Si dimostra che $\sqrt{2} \notin Q$.

Se volessimo misurare la diagonale di un quadrato di lato pari a 1, servendoci del Teorema di Pitagora, si ha: $d^2=1^2+1^2 \Leftrightarrow d^2=2 \Leftrightarrow d=\sqrt{2}$. Ipotizziamo per assurdo che $\sqrt{2} \in Q$ e poniamo $d=\frac{m}{n} \in Q$ con $\frac{m}{n}$ ridoto ai minimi termini, quindi non più divisibile.

Quindi avremo $\sqrt{2} = d = \frac{m}{n} \Leftrightarrow 2 = d^2 = \left(\frac{m}{n}\right)^2 \Leftrightarrow \frac{m^2}{n^2} = 2 \Leftrightarrow m^2 = 2n^2$, per cui da quest'ultima equazione risulta che m^2 è pari ed ovviamente anche m.

Pertanto possiamo porre m=2k e conseguentemente l'equazione $m^2=2n^2$ la possiamo scrivere $4k^2=2n^2 \Leftrightarrow 2k^2=n^2$ quindi anche n^2 è pari ed ovviamente anche n.

Quindi se poniamo n=2h ne consegue che $\frac{m}{n}=\frac{2k}{2h}$ quindi ancora divisibile, ed ovviamente tale ragionamento può essere ripetuto ponendo ancora $d=\frac{k}{h}\in Q$ infinite volte, pertanto resta dimostrato che $\sqrt{2} \notin Q$.