General information		
Academic subject	Chimica	
Degree course	BD Physics	
Academic Year	2021/2022	
European Credit Transfer and Accumulation System (ECTS) Chemistry		
Language	Italian	
Academic calendar (starting and	ending date) October-December 2021	
Attendance	Compulsory	

Professor/ Lecturer		
Name and Surname	Savino Longo	
E-mail	savino.longo@uniba.it	
Telephone	0805442088	
Department and address	Chemistry	
Virtual headquarters	Savino Longo on MS Teams	
Tutoring (time and day)	Tuesday-Thursday from 11 to 13 and from 16 to 17, in person or online, by	
	appointment.	

Syllabus	
Learning Objectives	To teach the conceptual bases and methods of solving exercises in general
	chemistry, with particular attention to the needs of the physics student
Course prerequisites	Basic Physics, Electrostatics, Thermodynamics, Calculus 001
Contents	The exam is based on the application of concepts and not so much on theoretical concepts. It is advisable to carefully carry out the examples in the text and the exercises at the end of the chapter, not all of them, but those that are relevant to the paragraphs marked.
	From the reference text (available online, see note below)
	chap. 1: 1.1, 1.2, 1.3, 1.4, 1.5, 1.7 (only the first two pages),
	chapter 2: everything except 2.7
	chap. 3: 3.1, 3.2, 3.3, 3.4, 3.5
	chapter 4: everything
	chapter 5: everything except 5.9
	chap. 8: 8.1, 8.3, 8.7, 8.8, for all without the equations
	chap.9: everything, except: the explanation of fig.9.1, the formulas of 9.3 chap. 10: 10.1, 10.2, 10.3
	chapter 11: everything except 11.2 and the "exceptions to the rules" at the end of 11.3
	chapter 12: only 12.1
	chap. 15: 15.4, 15.5 (except in the case of benzene)
	chap. 16: 16.5, 16.6 (without proofs)
	chap. 17: 17.1
	chap. 18: 18.1 (not Trouton), 18.2, 18.4 (not the phase rule), 18.5, 18.6 chap. 19. 19.2, 19.3, 19.4, 19.5
	Abilities:
	Give an appropriate name to an inorganic compound from its formula, write the

	formula corresponding to the name. Know the simplest organic compounds. Know the most important strong and weak acids.
	Balance the reactions. Balance redox reactions in ionic form (in cases where only two elements change their oxidation numbers) Determine masses in grams of reactants and products, volumes of necessary solutions and any gases produced, knowing the atomic weights.
	Connect the heat absorbed or released to the masses or moles of reagents consumed knowing the enthalpies of formation of the substances involved or the appropriate binding energies.
	For gases and gas mixtures connect composition, density, masses in grams, pressure, volume and temperature. For solutions: connect molar concentrations, masses in grams and volumes. Solve mixing problems.
	For a chemical equilibrium, apply the law of mass action and write the equilibrium constant. Discuss the effect of changes in volume, pressure, temperature, addition of solvent, addition of reagents or products, using the Le Chatelier principle.
	Write the electronic configuration of an atom or atomic ion, knowing the atomic number of the element. For lighter elements, know the corresponding group. Discuss the shape of the atomic s, p, and hybrid orbitals.
	Write Lewis structures of compounds, determine suitable hybrid orbitals, highlight possible resonances and discuss relative bond lengths. Discuss the isomers of a substituted hydrocarbon accounting double bonds.
	Allocate the oxidation numbers to atoms in compounds using algebraic rules and Lewis structures.
	Use the repulsion method (VSEPR) to determine the spatial arrangement of atoms in molecules.
	Determine the solubility in terms of moles or grams per liter of poorly soluble compounds in water from the constant Kps, also taking into account any common ion effects.
	Calculate the pH of solutions of strong and weak acids, strong and weak bases, salts, buffer solutions.
	Calculate colligative quantities of solutions, from colligative quantities determine concentrations and quantities in grams of solutes
	Determine the EMF of a battery with standard potentials and with the use of the Nernst equation. From standard EMF's determine the spontaneity of reactions or the concentration of species (e.g. pH).
Books and bibliography	Dickerson, Richard E. and Gray, Harry B. and Haight, Gilbert P.: Chemical
	principles.
	The text is available for free in pdf format, chapter by chapter, on the Caltech authors website: https://authors.library.caltech.edu/25050/. An Italian translation
•	

is available in the Chemistry library if needed.

Additional materials

Work schedule				
Total	Lectures	Hands on (Laboratory, working groups, seminar field trips)	s, Out-of-class study hours/ Self-study hours	
Hours				
150	32	30	88	
ECTS				
6				
Teaching strategy		Traditional teaching with the use of the blackboard and direct involvement of the students in the realization of drawings of structures, into the discussion of the principles and the resolution of the exercises.		
Expected learning	g outcomes			
Knowledge and understanding on:		 Basic principles of chemistry Ability to understand the fundamental concepts of chemistry between those of chemistry, albeit inspired by ideas of physics and those deriving directly from physical principles Application of chemistry methods, when relevant, to systems and apparatuses of physical interest. 		
Applying knowledge and understanding on:		• See the contents		
Soft skills		 Making informed judgments and choices Knowing how to apply the correct princ problem Understanding the limits of approximations a Capacities to continue learning The understanding of principles of basic chemistry studies in several fieds. 	nd techniques	

Assessment and feedback	
Methods of assessment	Oral exam based mainly on exercises.
Evaluation criteria	Knowledge and understanding Junderstanding of the principles, and their contexts of application
	 Understanding of the principles, and their contexts of application Autonomy of judgment
	 Appropriate choice of solution method
	 Appropriate detection of relevant principles
	Communication skills
	 Knowing how to explain the technique used,
	 Knowing how to graphically represent structures and concepts
	Capacities to continue learning
	 Capacity to use the principles in future studies
Criteria for assessment and	Above all, the ability to solve problems with the identification of the best solution
attribution of the final mark	strategy is evaluated, secondly, the language property in the discussion of the
	theoretical principles related to the proposed exercises.
Additional information	