

COURSE OF STUDY Physisc L 30 ACADEMIC YEAR 2023-2024 ACADEMIC SUBJECT Calculus I

General information	
Year of the course	First year
Academic calendar (starting and ending date)	22/09/2023- 22/12/ 2023
Credits (CFU/ETCS):	8
SSD	Calculus
Language	Italian
Mode of attendance	no

Professor/ Lecturer	
Name and Surname	Sandra Lucente
E-mail	sandra.lucente@uniba.it
Telephone	0805442352
Department and address	Aula A, Dipartimento Interateneo di Fisica
Virtual room	Microsoft Teams (lessons in presence with online notes))
Office Hours (and modalities:	Single, on demand on Microsoft Teams or more student in classroom after the
e.g., by appointment, on line,	lessons
etc.)	

Work schedule			
Hours			
Total	Lectures	Hands-on (laboratory, workshops, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
200	40	45	115
CFU/ETCS			
8	5	3	

Learning Objectives	
Course prerequisites	It is the first exam on a mathematical topic of the first year, no preliminary
	knowledge is required other than that required for access to the degree course,
	however concerning the pre-course called Introduction to Mathematical Analysis
	whose notes are in the course channel. These prerequisites include: Analytical
	Geometry, Logical and set theory language, Operations between polynomials

Teaching strategie	Lectures with slides that are carried out in the classroom so that explanation and understanding align. The slides created in the classroom are distributed at the end of the lesson on the Microsoft Teams platform. Classroom exercises with Prof. Alessandro Palmieri with handouts and proposed homeworks.
Expected learning outcomes in	
terms of	
Knowledge and understanding	At the end of the course the student will know
on:	 Natural numbers
	 The real line
	 Concept of function, limits, continuity, derivatives,
	 Successions, series
	 Derivation and integration tools

DIPARTIMENTO INTERATENEO DI FISICA

	• Proofs of the most important theorems of these topics	
Applying knowledge and understanding on:	 Review of basic knowledge. Make the discrete mathematical world interact with the continuous one Independently prove other theorems of the real line Compare course topics with some of the topics in first-year physics courses 	
Soft skills	 Making informed judgments and choices Comparison between various demonstrations. Treatment of incoming data and critical analysis of the results in solving numerical problems Communicating knowledge and understanding knowing how to define, state and prove mathematical results knowing how to explain to others your own resolution of an exercise Capacities to continue learning Acquire a study method that allows you to consult mathematics texts and keep the results in mind Knowing how to choose exercises from the texts 	
Syllabus		
Content knowledge	 texts and keep the results in mind Knowing how to choose exercises from the texts 	

	1
	5. Continuous functions:
	Continuous functions and their elementary properties. The permanence of the
	sign theorem. When a function is not continuous at one point? Jump points,
	oscillations, continuity extension, vertical asymptotes. Continuous functions on
	intervals. The elementary functions are continuous in their domain. Zeros
	theorem. Weierstrass theorem. Intermediate value theorems. Existence of
	inverse of elementary functions. Link between monotony, continuity and
	invertibility. Continuity of the inverse function on intervals. Uniform continuity.
	Lipschtzian functions. Cantor's theorem.
	6. Differential calculus:
	Derivative of a function of a real variable. Continuity of differentiable functions.
	Theorem on the derivative of operations between functions (sum, product,
	quotient, composition) Derivative of the inverse function. Derivability of
	elementary functions. Angular points, cusp points. Local maximum and minimum
	points, critical points. Fermat's theorem. Rolle, Cauchy, Lagrange theorems.
	Monotony criteria. Functions with null derivative. Function with bounded
	derivative. De l'Hospital's theorem. Convexity for differentiable functions. Convex
	functions on an interval. Link between second derivative and convexity.
	Regularity of convex functions. Inflection points. Sufficient conditions for the
	existence of relative maximums, minimums. Taylor's formula with the remainder
	of Peano. Taylor's formula with Lagrange's remainder. Taylor expansions for
	elementary functions. Applications of Taylor's formula to classify maxima,
	minima and inflections. Study of the graph of a function. Examples of geometric
	nature (tangent line) and kinematics (speed, acceleration).
	7. Integral calculation:
	Partition of an interval. Upper and lower integral sums. Integrability according to
	Riemann. Characterization of integrable functions. Elementary properties of the
	definite integral. Integrability theorem of continuous and monotone functions.
	Mean theorem. Integral functions. Primitive and indefinite integral. Fundamental
	theorem of integral calculus. Structure theorem of the set of primitives of a
	continuous function. Torricelli's theorem. Methods for calculating indefinite
	integrals for rational functions. Integration by parts. Integration by substitution.
	8. Numerical series:
	Definition of series and sum of series. The telescopic series (Mengoli series). The
	geometric series. Application of series to the decimal representation of real
	numbers. The harmonic series. Necessary condition for the convergence of a
	series. The character of a series does not change by altering a finite number of
	terms. Series with non-negative terms, dichotomy theorem. Simple comparison
	criteria. Criterion of the asymptotic comparison. The generalized harmonic series.
	Criterion of infinitesimals. Root criterion, relationship criterion. Absolutely
	convergent series are convergent. Alternating series. Leibnitz criterion for
	alternating series. The harmonic series with alternating sign. Interlocking sum.
	9. Generalized integrals
	-
	Generalized integrals: integration of a function on a ray or of an unlimited
	function on a limited interval. The integral criterion for numerical series.
	Application to the generalized harmonic series. The Gamma function of Euler and
Tauta and readings	sinc function.
Texts and readings	Theory: M. Bertsch, A. Dall'Aglio, L. Giacomelli, Epsilon I, MacGraw Hill
	Exercise: P. Marcellini & C. Sbordone -Elementi di Analisi Matematica I–
	Liguori Editore, Napoli.
Notes, additional materials	The program is related only to some sections of the texts indicated. The
	previous texts are only recommended, it is good that each student consults
	other texts of Mathematical Analysis at the Uniba libraries looking for the
L	most appropriate one for their starting level.

