

COURSE OF STUDY Degree in Physics ACADEMIC YEAR 2023-2024 ACADEMIC SUBJECT Relativistic Mechanics

General information Year of the course 2 Academic calendar First week of March - Last week of May Credits (CFU/ETCS): 3 SSD FIS/02 Language Italian Mode of attendance Not mandatory

Professor/ Lecturer	
Name and Surname	Antonio Marrone
E-mail	antonio.marrone@uniba.it
Telephone	+39 080 5443463
Department and address	
Virtual room	
Office Hours	On request

Work schedule			
Hours			
Total	Lectures	Hands-on (laboratory, workshops, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
93	16	15	62
CFU/ETCS			
3	2	1	

Learning Objectives	Understanding Special Relativity
Course prerequisites	General Physics

Teaching strategie	Lessons on the blackboard
Expected learning outcomes in terms of	
Knowledge and understanding on:	Understanding Special Relativity
Applying knowledge and understanding on:	Application of Special Relativity
Soft skills	Making informed judgments and choices
	Ability to proceed autonomously in the study of Special Relativity
	 Communicating knowledge and understanding
	Ability to express the acquired knowledge properly
	Constitue to continue locaria
	• Capacities to continue learning
	Ability to study independently from texts and scientific literature
Syllabus	
Content knowledge	Relativity principle
	Lorentz group
	Relativistic Mechanics
	Electromagnetism

	Particle scattering and decay
Texts and readings	L .D. Landau e E.M. Lifšits, Fisica Teorica II, Teoria dei Campi, Editori Riuniti
Notes, additional materials	Notes from the teacher
Repository	

Assessment	
Assessment methods	Oral test
Assessment criteria	Adequate comprehension and global knowledge of concepts and arguments described throughout the course.
Final exam and grading criteria	Vote/30
Further information	