} \\ \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \log_2 \frac{x-1}{x+1} = 0; \\ \lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \log_2 \frac{x-1}{x+1} = +\infty; \\ \lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \log_2 \frac{x-1}{x+1} = -\infty \text{ e } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \log_2 \frac{x-1}{x+1} = 0.$$

- h) Essendo $f: X \to f(x) = \log ar \cos \log_{1/4} \left(2^x 1\right) \in R$ Essendo una funzione logaritmica, deve essere $ar \cos \log_{1/4} \left(2^x 1\right) > 0 = \arccos(\cos 0)$, quindi $-1 \le \log_{1/4} \left(2^x 1\right) < \cos 0 = 1 \Leftrightarrow -1 \cdot \log_{1/4} \frac{1}{4} \le \log_{1/4} \left(2^x 1\right) < 1 = \log_{1/4} \frac{1}{4} \Leftrightarrow \frac{1}{4} < 2^x 1 \le 4$ infine $\frac{5}{4} < 2^x \le 5 \Leftrightarrow 2^{\log_2 \frac{5}{4}} < 2^x \le 2^{\log_2 5} \Leftrightarrow x \in \left[\log_2 \frac{5}{4}, \log_2 5\right]$, pertanto $X = \left[\log_2 \frac{5}{4}, \log_2 5\right]$. Quindi il limite significativo risulta: $\lim_{x \to \left(\log_2 \frac{5}{4}\right)^-} f(x) = \lim_{x \to \left(\log_2 \frac{5}{4}\right)^-} \log ar \cos \log_{1/4} \left(2^x 1\right) = -\infty$.
- i) Essendo $f: X \to f(x) = arctg \log_{3/2} (3^x 9) \in R$ una funzione arcotangente definita in R, è sufficiente studiare la funzione logaritmica, quindi $3^x 9 > 0 \Leftrightarrow 3^x > 3^2 \Leftrightarrow x > 2 \Leftrightarrow x \in]2, +\infty[$, pertanto $X =]2, +\infty[$. Quindi i limiti significativi risultano: $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} arctg \log_{3/2} (3^x 9) = -\frac{\pi}{2}; \text{ e } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} arctg \log_{3/2} (3^x 9) = \frac{\pi}{2}.$
- j) Essendo $f: X \to f(x) = arcsen(2x-1) \in R$ una funzione arcoseno, deve essere $-1 \le 2x-1 \le 1 \Leftrightarrow 0 \le 2x \le 2 \Leftrightarrow x \in [0,1]$, pertanto X = [0,1]. Quindi una funzione continua per ogni punto di accumulazione interno al suo insieme di definizione il $\lim_{x \to x_0} f(x) = f(x_0)$, ed essendo definita in un intervallo chiuso e limitato non ha senso calcolare ulteriori limiti.
- k) Essendo $f: X \to f(x) = arcsen(2^x 1) \in R$ Essendo una funzione arcoseno, deve essere $-1 \le 2^x 1 \le 1 \Leftrightarrow 0 \le 2^x \le 2 \Leftrightarrow x \le 1$, pertanto $X =]-\infty,1]$. Quindi il limite significativo risulta: $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} arcsen(2^x 1) = -\frac{\pi}{2}$.
- 1) Essendo $f: X \to f(x) = ar \cos(2 \log_{1/2}(2x+1)) \in R$ una funzione arcocoseno, deve essere $-1 \le 2 \log_{1/2}(2x+1) \le 1$, ovvero $-3 \le -\log_{1/2}(2x+1) \le -1 \Leftrightarrow \log_{1/2}\frac{1}{2} \le \log_{1/2}(2x+1) \le 3\log_{1/2}\frac{1}{2} \Leftrightarrow \frac{1}{8} \le 2x+1 \le \frac{1}{2}$, quindi $\frac{1}{8} 1 \le 2x \le \frac{1}{2} 1 \Leftrightarrow -\frac{7}{16} \le x \le -\frac{1}{4}$, pertanto $X = \left[-\frac{7}{16}, -\frac{1}{4}\right]$. Quindi una funzione continua

per ogni punto di accumulazione interno al suo insieme di definizione il $\lim_{x\to x_0} f(x) = f(x_0)$, ed essendo definita in un intervallo chiuso e limitato non ha senso calcolare ulteriori limiti.

