

## COURSE OF STUDYPHYSICSACADEMIC YEAR2023/2024ACADEMIC SUBJECTGENERAL PHYSICS LABORATORY II

| General information                          |                                                                         |
|----------------------------------------------|-------------------------------------------------------------------------|
| Year of the course                           | Second Year                                                             |
| Academic calendar (starting and ending date) | 2 <sup>nd</sup> Semester (March – June 2024)                            |
| Credits (CFU/ETCS):                          | 8                                                                       |
| SSD                                          | FIS/01 – Experimental Physics                                           |
| Language                                     | Italian                                                                 |
| Mode of attendance                           | Lecture Attendance: Not Compulsory<br>Laboratory Attendance: Compulsory |

| Professor/ Lecturer           |                                                                             |
|-------------------------------|-----------------------------------------------------------------------------|
| Name and Surname              | Salvatore My                                                                |
| E-mail                        | Salvatore.my@uniba.it                                                       |
| Telephone                     |                                                                             |
| Department and address        | Office R12 – Dipartimento Interateneo di Fisica - Campus Universitario –    |
|                               | Via E. Orabona, 4 Bari                                                      |
| Virtual room                  | MS Teams Virtual Classroom (code: s3me0ls)                                  |
| Office Hours (and modalities: |                                                                             |
| e.g., by appointment, online, | Tuesday, from 4:00 to 6:00 pm or on appointment by email also in other days |
| etc.)                         |                                                                             |

| Work schedule |          |                                                                         |                                                  |
|---------------|----------|-------------------------------------------------------------------------|--------------------------------------------------|
| Hours         |          |                                                                         |                                                  |
| Total         | Lectures | Hands-on (laboratory, workshops, working groups, seminars, field trips) | Out-of-class study<br>hours/ Self-study<br>hours |
| 200           | 48       | 30                                                                      | 122                                              |
| CFU/ETCS      |          |                                                                         |                                                  |
| 8             | 6        | 2                                                                       |                                                  |

| Learning Objectives  | <ul> <li>To learn the basics on</li> <li>Theoretical and experimental direct current (DC) and alternating current (AC) circuit analysis</li> <li>Theoretical and experimental analysis of optical phenomena</li> </ul> |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course prerequisites | <ul> <li>General Physics Laboratory I</li> <li>Electromagnetic laws</li> </ul>                                                                                                                                         |

| Teaching strategie            |                                                                                    |
|-------------------------------|------------------------------------------------------------------------------------|
| Expected learning outcomes in |                                                                                    |
| terms of                      |                                                                                    |
| Knowledge and understanding   | Knowledge and understanding on the measurement methods of electromagnetic          |
| on:                           | quantities and their usage limits.                                                 |
| Applying knowledge and        | The students will acquire the ability to use laboratory instruments and to realize |
| understanding on:             | the best measurement setup to the quantity under measurement and to analyse        |
|                               | the reliability and the uncertainties of the measurement results                   |
| Soft skills                   | Making informed judgments and choices                                              |
|                               | Students will be stimulated to acquire an autonomous and critical reasoning        |
|                               | on methods and measurement results interpretation                                  |



