

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

General information	
Academic subject	Elementi di Metodi Matematici della Fisica
Degree course	Fisica Triennale
Academic Year	First
European Credit Transfer and Accumulation System (ECTS) 6	
Language	Italian
Academic calendar (starting and ending date) First week of March – Last week of May	
Attendance	No compulsory attendance

Professor/ Lecturer	
Name and Surname	Sebastiano Stramaglia
E-mail	Sebastiano.stramaglia@uniba.it
Telephone	080 5443206
Department and address	Department of Physics, Via Orabona 4, Bari
Virtual headquarters (Microsoft	j34o0tm
Teams code)	
Tutoring (time and day)	Thursday 11 am

Syllabus	
Learning Objectives	Acquire knowledge of the theory of functions of complex variable, of the theory of distributions and of the Fourier transform; acquire the ability to solve problems
	related to these mathematical theories.
Course prerequisites	Knowledge from the courses of Analysis I, II and III
Contents	Fuctions of a complex variable. Holomorphic functions. Cauchy Theorem , Residue
	Theorem, Cauchy Integral Formula. Multi-valued functions. Laurent expansion.
	Applications of residue theorem to evaluate definite integrals.
	Lebesgue integral. Distributions. Fourier transform and its property. Convolution.
	Applications: Helmholtz equation, diffusion equation, Schrödinger equation.
	Laplace transform.
Books and bibliography	Dispense (http://beta.fisica.uniba.it/cdlf/FisicaTriennale.aspx). Villani M.: El. di
	Metodi Matematici della Fisica I; Villani M.: El. di Metodi Matematici della Fisica II
Additional materials	

Work schedule			
Total	Lectures	Hands on (Laboratory, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
Hours			
150	40	15	95
ECTS			
6			

Teaching strategy	
	Lectures on the board

Expected learning outcomes	
Knowledge and understanding on:	The course has a dual objective: on the one hand, the training one, in connection with the abstraction and generalization procedures typical of mathematics, also relevant for physics, on the other hand, to provide the mathematical tools necessary to deal quantitatively with the problems posed by the Classical and Modern Physics. The expected learning outcomes concern in particular a deeper understanding of the scientific method and the ability to apply appropriate mathematical tools to the analysis of the typical equations of Physics.

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

Applying knowledge and understanding on:	Ability to solve problems using the theoretical knowledge acquired and identifying suitable reasoning
	Making judgments
Soft skills	Ability to evaluate the consistency of logical reasoning used in a proof
	Ability to identify the right mathematical tools and the right techniques
	to tackle complex mathematical problems
	Communication skills
	Mastery of the mathematical language and formalism necessary to
	expose the acquired knowledge and to describe, analyze and solve problems
	• Ability to learn independently
	Ability to consult and understand texts related to the topics covered

Assessment and feedback	
Methods of assessment	The verification takes place through an oral exam. The oral exam begins with a
	proposed exercise, followed by the discussion of theoretical topics, examples,
	counterexamples.
	Knowledge and understanding
	The student must be able to present definitions and theoretical results including
	some demonstrations.
	Applied knowledge and understanding
	The student must be able to solve exercises and independently reconstruct simple
Evaluation criteria	theoretical topics.
	Judgment autonomy
	The student must identify the most suitable theoretical and practical tools for
	solving the proposed questions.
	Communication skills
	The student must present the theoretical results in a clear and complete way,
	using mathematical language and formalism with precision.
	Ability to learn
	The student must possess the specific vocabulary of the teaching and be able to
	identify the context of each concept.
Criteria for assessment and attribution	Oral exam consisting in a discussion about the content of the course and opne
of the final mark	exercise (100%)
Additional information	