- m) Essendo $f: X \to f(x) = \sqrt{\frac{x^4 16}{3 + 2x x^2}} \in R$ una funzione radice quadrata, deve essere $\frac{x^4 16}{3 + 2x x^2} \ge 0$, pertanto il numeratore $x^4 16 \ge 0 \Leftrightarrow x^{2^2} 4^2 \ge 0 \Leftrightarrow (x^2 4)(x^2 + 4) \ge 0 \Leftrightarrow (x 2)(x + 2)(x^2 + 4) \ge 0 \Leftrightarrow x \le -2 \cup x \ge 2$, quindi $x \in]-\infty, -2] \cup [2, +\infty[$; mentre il denominatore risulta $3 + 2x x^2 > 0 \Leftrightarrow x^2 2x 3 < 0$, osservando che $\Delta = 16$, si ha $x_{1,2} = \frac{2 \pm 4}{2} = \begin{cases} 3 \\ -1 \end{cases}$, pertanto il denominatore è positivo $x \in]-1,3[$, per cui $\frac{x^4 16}{3 + 2x x^2} \ge 0 \Leftrightarrow x \in (]-\infty, -2] \cup [2, +\infty[) \cap]-1,3[=[-2, -1] \cup [2,3[$, pertanto $X = [-2, -1] \cup [2,3[$. Quindi i limiti significativi risultano: $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \sqrt{\frac{x^4 16}{3 + 2x x^2}} = +\infty$ e $\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} \sqrt{\frac{x^4 16}{3 + 2x x^2}} = +\infty$.
- n) Essendo $f: X \to f(x) = \log_{1/2}(2senx-1) \in R$ una funzione logaritmica, deve essere $2senx-1>0 \Leftrightarrow senx>\frac{1}{2} \Leftrightarrow senx>\frac{1}{2} = sen\left(arcsen\frac{1}{2}\right) \Leftrightarrow x>\frac{\pi}{6}$, ricordando che la funzione seno è periodica, e che risulta $\frac{\pi}{2}$ -simmetrica, pertanto $sen\left(\frac{\pi}{2}-x\right)=sen\left(\frac{\pi}{2}+x\right)$ e ricordando che $sen\frac{\pi}{6}=\frac{1}{2}$ per cui $\frac{\pi}{2}-x=\frac{\pi}{6}\Leftrightarrow x=\frac{\pi}{3}$ quindi $\frac{\pi}{2}+\frac{\pi}{3}=\frac{5}{6}\pi$ conseguentemente $sen\frac{\pi}{6}=sen\frac{5}{6}\pi=\frac{1}{2}$ e tenendo conto che la funzione seno è strettamente crescente in $\left|\frac{\pi}{6},\frac{\pi}{2}\right|$ per cui $senx>\frac{1}{2}\Leftrightarrow x>\frac{\pi}{6}$, mentre la funzione seno è strettamente decrescente in $\left|\frac{\pi}{2},\frac{5}{6}\pi\right|$ per cui $senx>\frac{1}{2}\Leftrightarrow x<\frac{5}{6}\pi$, quindi $x\in\left|\frac{\pi}{6},\frac{5}{6}\pi\right|$, pertanto $x=\left|\frac{\pi}{6},\frac{5}{6}\pi\right|$. Quindi i limiti significativi risultano: $\lim_{x\to\frac{\pi}{6}} f(x)=\lim_{x\to\frac{\pi}{6}}\log_{1/2}(2senx-1)=+\infty$ e

$$\lim_{x \to \frac{5}{6}\pi^{-}} f(x) = \lim_{x \to \frac{5}{6}\pi^{-}} \log_{1/2} (2senx - 1) = +\infty.$$