	In particolare si segnalano i seguenti: Theory: E. Acerbi, G. Buttazzo – Primo corso di Analisi Matematica – Pitagora M. Bramanti, C.D. Pagani, S. Salsa – Analisi Matematica I - Zanichelli Exercise M. Bramanti -Esercitazioni di Analisi Matematica- Esculapio A. Alvino, C. Carbone, G. Trombetti -Esercitazioni di matematica Vol 1/1 Vol 1/2 - Liguori Editore.
Repository	Teacher's notes: <u>https://www.sandralucente.it/didattica/appunti-lezioni</u>
	Lessons notes on Microsoft Teams

Assessment	
Assessment methods	Two ongoing tests passed or a final written test. The written tests last at least two hours. Then oral exam lasting at least thirty minutes. During the written test only the non-graphical scientific calculator is allowed. The student who any device connected to the internet is removed from the written test. The student must book on esse3 both the written test and the oral exam. The results are provided on the same platform. The oral exam can be held for the entire session in which the written test is passed or for the entire academic year if the ongoing tests are passed.
Assessment criteria	Knowledge and understanding
	 Knowing how to consult your lesson notes and compare them with texts, discuss doubts and ideas deriving from them with the teacher and possibly with classmates. <i>Applying knowledge and understanding</i> Knowing how to plot graphs of elementary functions, be familiar with equations and inequalities
	Autonomy of judgment
	 Knowing how to evaluate the coherence of a logical reasoning. Knowing how to choose the appropriate mathematical tools to solve a given problem <i>Communicating knowledge and understanding</i>
	During the written test it is verified that the student knows the techniques for the study of function, the resolution of integrals, the discussion on the existence of limits and on the convergence of series.
	During the oral exam it is verified that the student knows theorems, definitions, examples (therefore exercises) and counterexamples and knows how to correlate them.
	Communication skills
	Ability to write an exercise paper that topics the steps carried out; ability to communicate their knowledge in correct mathematical language during the oral exam
	Capacities to continue learning
	Capacity in consulting textbooks, in finding logical links and solving
	exercises.
Final exam and grading criteria	The final grade is assigned in thirtieths. The exam is passed when the mark is greater than or equal to 18.
	The written test is passed if the student is familiar with each of the four exercises proposed. The oral exam is passed if the student proves a theorem at the request of the teacher, knows how to expose the definitions and provide reasons for the hypotheses of the theorems. If the student has completely

	omitted the study of a part of the program, regardless of the learning of the remaining part, the exam is not passed. The final grade depends on the mistakes made in the written test and on the ability to expose the oral.
	Praise is given to students who, in addition to the deep knowledge of the program, are able to support a critical discussion on examples and counterexamples to the various theorems.
Further information	