General information	Mathematical Analysis II
Academic subject	Physics (L-30)
Degree course	first
Academic Year	Italian
European Credit Transfer and Accumulation System (ECTS)	8
Language	recommended
Academic calendar (starting and ending date)	March 6 June 9, 2023
Attendance	
Professor/ Lecturer	Monica Lazzo
Name and Surname	monica.lazzo@uniba.it
E-mail	+39 080 544 2503
Telephone	Department of Mathematics (fourth floor, room 6)
Department and address	Microsoft Teams, code cr3atsa
Virtual headquarters (Microsoft Teams code)	By appointment, to be scheduled by e-mail
Tutoring (time and day)	

Syllabus	
Learning Objectives	Acquisition of knowledge and basic tools in Mathematical Analysis useful for the description of physical phenomena
Course prerequisites	Contents of the course Mathematical Analysis I; elements of Linear Algebra
	Linear differential equations Linear differential equations. Initial value problems. Superposition principle. Structure of the general solution. Homogeneous equations. Fundamental systems of solutions; Wronski determinant. Variation of constants to to find particular solutions of nonhomogeneous equations. Linear differential equations with constant coefficients: determination of a fundamental system of solutions for a homogeneous equation; method of undetermined coefficients to find particular solutions of nonhomogeneous equations. Euler equations. Functions of several variables
	Elements of topology in euclidean spaces. Convex, star-shaped, polygonally connected sets. Real-valued and vector-valued functions of several variables. Directional and partial derivatives. Total derivative. Tangent plane. Jacobian matrix. Hessian matrix. Schwarz theorem. Differentiation rules. Chain rule. Mean value theorem. Line integrals and surface integrals Parametric curves. Length of a curve. Change of parameters. Arc length. Line integrals of scalar functions. Mass and baricenter. Differential forms. Line integrals of differential forms. Closed and exact differential forms. Parametric surfaces. Surface area. Surfaces of revolution. Surface integrals. Flux of a vector field across a surface. Gauss-Green theorem in the plane. Stokes theorem. Divergence theorem.
Multiple integrals	
Measurable sets in the sense of Peano-Jordan. Riemann integrable functions;	
Riemann integrals. Integral mean.	
Integration methods for double and triple integrals. Volume of solids of	
revolution. Change of variables formula. Polar coordinates; spherical and	
cylindrical coordinates.	

	- N. Fusco, P. Marcellini, C. Sbordone, Analisi Matematica due, Liguori Editore
	- E. Giusti, Analisi Matematica 2, Boringhieri
	- C.D. Pagani, S. Salsa, Analisi matematica 2, Zanichelli
	• W. Rudin, Principles of Mathematical Analysis, McGraw-Hill
Additional materials	Slides, lecture notes, problem sheets, etc posted on the course homepage

Work schedule			
Total	Lectures	Hands on (Recitations)	Out-of-class study hours/ Self-study hours
Hours	48	30	122
200		2	
ECTS	6		

Teaching strategy	
	Lectures and recitations are held in a classroom, using slides partly prepared in advance, partly generated in class. All these slides are made available on the course homepage.

Expected learning outcomes	
Knowledge and understanding on:	Knowledge of basic principles of Mathematical Analysis and theorem proving techniques
Applying knowledge and understanding on:	Ability to solve problems by utilizing theoretical knowledge and selecting adequate strategies
Soft skills	- Making informed judgments and choices - Ability to assess the soundness of the logical reasoning used in a proof - Ability to select the appropriate mathematical tools and techniques to deal with complex mathematical problems - Communicating knowledge and understanding - Mastery of the mathematical language and syntax necessary to communicate the acquired knowledge and to describe, analyze and solve problems - Capacities to continue learning - Ability to study independently and to consult and make us of relevant literature

Assessment and feedback	Written test and oral exam; passing the written test is a prerequisite for taking the oral exam. The written test (no more than three hours) consists of four to six problems. Instead of the written test, students can take two partial written tests, the first during the semester break (see "Manifesto degli Studi"), the second between the end of classes and the beginning of the exam session. The results of the written test are published on the course homepage. The oral exam starts with the discussion of the student's work on the written test, followed by the discussion of theoretical results, examples, counterexamples and short problems.
Methods of assessmentKnowledge and understanding o The student must be able to explain definitions and theoretical results, including some proofs.	
Evaluation criteriaApplying knowledge and understanding o The student must be able to solve problems and to independently construct simple arguments of proof. - Autonomy of judgment o The student must be able to select the theoretical and practical tools most appropriate for the given problems.	

DIPARTIMENTO
 INTERUNIVERSITARIO DI FISICA

	- Communicating knowledge and understanding o The student must be able to explain theoretical results clearly and completely, using precise mathematial language and syntax. Capacities to continue learning ○ The student must know the specific terminology of the course material and must be able to identify the context of each concept.
Criteria for assessment and attribution of the final mark	The final grade is based on 30 points; the minimum passing grade is 18. The final grade is determined by both the written test and the oral exam; for details see the course homepage.
Additional information	