III. Per i seguenti limiti, si ha:

- a) Trattandosi del $\lim_{x\to 0} arcsen \frac{x^4-1}{x^2+1}$, si osserva che $-1 \le \frac{x^4-1}{x^2+1} \le 1 \Leftrightarrow -1 \le x^2-1 \le 1 \Leftrightarrow 0 \le x^2 \le 2 \Leftrightarrow -\sqrt{2} \le x \le \sqrt{2}$, pertanto la funzione è regolare nel punto zero, e servendosi del teorema sul limite di una funzione composta, risulta: $\lim_{x\to 0} arcsen \frac{x^4-1}{x^2+1} = -\frac{\pi}{2}$.
- b) Trattandosi del $\lim_{x\to -\infty} arc \cot g \left(\log_{\frac{2}{3}} e^{x-1}\right)$, si osserva che la funzione arcocotangente è definita in R, e per la funzione logaritmica deve essere $e^{x-1}>0 \Leftrightarrow \forall x\in R$, pertanto il dominio è *illimitato*, e servendosi del teorema sul limite di una funzione composta, risulta: $\lim_{x\to -\infty} arc \cot g \left(\log_{\frac{2}{3}} e^{x-1}\right) = 0.$
- c) Trattandosi del $\lim_{x \to -\infty} \sqrt{3x^2 3x + 1} 2x$, si osserva che la funzione $3x^2 3x + 1 \ge 0 \Leftrightarrow \forall x \in R$ in quanto $\Delta = 9 12 < 0$, pertanto il dominio è *illimitato*, e risulta: $\lim_{x \to -\infty} \sqrt{3x^2 3x + 1} 2x = +\infty$.
- d) Trattandosi del $\lim_{x \to +\infty} \sqrt{3x^2 3x + 1} 2x$, si osserva che la funzione $3x^2 3x + 1 \ge 0 \Leftrightarrow \forall x \in R$ in quanto $\Delta = 9 12 < 0$, pertanto il dominio *è illimitato*, e risulta: $\lim_{x \to +\infty} \sqrt{3x^2 3x + 1} 2x = +\infty \infty$, forma indeterminata, pertanto se osserviamo

$$\frac{\left(\sqrt{3x^2 - 3x + 1} - 2x\right)\left(\sqrt{3x^2 - 3x + 1} + 2x\right)}{\left(\sqrt{3x^2 - 3x + 1} + 2x\right)} = \frac{-x^2 - 3x + 1}{\left(\sqrt{3x^2 - 3x + 1} + 2x\right)} = \frac{x^2\left(-1 - \frac{3}{x} + \frac{1}{x^2}\right)}{\left|x\right|\sqrt{3 - \frac{3}{x} + \frac{1}{x^2}} + 2x} \quad \text{quindi}$$

$$\lim_{x \to +\infty} \frac{x^2 \left(-1 - \frac{3}{x} + \frac{1}{x^2}\right)}{x \left(\sqrt{3 - \frac{3}{x} + \frac{1}{x^2}} + 2\right)} = -\frac{1}{\sqrt{3} + 2} \lim_{x \to +\infty} x = -\infty.$$

e) Trattandosi del $\lim_{x \to +\infty} \sqrt{x^2 + 2x + 3} - x$, si osserva che la funzione $x^2 + 2x + 3 \ge 0 \Leftrightarrow \forall x \in R$ in quanto $\Delta = 4 - 12 < 0$, pertanto il dominio \hat{e} illimitato, e risulta: $\lim_{x \to +\infty} \sqrt{x^2 + 2x + 3} - x = +\infty - \infty$, forma indeterminata, pertanto se osserviamo

$$\frac{\left(\sqrt{x^2 + 2x + 3} - x\right)\left(\sqrt{x^2 + 2x + 3} + x\right)}{\left(\sqrt{x^2 + 2x + 3} + x\right)} = \frac{2x + 3}{\left(\sqrt{x^2 + 2x + 3} + x\right)} = \frac{x\left(2 + \frac{3}{x^2}\right)}{\left|x\right|\sqrt{1 + \frac{2}{x} + \frac{3}{x^2} + x}}$$
 quindi

$$\lim_{x \to +\infty} \frac{x\left(2 + \frac{3}{x^2}\right)}{x\left(\sqrt{1 + \frac{2}{x} + \frac{3}{x^2}} + 1\right)} = \frac{2}{\sqrt{1 + 1}} = 1.$$

