

## DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

| General information                                                                                                    |                                                                    |  |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| Academic subject                                                                                                       | Istituzioni di Fisica Teorica II (Modulo A: Meccanica Quantistica) |  |
| Degree course                                                                                                          | Fisica (L-30)                                                      |  |
| Academic Year                                                                                                          | 3rd                                                                |  |
| European Credit Transfer and Accumulation System (ECTS) 5                                                              |                                                                    |  |
| Language                                                                                                               | Italian                                                            |  |
| Academic calendar (starting and ending date) 1 <sup>st</sup> semester: Last week of September – Third week of December |                                                                    |  |
| Attendance                                                                                                             | Free                                                               |  |

| Professor/ Lecturer             |                                                                                |  |
|---------------------------------|--------------------------------------------------------------------------------|--|
| Name and Surname                | Prof. Paolo Facchi                                                             |  |
| E-mail                          | paolo.facchi@uniba.it                                                          |  |
| Telephone                       | 080 544 3222                                                                   |  |
| Department and address          | Dipartimento Interateneo di Fisica, office 182                                 |  |
| Virtual headquarters (Microsoft |                                                                                |  |
| Teams code)                     |                                                                                |  |
| Tutoring (time and day)         | Students are invited to send an e-mail to arrange individual or group meetings |  |

| Syllabus               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Objectives    | In-depth knowledge of the theoretical foundations of Quantum Mechanics and ability to apply them to realistic physical models, also using approximation methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Course prerequisites   | Postulates of Quantum Mechanics. Complex annalysis. Differential and operator calculus. One-dimensional quantum systems. Quantum dynamics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Contents               | Angular momentum. Rotations and commutation relations. Spin and orbital angular momentum. Composition of Angular Momenta. Clebsch-Gordan coefficients. Examples. Schwinger model. Exercises.  Symmetries. Symmetries, conservation laws and degeneracies. Discrete symmetries, spatial inversion and parity operator. Parity of the orbital angular momentum eigenstates. Exercises.  Central potentials. Hamiltonian in spherical coordinates. Radial equation.  Behavior of the radial function at the origin. Solution of the radial equation for the free particle, particle in a sphere, and particle in a potential well. Expansion of plane waves into spherical waves. Hydrogen atom. Exercises.  Identical particles. Permutation symmetry. Indistinguishability principle. Bosons and Fermions. Two-electron system. Helium atom. Exercises.  Perturbation theory. Time-independent perturbation theory: nondegenerate and degenerate case. The Stark effect. Fine structure. Time-dependent perturbation theory. Instant perturbation. Periodic perturbation. Fermi's Golden Rule. Exercises.  Quantum dynamics. Time evolution and Schroedinger equation. Interaction picture and Dyson series. Propagator. Feynman path integrals. Semiclassical limit. |
| Books and bibliography | <ul> <li>- J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics, Cambridge University Press, Cambridge 2020;</li> <li>- L. Angelini, Meccanica Quantistica: problemi scelti, Springer-Verlag Italia, Milano 2018.</li> <li>- Lecture notes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Additional materials   | Additional books:  - L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Pergamon Press, Oxford 1962;  - A. Messiah, Mecanique Quantique, Dunod, Paris 1962, volume I;  - J. Schwinger, Quantum Mechanics, Springer, Berlin 2001;  - A. Peres, Quantum Theory: Concepts and Methods, Kluwer, Dordrecht 1995.  - Lecture notes available online at <a href="http://www.ba.infn.it/~facchi/Sito/Lectures.html">http://www.ba.infn.it/~facchi/Sito/Lectures.html</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



## DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

| Work schedule |          |                                                              |                                               |  |
|---------------|----------|--------------------------------------------------------------|-----------------------------------------------|--|
| Total         | Lectures | Hands on (Laboratory, working groups, seminars, field trips) | Out-of-class study hours/<br>Self-study hours |  |
| Hours         |          |                                                              |                                               |  |
| 150           | 24       | 30                                                           | 96                                            |  |
| ECTS          |          |                                                              |                                               |  |
| 5             | 3        | 2                                                            |                                               |  |

| Teaching strategy |                                |
|-------------------|--------------------------------|
|                   | Lectures and exercise sessions |

| Expected learning outcomes               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Knowledge and understanding on:          | Composite systems. Total angular momentum. Spin. Symmetries. identical particles. Quantum dynamics.                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Applying knowledge and understanding on: | Analytical and approximation techniques for understanding quantum phenomena and solving problems in quantum mechanics.                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Soft skills                              | <ul> <li>Making informed judgments and choices         Relationship between Experimental Physics and Theoretical Physics. The use of analogy in the development of scientific knowledge.     </li> <li>Communicating knowledge and understanding         The student will acquire mastery of the lexicon of quantum physics.     </li> <li>Capacities to continue learning         Ability to resolve quantum mechanical problems. Ability to consult bibliographic material and material on the web     </li> </ul> |  |

| Assessment and feedback                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methods of assessment                                     | Written exam; oral exam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Evaluation criteria                                       | <ul> <li>Knowledge and understanding         <ul> <li>Knowledge of the theoretical fundamentals of quantum mechanics</li> </ul> </li> <li>Applying knowledge and understanding         <ul> <li>Using the acquired knowledge to solve problems in quantum mechanics</li> </ul> </li> <li>Autonomy of judgement         <ul> <li>Developing physical and mathematical tools to properly model simple quantum systems</li> </ul> </li> <li>Communicating knowledge and understanding         <ul> <li>Expressing the physical and mathematical concepts of quantum mechanicas</li> </ul> </li> <li>Capacities to continue learning</li> <li>Developing mathematical and physical tools to model simple nonrelativistic quantum systems.</li> </ul> |
| Criteria for assessment and attribution of the final mark | Written exam (50%). Oral exam (50%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Additional information                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |