

COURSE OF STUDY Degree in Physics ACADEMIC YEAR 2023-2024 ACADEMIC SUBJECT Group Theory

General information	
Year of the course	2
Academic calendar	First week of March - Last week of May
Credits (CFU/ETCS):	3
SSD	FIS/02
Language	Italian
Mode of attendance	Preferred, Not compulsory

Professor/ Lecturer	
Name and Surname	Antonio Marrone
E-mail	antonio.marrone@uniba.it
Telephone	+39 080 5443463
Department and address	
Virtual room	
Office Hours	On request

Work schedule			
Hours			
Total	Lectures	Hands-on (laboratory, workshops, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
93	16	15	62
CFU/ETCS			
3	2	1	

Learning Objectives	Understanding Group Theory
Course prerequisites	Basic Pysics and Mathematics knowledge

Teaching strategie	Lessons on the blackboard
Expected learning outcomes in terms of	
Knowledge and understanding on:	Understanding Group Theory
Applying knowledge and understanding on:	Application of Group Theory
Soft skills	Making informed judgments and choices
	Ability to proceed autonomously in the study of Special Relativity
	Communicating knowledge and understanding
	Ability to express the acquired knowledge properly
	Capacities to continue learning
	Ability to study independently from texts and scientific literature
Syllabus	
Content knowledge	Introduction to Symmetry in Physics; Groups and Representations
	Definitions and examples
	Group of Permutations Sn
	General properties of groups

	Conjugation classes
	Subgroups. Normal subgroups. Homomorphisms.
	Group representations
	Schur Lemmas. Orthogonality theorem. Characters. Character table. Direct
	product and decomposition
	Symmetric group Sn and its representations. Young tableaux. Irreps of SU(N)
	and Sn. Tensorial method.
	Lie groups.
	SO(2),SO(3) and SU(2).
	SU(N)
	Young tableaux.
	Lie Algebras
	Simple Lie Algebras. Killing form. Root quantization. Dynkin diagrams.
	Weights and representations.
Texts and readings	H.F. Jones, Groups, Representations and Physics, Taylor & Francis; 2 edition
	H. Georgi, Lie Algebras In Particle Physics: from Isospin To Unified Theories
	(Frontiers in Physics), Westview Press; 2 edition (October 22, 1999)
	F. Stancu, Group Theory in Subnuclear Physics, Oxford Studies in Nuclear
	Physics
Notes, additional materials	Notes from the teacher
Repository	

Assessment	
Assessment methods	Oral test
Assessment criteria	Adequate comprehension and global knowledge of concepts and arguments described throughout the course.
Final exam and grading criteria	Vote/30
Further information	