- f) Trattandosi del $\lim_{x \to -\infty} \sqrt{x^2 + 2x + 3} x$, si osserva che la funzione $x^2 + 2x + 3 \ge 0 \Leftrightarrow \forall x \in R$ in quanto $\Delta = 4 12 < 0$, pertanto il dominio è illimitato, e risulta: $\lim_{x \to -\infty} \sqrt{x^2 + 2x + 3} x = +\infty$.
- g) Trattandosi del $\lim_{x \to -\infty} \frac{2\sqrt{x^2} x}{2x^2 \sqrt[3]{x} + 1}$, si osserva che il numeratore della funzione $2\sqrt{x^2} x$ è definito $\forall x \in R$ in quanto $x^2 \ge 0 \Leftrightarrow \forall x \in R$, così come pure il denominatore, pertanto il

dominio
$$\hat{e}$$
 illimitato, e risulta:
$$\lim_{x \to -\infty} \frac{2\sqrt{x^2} - x}{2x^2 - \sqrt[3]{x} + 1} = \lim_{x \to -\infty} \frac{x\left(2\frac{x^{\frac{1}{2}}}{x} - 1\right)}{x^2\left(2 - \frac{x^{\frac{1}{3}}}{x^2} + \frac{1}{x^2}\right)}, \text{ ovvero}$$

$$\lim_{x \to -\infty} \frac{\left(\frac{2}{x^{\frac{1}{2}}} - 1\right)}{x \left(2 - \frac{1}{x^{\frac{5}{3}}} + \frac{1}{x^{2}}\right)} = -\frac{1}{2} \lim_{x \to -\infty} \frac{1}{x} = 0.$$

- h) Trattandosi del $\lim_{x \to -\infty} \sqrt{3x^3 3x + 1} 2x$, si osserva che la funzione $3x^3 3x + 1$ è definita in R ed ha limite $\lim_{x \to -\infty} \left(3x^3 3x + 1\right) = -\infty$ pertanto il dominio della funzione radice dovrà risultare *limitato inferiormente*, e quindi non è possibile effettuare il $\lim_{y \to -\infty} \sqrt{y}$, pertanto $\mathbb{E}\lim_{x \to -\infty} \sqrt{3x^3 3x + 1} 2x$.
- i) Trattandosi del $\lim_{x \to +\infty} \sqrt{3x^3 3x + 1} 2x$, il dominio è *illimitato superiormente*, e risulta: $\lim_{x \to +\infty} \sqrt{3x^3 3x + 1} 2x = +\infty \infty$, forma indeterminata, pertanto se osserviamo

$$\frac{\left(\sqrt{3x^3 - 3x + 1} - 2x\right)\left(\sqrt{3x^3 - 3x + 1} + 2x\right)}{\left(\sqrt{3x^3 - 3x + 1} + 2x\right)} = \frac{3x^3 - 4x^2 - 3x + 1}{\sqrt{3x^3 - 3x + 1} + 2x} = \frac{x^3\left(3 - \frac{4}{x} - \frac{3}{x^2} + \frac{1}{x^3}\right)}{\left|x^{\frac{3}{2}}\right|\sqrt{3 - \frac{3}{x^2} + \frac{1}{x^3}} + 2x}$$

$$quindi \lim_{x \to +\infty} \frac{x^3\left(3 - \frac{4}{x} - \frac{3}{x^2} + \frac{1}{x^3}\right)}{\frac{3}{x^2}\sqrt{3 - \frac{3}{x^2} + \frac{1}{x^2} + 2x}} = \frac{3}{\left(\sqrt{3}\right)} \lim_{x \to +\infty} x^{\frac{3}{2}} = +\infty.$$

Per i seguenti limiti notevoli, si ha:

a) Essendo il $\lim_{x \to +\infty} arctg\left(3^{\frac{1}{x}} - 1\right) \cdot x$, della forma $\frac{arctg(f(x))}{f(x)}$ con $\lim_{x \to +\infty} \left(3^{\frac{1}{x}} - 1\right) = 0$, pertanto

osservando che $\frac{arctg\left(3^{\frac{1}{x}}-1\right)}{\left(3^{\frac{1}{x}}-1\right)} \cdot \frac{\left(3^{\frac{1}{x}}-1\right)}{\frac{1}{x}} \cdot \frac{1}{x}x; \quad \text{allora}$

$$\lim_{x \to +\infty} arctg\left(3^{\frac{1}{x}} - 1\right) \cdot x = \lim_{x \to +\infty} \frac{arctg\left(3^{\frac{1}{x}} - 1\right)}{\left(3^{\frac{1}{x}} - 1\right)} \cdot \frac{\left(3^{\frac{1}{x}} - 1\right)}{\frac{1}{x}} \cdot \frac{1}{x} x = \log 3.$$

