

COURSE OF STUDYFisica (L-30)ACADEMIC YEAR2023-2024ACADEMIC SUBJECTIstituzioni di Fisica Teorica II
Modulo A: Meccanica Quantistica

General information	
Year of the course	3rd
Academic calendar (starting and ending	1 st semester: Third week of September – Third week of December
date)	
Credits (CFU/ETCS):	5
SSD	FIS/02
Language	Italian
Mode of attendance	Not compulsory

Professor/ Lecturer	
Name and Surname	Prof. Paolo Facchi
E-mail	paolo.facchi@uniba.it
Telephone	080 544 3222
Department and address	Dipartimento Interateneo di Fisica, office 182
Virtual room	
Office Hours (and modalities: e.g., by	Students are invited to send an e-mail to arrange individual or group
appointment, on line, etc.)	meetings

Work schedule			
Hours			
Total	Lectures	Hands-on (laboratory, workshops, working	Out-of-class study
		groups, seminars, field trips)	hours/ Self-study hours
150	24	30	96
CFU/ETCS			
5	3	2	

Learning Objectives	In-depth knowledge of the theoretical foundations of Quantum Mechanics and ability to apply them to realistic physical models, also using approximation methods.
Course prerequisites	Postulates of Quantum Mechanics. Complex annalysis. Differential and operator calculus. One-dimensional quantum systems. Quantum dynamics.

Teaching strategy	Lectures and exercise sessions	
Expected learning outcomes in terms of		
Knowledge and understanding on	Composite systems. Total angular momentum. Spin. Symmetries.	
	identical particles. Quantum dynamics.	
Applying knowledge and	Analytical and approximation techniques for understanding quantum	
understanding on	phenomena and solving problems in quantum mechanics.	
Soft skills	Making informed judgments and choices	
	Relationship between Experimental Physics and Theoretical	
	Physics. The use of analogy in the development of scientific	
	knowledge.	
	 Communicating knowledge and understanding 	
	The student will acquire mastery of the lexicon of quantum	
	physics.	

	Capacities to continue learning
	Ability to resolve quantum mechanical problems. Ability to
	consult bibliographic material and material on the web
Syllabus	
Content knowledge	Angular momentum. Rotations and commutation relations. Spin and
	orbital angular momentum. Composition of Angular Momenta. Clebsch-
	Gordan coefficients. Examples. Schwinger model. Exercises.
	Symmetries. Symmetries, conservation laws and degeneracies. Discrete
	symmetries, spatial inversion and parity operator. Parity of the orbital
	angular momentum eigenstates. Exercises.
	Central potentials. Hamiltonian in spherical coordinates. Radial equation.
	Behavior of the radial function at the origin. Solution of the radial
	equation for the free particle, particle in a sphere, and particle in a
	potential well. Expansion of plane waves into spherical waves. Hydrogen
	atom. Exercises.
	Identical particles. Permutation symmetry. Indistinguishability principle.
	Bosons and Fermions. Two-electron system. Helium atom. Exercises.
	Perturbation theory. Time-independent perturbation theory:
	nondegenerate and degenerate case. The Stark effect. Fine structure.
	Time-dependent perturbation theory. Instant perturbation. Periodic
	perturbation. Fermi's Golden Rule. Exercises.
	Quantum dynamics. Time evolution and Schroedinger equation.
	Interaction picture and Dyson series. Propagator. Feynman path integrals.
	Semiclassical limit.
Texts and readings	- J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics, Cambridge
	University Press, Cambridge 2020;
	- Lecture notes
Notes, additional materials	Additional books:
	- L.D. Lanuau, E.M. LIISHILZ, Quantum Mechanics, Pergamon Press, Oxford
	- A Messiah Mecanique Quantique Dunod Paris 1962 volume l
	- J. Schwinger, Quantum Mechanics, Springer. Berlin 2001:
	- A. Peres, Quantum Theory: Concepts and Methods, Kluwer, Dordrecht
	1995;
	- L. Angelini, Meccanica Quantistica: problemi scelti, Springer-Verlag
	Italia, Milano 2018
Repository	http://www.ba.infn.it/~facchi/Sito/Lectures.html

Assessment	
Assessment methods	Written exam; oral exam
Assessment criteria	 Knowledge and understanding Knowledge of the theoretical fundamentals of quantum mechanics Applying knowledge and understanding Using the acquired knowledge to solve problems in quantum mechanics Autonomy of judgement Developing physical and mathematical tools to properly model simple quantum systems
	 Communicating knowledge and understanding Expressing the physical and mathematical concepts of quantum mechanicas Capacities to continue learning Developing mathematical and physical tools to model simple nonrelativistic

	quantum systems.
Final exam and grading criteria	Written exam (50%). Oral exam (50%)
Further information	