

COURSE OF STUDY THREE-YEAR BACHELOR PROGRAMME IN PHYSICS

ACADEMIC YEAR 2023-2024

ACADEMIC SUBJECT MATHEMATICAL ANALYSIS II

General information	
Year of the course	First
Academic calendar (starting and ending date)	Second semester (March 4, 2024 – June 7, 2024)
Credits (CFU/ETCS):	8
SSD	Mathematical Analysis – MAT/05
Language	Italian
Mode of attendance	Not mandatory

Professor/ Lecturer	
Name and Surname	Monica Lazzo
E-mail	monica.lazzo@uniba.it
Telephone	+39 080 544 2503
Department and address	Department of Mathematics (fourth floor, room 6)
Virtual room	Microsoft Teams, code cr3atsa
Office Hours	By appointment, to be scheduled by e-mail

Work schedu	ule			
Hours				
Total	Lectures	Hands-on learning (recitations)	Self-study hours	
200	48	30	122	
CFU/ETCS				
8	6	2		

Learning Objectives	Acquisition of knowledge and basic tools in Mathematical Analysis useful for the description of physical phenomena.
Course prerequisites	Contents of the courses Mathematical Analysis I; elements of Linear Algebra.

Teaching methods	Lectures and recitations are held in a classroom, using slides partly prepared in advance, partly generated in class. All these slides are made available on the course homepage:
	https://www.dm.uniba.it/it/members/lazzo/homepage/analisi-matematica-ii
Expected learning outcomes in	
terms of	
Knowledge and understanding	Knowledge of basic principles of Mathematical Analysis and theorem proving
on:	techniques.
Applying knowledge and	Ability to solve problems by utilizing theoretical knowledge and selecting
understanding on:	adequate strategies.
Soft skills	 Making informed judgments and choices Ability to assess the soundness of the logical reasoning used in a proof
	 Ability to select the appropriate mathematical tools and techniques to deal with complex mathematical problems
	·
	Communicating knowledge and understanding
	 Mastery of the mathematical language and syntax necessary to
	communicate the acquired knowledge and to describe, analyze and solve problems
	Capacities to continue learning
	 Ability to study independently and to consult and make us of relevant

	literature
Syllabus	
Content knowledge	Linear differential equations
	Linear differential equations. Initial value problems. Superposition principle.
	Structure of the general solution. Homogeneous equations. Fundamental
	systems of solutions; Wronski determinant. Variation of constants to to find
	particular solutions of nonhomogeneous equations.
	Linear differential equations with constant coefficients: determination of a
	fundamental system of solutions for a homogeneous equation; method of
	undetermined coefficients to find particular solutions of nonhomogeneous
	equations. Euler equations.
	Functions of several variables
	Elements of topology in euclidean spaces. Convex, star-shaped, polygonally
	connected, path-connected, simply connected sets.
	Real-valued and vector-valued functions of several variables. Continuous
	functions; global properties.
	Directional and partial derivatives. Total derivative. Tangent plane. Jacobian
	matrix. Hessian matrix. Schwarz theorem. Differentiation rules. Chain rule. Mean
	value theorem. Taylor's formula.
	Constrained and unconstrained optimization
	Local extrema, stationary points. Fermat's theorem. Necessary conditions and
	sufficient conditions for local extrema. One-dimensional and two-dimensional
	constraints. Implicit function theorem. Lagrange multipliers theorem.
	Multiple integrals
	Measurable sets in the sense of Peano-Jordan. Riemann integrable functions;
	Riemann integrals.
	Integration methods for double and triple integrals. Volume of solids of
	revolution. Change of variables formula. Polar coordinates; spherical and
	cylindrical coordinates.
	Line integrals and surface integrals
	Parametric curves. Change of parameters. Length of a curve. Line integrals of
	scalar functions and of vector fields. Differential forms. Closed and exact
	differential forms.
	Parametric surfaces. Surface area. Surfaces of revolution. Surface integrals. Flux
	of a vector field across a surface.
	Gauss-Green theorem in the plane. Divergence theorem. Stokes theorem.
	A more detailed description of the course contents will be available before the
-	end of the semester on the course homepage.
Texts and readings	• G.C. Barozzi, G. Dore, E. Obrecht, Elementi di analisi matematica Volume 2,
	Zanichelli
	V. Barutello, M. Conti, D.L. Ferrario, S. Terracini, G. Verzini, Analisi matematica Values 2. Anapage
	Volume 2, Apogeo
	N. Fusco, P. Marcellini, C. Sbordone, Analisi Matematica due, Liguori Editore
	E. Giusti, Analisi Matematica 2, Boringhieri
	C.D. Pagani, S. Salsa, Analisi matematica 2, Zanichelli
	L. Recine, M. Romeo, Esercizi di analisi matematica Vol. II, Maggioli Editore
	W. Rudin, Principles of Mathematical Analysis, McGraw-Hill
Notes, additional materials	
Repository	Slides, lecture notes, problem sheets, etc posted on the course homepage

Assessment	
Assessment methods	Written test and oral exam; passing the written test is a prerequisite for taking the oral exam.
	The written test (no more than three hours) consists of four to six problems. Instead of the written test, students can take two partial written tests, the first

DIPARTIMENTO INTERATENEO DI FISICA

	during the semester break (see "Manifesto degli Studi"), the second between
	the end of classes and the beginning of the exam session. The results of the
	written test are published on the course homepage.
	The oral exam starts with the discussion of the student's work on the written
	test, followed by the discussion of theoretical results, examples,
	counterexamples and short problems.
Assessment criteria	Knowledge and understanding
	 The student must be able to explain definitions and theoretical results,
	including some proofs.
	Applying knowledge and understanding
	 The student must be able to solve problems and to independently
	construct simple arguments of proof.
	Autonomy of judgment
	 The student must be able to select the theoretical and practical tools
	most appropriate for the given problems.
	Communicating knowledge and understanding
	The student must be able to explain theoretical results clearly and
	completely, using precise mathematial language and syntax.
	Capacities to continue learning
	 The student must know the specific terminology of the course material
	and must be able to identify the context of each concept.
Final exam and grading criteria	The final grade is based on 30 points; the minimum passing grade is 18.
a. s.a. and grading official	The final grade is determined by both the written test and the oral exam; for
	details see the course homepage.
Further information	details see the course nomepage.
Turtifer information	