- b) Essendo il $\lim_{x \to +\infty} arctg \log_{\frac{1}{2}} \frac{\sqrt{x}+1}{x+2}$, di una funzione composta, osservando che $\lim_{x \to +\infty} \frac{\sqrt{x}+1}{x+2} = 0$; allora $\lim_{x \to +\infty} arctg \log_{\frac{1}{2}} \frac{\sqrt{x}+1}{x+2} = \frac{\pi}{2}$.
- c) Essendo il $\lim_{x \to +\infty} arc \cot g \log_3 \frac{x}{x^2 1}$, di una funzione composta, osservando che $\lim_{x \to +\infty} \frac{x}{x^2 1} = 0$; allora $\lim_{x \to +\infty} arc \cot g \log_3 \frac{x}{x^2 1} = \pi$.

d) Essendo il $\lim_{n} arctg\left(3^{\frac{1}{n}}-1\right) \cdot n$, della forma $\frac{arctg(f(n))}{f(n)}$ con $\lim_{n} \left(3^{\frac{1}{n}}-1\right) = 0$, pertanto

osservando che $\frac{arctg\left(3^{\frac{1}{n}}-1\right)}{\left(3^{\frac{1}{n}}-1\right)} \cdot \frac{\left(3^{\frac{1}{n}}-1\right)}{\frac{1}{n}} \cdot \frac{1}{n}n; \quad \text{allora}$

$$\lim_{n} arctg\left(3^{\frac{1}{n}}-1\right) \cdot n = \lim_{n} \frac{arctg\left(3^{\frac{1}{n}}-1\right)}{\left(3^{\frac{1}{n}}-1\right)} \cdot \frac{\left(3^{\frac{1}{n}}-1\right)}{\frac{1}{n}} \cdot \frac{1}{n}n = \log 3.$$

- e) Essendo il $\lim_{n} arctg \log_{\frac{1}{2}} \frac{\sqrt{n+1}}{n+2}$, di una funzione composta, osservando che $\lim_{n} \frac{\sqrt{n+1}}{n+2} = 0$; allora $\lim_{n} arctg \log_{\frac{1}{2}} \frac{\sqrt{n+1}}{n+2} = \frac{\pi}{2}$.
- f) Essendo il $\lim_{n} arc \cot g \log_3 \frac{n}{n^2 1}$, di una funzione composta, osservando che $\lim_{n} \frac{n}{n^2 1} = 0$; allora $\lim_{n} arc \cot g \log_3 \frac{n}{n^2 1} = \pi$.
- g) Essendo il $\lim_{x \to 0} \frac{\log_2(1 + arctg(2^x 1))}{arcsentg 2x}, \text{ della forma } \frac{\log(1 + f(x))}{f(x)} \text{ ed osservando che}$ $\frac{\log_2(1 + arctg(2^x 1))}{arcsentg 2x} = \frac{\frac{\log_2(1 + arctg(2^x 1))}{arctg(2^x 1)} \frac{arctg(2^x 1)}{2^x} \frac{(2^x 1)}{x}}{\frac{arcsentg 2x}{2^x} \frac{tg 2x}{2^x} 2x};$ allora

$$\lim_{x \to 0} \frac{\log_2\left(1 + arctg\left(2^x - 1\right)\right)}{arcsentg\,2x} = \lim_{x \to 0} \frac{\frac{\log_2\left(1 + arctg\left(2^x - 1\right)\right)}{arctg\left(2^x - 1\right)} \frac{arctg\left(2^x - 1\right)}{2^x - 1} \frac{2^x - 1}{x}}{\frac{arcsentg\,2x}{tg\,2x} \frac{tg\,2x}{2x} 2x} = \frac{1}{2}.$$