|                   | Communicating knowledge and understanding                                    |
|-------------------|------------------------------------------------------------------------------|
|                   | Students will be able to use clear, appropriate, and scientifically rigorous |
|                   | language both in the written tests and in the oral discussion about electric |
|                   | circuits and optics phenomena.                                               |
|                   | Capacities to continue learning                                              |
|                   | Students will have acquired the skills necessary to undertake subsequent     |
|                   | studies that include laboratory topics and measurements of                   |
|                   | electromagnetic quantities with a high degree of autonomy                    |
| Syllabus          |                                                                              |
| Content knowledge | Electric Circuits                                                            |
| -                 | - Ideal and real components.                                                 |
|                   | - Resistors, capacitors, inductors,                                          |
|                   | - Generators.                                                                |
|                   | - Topology in circuit analysis.                                              |
|                   |                                                                              |
|                   | Measurements in DC circuits                                                  |
|                   | - Kirchhoff laws and their application.                                      |
|                   | - Superposition theorem. Thevenin's theorem. Norton's theorem.               |
|                   | Reciprocity theorem.                                                         |
|                   | - Current, Voltage and Resistance measurements with analog and digital       |
|                   | instrumentation                                                              |
|                   | - Uncertainty in electrical measurements                                     |
|                   | - Oncertainty in electrical incastrements.                                   |
|                   | Measurements in AC circuits                                                  |
|                   | - Periodic, aperiodic, and random signals.                                   |
|                   | - Fourier Analysis                                                           |
|                   | - Alternating Circuits and their solution                                    |
|                   | - The symbolic Methods                                                       |
|                   | PC circuit low-nace, and high-nace filters                                   |
|                   | - Ne circuit, low-pass, and high-pass inters.                                |
|                   | - REclicult                                                                  |
|                   | - REC CITCUIL.                                                               |
|                   | - Compensated voltage divider.                                               |
|                   | - Measurement instruments of alternating signals.                            |
|                   | - Amplitude, phase, and time measurements with the oscilloscope.             |
|                   | LTspice Simulator                                                            |
|                   | Optics                                                                       |
|                   | - Geometrical optics.                                                        |
|                   | - Optical elements.                                                          |
|                   | - Gaussian optics.                                                           |
|                   | - Mirrors, Diopters, Lens,                                                   |
|                   | - Aberrations                                                                |
|                   | - Human eve as ontical system                                                |
|                   | - Ontical instruments: magnifying glass telescope (Kenler Galileo)           |
|                   | microscope, optical fiber.                                                   |
|                   |                                                                              |
|                   | Laboratory experiments foreseen:                                             |
|                   | 1. Study of the current-voltage characteristic of a conducting element and   |
|                   | measurement of the resistance using the ammeter-voltmeter method.            |
|                   | 2. Resistance measurement with the Wheatstone bridge method.                 |
|                   | 3. Study of a RLC series circuit                                             |
|                   | 4. Study of low-pass and high-pass filters with alternating and square wave  |
|                   | signals.                                                                     |
|                   | 5. Focal length of an optical system measurement using both imaging          |
|                   | conjugates and Bessel method.                                                |



| Texts and readings          | Lecture notes                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | <ul> <li>Specific books on electric circuits and measurement instruments:</li> <li>R. Bartiromo, M. De Vincenzi – Electrical Measurements in the Laboratory<br/>Practice – Springer</li> <li>R. Perfetti – Circuiti Elettrici – Zanichelli</li> <li>Acerbi - Metodi e strumenti di misura – Città studi</li> <li>Specific book for optics:</li> <li>Textbooks of Physics II including optics.</li> </ul> |
| Notes, additional materials | <ul> <li>Specific books to deepen the uncertainties treatment:</li> <li>Taylor-Introduzione all'analisi degli errori-Zanichelli</li> </ul>                                                                                                                                                                                                                                                               |
|                             | in measurement -https://www.bipm.org/en/publications/guides/gum.html                                                                                                                                                                                                                                                                                                                                     |
| Repository                  |                                                                                                                                                                                                                                                                                                                                                                                                          |

| Assessment methods              | Final Exam is an oral test covering all the topics taught in class and in laboratory.<br>To be admitted to the final exam it is necessary to submit the reports on all the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | <ul> <li>experiments carried out in the laboratory, in advance.</li> <li>The exam begins with the discussion of one of the submitted reports, chosen by the Examination Committee, followed by a few questions on the topics other than one on the report.</li> <li>To pass the exam, students will have to demonstrate that they have well understood the contents of the course.</li> <li>Preliminary signing up on ESSE3 is compulsory.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Assessment criteria             | <ul> <li>Knowledge and understanding<br/>Students will have to demonstrate knowledge and understanding of the<br/>laws underlying electrical circuits and optical phenomena.</li> <li>Applying knowledge and understanding<br/>Students will have to prove that they know and know how to apply the laws<br/>underlying electrical circuits and optical phenomena for the measurement<br/>of some electromagnetic quantities.</li> <li>Autonomy of judgment<br/>Students must show that they have acquired autonomy and critical<br/>reasoning skills on the topics covered in the teaching.</li> <li>Communicating knowledge and understanding<br/>Students should be able to explain the laws and measurement methods<br/>studied using clear, appropriate, and scientifically rigorous language.</li> <li>Capacities to continue learning<br/>Students must be able to independently examine and investigate<br/>challenges where the use of the laws of physics is required and of the laws</li> </ul> |
| Final exam and grading criteria | The grade, out of thirty, will reflect the degree of knowledge of the course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Eurther information             | contents and of the experimental methodology applied in the laboratory<br>experiences.<br>The exam is passed when the grade is greater than or equal to 18.<br>Full understanding of the subject, exposure clarity, language accuracy<br>guarantees the maximum mark, 30 cum laude.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

