

COURSE OF STUDY Physics

ACADEMIC YEAR *2023-2024*

ACADEMIC SUBJECT ISTITUZIONI DI FISICA TEORICA II (Modulo B: Fisica Statistica)

General information	
Year of the course	3rd year
Academic calendar (starting and	1st semester (From 18-09-2023 to 22-12-2023)
ending date)	
Credits (CFU/ETCS):	5
SSD	Fis/02
Language	Italiano
Mode of attendance	No (attendance suggested)

Professor/ Lecturer	
Name and Surname	Antonio Suma
E-mail	antonio.suma@uniba.it
Telephone	
Department and address	Dipartimento Interateneo di Fisica, room 10 at ground floor
Virtual room	
Office Hours (and modalities:	Timetable to be arranged at student's request. In-person or online mode
e.g., by appointment, on line,	
etc.)	

Work schedule			
Hours			
Total	Lectures	Hands-on (laboratory, workshops, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
150	32	15	103
CFU/ETCS			
5	4	1	

Learning Objectives	Knowledge of the physical and mathematical foundations of elementary
	statistical physics
Course prerequisites	Basics of thermodynamics and elementary quantum mechanics

Teaching strategies	Classroom lectures/exercises
Expected learning outcomes in	
terms of	
Knowledge and understanding	 Knowledge of the theoretical foundations of thermodynamics
on:	 Knowledge of the theoretical foundations of statistical physics
Applying knowledge and	 development of physical-mathematical tools appropriate for the study
understanding on:	of thermodynamic systems at equilibrium from macroscopic and
	microscopic perspectives
Soft skills	Making informed judgments and choices
	\circ Develop connections and relationships between theories and physical
	descriptions on different scales
	 Develop critical sense in applying the most correct methodologies to solving physical problems
	Communicating knowledge and understanding
	 Comprehensive, logical and formally correct exposition of a physical
	topic

	Capacities to continue learning
	 Skill in consulting bibliographic materials, databases and materials on
	the Web.
Syllabus	
Content knowledge	General principles of thermodynamics (Ch. 1-9 from Callen)
	1. Problems and postulates. Composition of thermodynamic system. Internal
	energy. Thermodynamic equilibrium. Walls and constraints. Quantitative
	definition of heat. The basic problem of thermodynamics. Entropy postulates.
	2. Equilibrium conditions. Intensive parameters. Equation of state. Intensive
	entropic parameters. Temperature and thermal equilibrium. Mechanical
	equilibrium. Equilibrium with matter flow. Chemical equilibrium.
	3. Formal relations and examples of physical systems. Euler equation. Gibbs-
	Duhem relation. Monatomic ideal gas. Ideal gas mixture. Van Der Waals ideal
	fluid. Electromagnetic radiation. Rubber band. Heat capacity.
	4. Reversible processes and maximum work theorem. Possible and impossible
	processes. Quasi-static and reversible processes. Relaxation times and
	irreversibility. Heat flow between coupled systems. Maximum work theorem.
	5. Alternative formulations of the fundamental relation. Energy minimum
	principle. Legendre's transform. Thermodynamic potentials. Generalized Massieu
	functions.
	6. Extremum principle in the Legendre transformed representations. The energy
	minimum principles for potentials. Helmoitz potential. The enthalpy. Globs
	potential.
	7. Maxwell's relations. A thermodynamic mnemonic diagram.
	8. Studinity of thermodynamic systems. Intrinsic stability. Stability conditions for
	<i>C. Phase transitions</i> . Simple mechanical model. Phase transition of water Latent
	9. Phase transitions. Simple mechanical model. Phase transition of water. Laterit
	order phase transitions
	Kinetic theory of aases (Ch. 3 and Sect. 2.7 from Kardar).
	Problem formulation and general definitions. Liouville's theorem. BBGKY
	hierarchy. Boltzmann transport equation. H theorem and irreversibility. Maxwell-
	Boltzmann equilibrium and distribution. Information, entropy and estimates.
	Statistical Physics (Chapters 1-6 and 8-9 from Guénault)
	1. Basic ideas. Macrostates and microstates. Construction of distributions.
	Example model. Statistical entropy and microstates.
	2. Distinguishable particles. Equilibrium distribution. Meaning of α and β .
	Statistical definition of temperature. Boltzmann distribution and partition
	function. Calculation of thermodynamic functions. Two-state particles solid.
	Localized harmonic oscillators.
	<i>3. Indistinguishable particles: gases.</i> Density of states. Identical particles.
	Counting microstates for fermions, bosons and dilute gases. Derivation of the
	distributions of Fermi-Dirac, Bose-Einstein and Maxwell-Boltzmann.
	4. Maxwell-Boltzmann gas properties. Partition function. Distribution of
	velocities. Derivation of thermodynamic functions.
	<i>5. Ferrini-Diruc gus property.</i> Ferrini energy. Inermodynamic functions.
	<i>b. Bose-Einstein gas properties.</i> Bose temperature. Bose-Einstein condensation.
Texts and readings	1. H. Callen. "Thermodynamics and an Introduction to Thermostatics." John Wiley
	& Sons.
	2. M. Kardar, "Statistical Physics of Particles" Cambridae University Press.
	3. T. Guènault. "Statistical Physics" Springer.
	4. K. Huang, "Meccanica Statistica" Zanichelli.
	5. M. Alonso and E. Finn, "Fundamental University Physics: Quantum and

	Statistical Physics," Addison-Wesley Publishing.
Notes, additional materials	Only some chapters and sections.
Repository	

Assessment	
Assessment methods	Written exam with theoretical questions and exercises done in class.
Assessment criteria	 Knowledge and understanding Know the theoretical foundations of elementary statistical physics Applying knowledge and understanding Use the knowledge gained to solve problems in the field of statistical physics Autonomy of judgment Develop physical-mathematical tools to independently model physical problems related to simple statistical systems Communicating knowledge and understanding Express in a proper way physical and mathematical concepts characterizing elementary statistical physics Communication skills Acquire an appropriate rigorous language to communicate science Capacities to continue learning Develop mathematical and physical tools to model physical problems
Final exam and grading criteria	The exam is considered passed when the grade is greater than or equal to 18. The award of the highest grade with honors (30 cum laude) is expected. Honors are awarded when the student has demonstrated full mastery of the subject. Accuracy in solving statistical physics problems and precision in exposing theoretical concepts are evaluated.
Further information	