Main course information		
Academic subject	Human Genetics	
Degree course	master's degree in Biomedical Sciences	
Classe di laurea	LM6	
ECTS credits (CFU)	6	
Compulsory attendance	yes	
Teaching language	Italian	
Accademic Year	2019/2020	

Docente responsabile		
Name & SURNAME	Nicoletta Archidiacono	
email	nicoletta.archidiacono@uniba.it	
Tel.	0805442482	
Tutorial time/day	every day from 2pm to 4pm	

Course details	Study area	SSD code	Type of class
Course decails	genetics	BIO/18	Lessons and laboratory

Teaching schedule	Year	Semester
reaching schedule	first	first

Modalità erogazione	CFU/ECTS	Lessons (hours)	CFU/ECTS lab	Lab hours	CFU/ECTS tutorial/workshop	Tutorial/workshop hours	CFU/ECTS field trip	Field trip Hours
	5,5	44	0,5	6				

Time	Total hours	Teaching hours	Self-study hours
management	150	50	100

Academic	First lesson	Final lesson
Calendar	30/09/2019	17/01/2020

Syllabus			
Course entry requirements	knowledge of genetics, biochemistry, phisiology and molecular biology		
Expected learning outcomes (ac	Expected learning outcomes (according to Dublin Descriptors) (it is recommended that they are congruent with the		
learning outcomes contained in	A4a, A4b, A4c tables of the SUA-CdS)		
Knowledge and understanding	Understanding the structure and functioning of the human genome, the origin of genetic pathology at the molecular level to understand the patterns of hereditary transmission and the normal and pathological phenotypic manifestation.		
Applying knowledge and understanding	Application of a wide range of methodologies for genetic research		
	Acquisition of autonomy in areas related to the evaluation and interpretation of		
Making informed judgements	experimental data and in setting the strategies for applying molecular techniques to the		
and choices	study of human genetics		
Communicating knowledge and understanding	Ability to explain key concepts and methodologies in human genetics using correct terminology.		
Capacities to continue learning	Ability to use databases and read relevant licterature critically and independently.		

Sylabus	
	Review of key concepts in human genetics.
Course content	Pedigree
	Inheritance of complex characters

	Hardy Wienberg law Polymorphisms Organization and structure of the genome Mutations Haemoglobinopathies X linked inheritance and chromosome X inactivation Imprinting Cancer genetics Mitochondrial disorders and origin of mitochondria
	Genomic disorders Genome evolution Laboratory: pathological and normal human karyotype
Course books/Bibliography	Tom Strachan-Andrew Read: Human Molecular Genetics
Notes	
Teaching methods	Lectures with the use of PowerPoint and computer use to set up normal and pathological human karyotypes
Assessment methods (indicate at least the type written, oral, other)	Oral interview
Evaluation criteria (Explain for each expected learning outcome what a student has to know, or is able to do, and how many levels of achievement there are	Students will be assessed on the acquisition of notions as well as the ability to reason and make connections with other disciplines such as physiology, biochemistry and molecular biology. The details of the other disciplines are not required, but students should show understanding of what aspects of these disciplines have a bearing on human genetics. The knowledge of only the notions is not evaluated beyond an average evaluation (24 - 26/30)
Further information	