h) Essendo il $\lim_{x\to 0} \frac{\log_{1/3}(1+x^3)+1-\left(\frac{1}{2}\right)^{x^3}}{1-\cos 2x^3}$, al numeratore della forma $\frac{\log(1+f(x))}{f(x)}$ e $-\frac{a^{f(x)}-1}{f(x)}$ ed al denominatore $\frac{1-\cos f(x)}{f(x)}$; pertanto

$$\frac{\log_{1/3}(1+x^3)+1-\left(\frac{1}{2}\right)^{x^3}}{1-\cos 2x^3} = \frac{\frac{\log_{1/3}(1+x^3)}{x^3}-\frac{\left(\left(\frac{1}{2}\right)^{x^3}-1\right)}{x^3}}{\frac{1-\cos 2x^3}{\left(2x^3\right)^2}\left(2x^3\right)^2};$$
 allora

$$\lim_{x \to 0} \frac{\log_{1/3} \left(1 + x^{3}\right) + 1 - \left(\frac{1}{2}\right)^{x^{3}}}{1 - \cos 2x^{3}} = \lim_{x \to 0} \frac{\frac{\log_{1/3} \left(1 + x^{3}\right)}{x^{3}} x^{3} - \frac{\left(\left(\frac{1}{2}\right)^{x^{3}} - 1\right)}{x^{3}} x^{3}}{\frac{1 - \cos 2x^{3}}{\left(2x^{3}\right)^{2}} 4x^{6}} = \frac{\log_{1/3} e - \log_{e} 1/2}{4\frac{1}{2}} \lim_{x \to 0} \frac{1}{x^{3}}$$

ed osservando che quest'ultimo limite non esiste in quanto $\lim_{x\to 0^-} \frac{1}{x^3} = -\infty$ ed $\lim_{x\to 0^+} \frac{1}{x^3} = +\infty$

pertanto
$$\exists \lim_{x\to 0} \frac{\log_{1/3}(1+x^3)+1-(\frac{1}{2})^{x^3}}{1-\cos 2x^3}$$
.

i) Essendo il
$$\lim_{x\to 0} \frac{2^{xarctgx}-1+\log_{1/2}(1+x^2)}{(1-\cos(2^{x^3}-1))senx}$$
, al numeratore della forma $\frac{\log(1+f(x))}{f(x)}$ e $\frac{a^{f(x)}-1}{f(x)}$

ed al denominatore

$$\frac{1-\cos f(x)}{f(x)};$$
 pertanto

$$\frac{2^{xarctgx} - 1 + \log_{1/2}(1 + x^2)}{(1 - \cos(2^{x^3} - 1))senx} = \frac{\frac{2^{xarctgx} - 1}{xarctgx} x \frac{arctgx}{x} x + \frac{\log_{1/2}(1 + x^2)}{x^2} x^2}{\left(\frac{1 - \cos(2^{x^3} - 1)(2^{x^3} - 1)^2}{(2^{x^3} - 1)^2} x^3\right) \frac{senx}{x} x}$$
allora

$$\lim_{x \to 0} \frac{2^{xarctgx} - 1 + \log_{1/2}(1 + x^2)}{\left(1 - \cos\left(2^{x^3} - 1\right)\right) senx} = \lim_{x \to 0} \frac{\frac{2^{xarctgx} - 1}{xarctgx} x \frac{arctgx}{x} x + \frac{\log_{1/2}(1 + x^2)}{x^2} x^2}{\left(\frac{1 - \cos\left(2^{x^3} - 1\right)\left(2^{x^3} - 1\right)}{x^3} x^3 \frac{\left(2^{x^3} - 1\right)}{x^3} x^3\right) \frac{senx}{x}}, \text{ ovvero}$$

 $\frac{\log 2 + \log_{\frac{1}{2}} e}{\frac{1}{2} \lim_{x \to 0} \frac{x^2}{x^7}}, \text{ ed osservando che quest'ultimo limite non esiste in quanto}$

$$\lim_{x \to 0^{-}} \frac{1}{x^{5}} = -\infty \text{ ed } \lim_{x \to 0^{+}} \frac{1}{x^{5}} = +\infty \text{ pertanto } \exists \lim_{x \to 0} \frac{2^{xarctgx} - 1 + \log_{1/2} (1 + x^{2})}{(1 - \cos(2^{x^{3}} - 1))senx}.$$

j) Essendo il
$$\lim_{x\to 0} \frac{\sqrt{1-\cos 3x} + arctg \, 2x - tg\left(2^{x^2} - 1\right)}{sen \log(1-2xtgx)}$$
, al numeratore della forma $\frac{1-\cos f(x)}{f(x)}$ e

$$\frac{a^{f(x)}-1}{f(x)}$$
 ed al denominatore $\frac{\log(1+f(x))}{f(x)};$ pertanto

$$\frac{\sqrt{1-\cos 3x} + arctg \, 2x - tg\left(2^{x^2} - 1\right)}{sen \log(1 - 2xtgx)} = \frac{\sqrt{\frac{1-\cos 3x}{9x^2}} \, 3|x| + \frac{arctg \, 2x}{2x} \, 2x - \frac{tg\left(2^{x^2} - 1\right)\left(2^{x^2} - 1\right)}{\left(2^{x^2} - 1\right)} \frac{x^2}{x^2}}{\frac{sen \log(1 - 2xtgx)}{\log(1 - 2xtgx)} \frac{\log(1 - 2xtgx)}{-2xtgx} (-2)x \frac{tgx}{x} x}$$

allora

$$\lim_{x \to 0^{+}} \frac{1}{x} \frac{3\frac{\sqrt{2}}{2} + 2 - x \log 2}{-2 \log e} = \lim_{x \to 0^{+}} \frac{1}{x} \frac{3\frac{\sqrt{2}}{2} + 2}{-2} = -\infty,$$

$$\lim_{x \to 0^{-}} \frac{1}{x} \frac{-3\frac{\sqrt{2}}{2} + 2 - x\log 2}{-2\log e} = \lim_{x \to 0^{-}} \frac{1}{x} \frac{-3\frac{\sqrt{2}}{2} + 2}{-2} = -\infty$$
pertanto

$$\lim_{x\to 0}\frac{\sqrt{1-\cos 3x}+arctg\,2x-tg\left(2^{x^2}-1\right)}{sen\log\left(1-2xtgx\right)}=-\infty.$$

k) Essendo il
$$\lim_{x \to \sqrt{2}} \frac{2x}{x^4 - 4}$$
, si osserva che al denominatore $\lim_{x \to \sqrt{2}} x^4 - 4 = 0$ ed $x^4 - 4 > 0 \Leftrightarrow \forall x \in \left] -\infty, -\sqrt{2} \left[\bigcup \sqrt{2}, +\infty \right]$ pertanto $\lim_{x \to \sqrt{2}^-} \frac{2x}{x^4 - 4} = 2\sqrt{2} \left(-\infty \right)$ mentre $\lim_{x \to \sqrt{2}^+} \frac{2x}{x^4 - 4} = 2\sqrt{2} \left(+\infty \right)$ pertanto $\text{Im}_{x \to \sqrt{2}^-} \frac{2x}{x^4 - 4} = 2\sqrt{2} \left(-\infty \right)$

l) Essendo il
$$\lim_{x \to +\infty} \frac{2 + \sqrt[3]{2x} + 2x^4}{3x - 2x^2 + \sqrt{x}}$$
, osservando che la funzione razionale

$$\frac{2 + \sqrt[3]{2x} + 2x^4}{3x - 2x^2 + \sqrt{x}} = \frac{x^4 \left(\frac{2}{x^4} + \frac{\sqrt[3]{2x}}{x^4} + 2\right)}{x^2 \left(\frac{3}{x} - 2 + \frac{\sqrt{x}}{x^2}\right)} \text{ pertanto } \lim_{x \to +\infty} \frac{2 + \sqrt[3]{2x} + 2x^4}{3x - 2x^2 + \sqrt{x}} = \frac{2}{-2} \lim_{x \to +\infty} x^2 - \infty \text{ allora}$$

$$\lim_{x \to 0^+} \frac{1}{x} \frac{3\frac{\sqrt{2}}{2} + 2 - x \log 2}{-2 \log e} = \lim_{x \to 0^+} \frac{1}{x} \frac{3\frac{\sqrt{2}}{2} + 2}{-2} = -\infty.$$