Stampare su carta intestata del CdS

General information	Mathematical Analysis II
Academic subject	Physics
Degree course	first
Academic Year	Italian
European Credit Transfer and Accumulation System (ECTS)	8
Language	Recommended
Academic calendar (starting and ending date)	March 7 - June 10, 2022
Attendance	Professor/ Lecturer Name and Surname Monica Lazzo E-mail $\underline{\text { monica.lazzo @uniba.it }}$ Telephone +39 080 544 2503 Department and address Department of Mathematics (fourth floor, room 6) Virtual headquarters Microsoft Teams, code cr3atsa Tutoring (time and day) By appointment, to be scheduled by e-mail

Syllabus	
Learning Objectives	Acquisition of knowledge and basic tools in Mathematical Analysis useful for the description of physical phenomena
Course prerequisites	Contents of the courses Mathematical Analysis; elements of Linear Algebra.
Contents	Linear differential equations Linear differential equations. Initial value problems. Superposition principle. Structure of the general solution. Homogeneous equations. Fundamental systems of solutions; Wronski determinant. Variation of constants to to find particular solutions of nonhomogeneous equations. Linear differential equations with constant coefficients: determination of a fundamental system of solutions for a homogeneous equation; method of undetermined coefficients to find particular solutions of nonhomogeneous equations. Euler equations. Functions of several variables Elements of topology in euclidean spaces. Convex, star-shaped, polygonally connected sets. Real-valued and vector-valued functions of several variables. Directional and partial derivatives. Total derivative. Tangent plane. Jacobian matrix. Hessian matrix. Schwarz theorem. Differentiation rules. Chain rule. Mean value theorem. Taylor formula. Line integrals and surface integrals Parametric curves. Length of a curve. Change of parameters. Arc length. Line integrals of scalar functions. Mass and baricenter. Differential forms. Line integrals of differential forms. Closed and exact differential forms. Parametric surfaces. Surface area. Surfaces of revolution. Surface integrals. Flux of a vector field across a surface. Gauss-Green theorem in the plane. Stokes theorem. Divergence theorem. Multiple integrals
Measurable sets in the sense of Peano-Jordan. Riemann integrable functions;	
Biemann integrals. Integral mean.	
Rooks and bibliography	
Integration methods for double and triple integrals. Volume of solids of revolution.	
Change of variables formula. Polar coordinates; spherical and cylindrical	
coordinates.	

Stampare su carta intestata del CdS

	V. Barutello, M. Conti, D. L. Ferrario, S. Terracini, G. Verzini, Analisi matematica
	Vol. ~ 2 2, Apogeo
	N. Fusco, P. Marcellini, C. Sbordone, Analisi Matematica due, Liguori Editore
	E. Giusti, Analisi Matematica 2, Boringhieri
	C.D. Pagani, S. Salsa, Analisi matematica 2, Zanichelli
	W. Rudin, Principles of Mathematical Analysis, McGraw-Hill
Additional materials	Slides, lecture notes, problem sheets, etc posted on the course homepage (https://www.dm.uniba.it/members/lazzo/homepage/analisi-matematica-ii)

Work schedule			
Total	Lectures	Hands on (Laboratory, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
Hours			
200	48	30	122
ECTS			
8	6	2	
Teaching strategy		Lectures and recitations are held in a classroom (subject to changes measures due to the health emergency), using slides partly prepared in advance, partly generated in class. All these slides are made available on the course homepage.	
Expected learning outcomes			
Knowledge and understanding		Knowledge of basic principles of Mathematical Analysis and theorem proving techniques	
Apply under	ge and	Ability to solve problems by utilizing theoretical knowledge and strategies	d selecting adequate
Soft sk		- Making informed judgments and choices Ability to assess the soundness of the logical rea proof - Ability to select the appropriate mathematical to to deal with complex mathematical problems - Communicating knowledge and understanding - Mastery of the mathematical language and communicate the acquired knowledge and to solve problems - Capacities to continue learning - Ability to study independently and to consult and literature	oning used in a ols and techniques syntax necessary to escribe, analyze and make us of relevant

Assessment and feedback	
Methods of assessment	Written test and oral exam; passing the written test is a prerequisite for taking the oral exam. The written test (no more than three hours) consists of four to six problems. Instead of the written test, students can take two partial written tests, the first during the semester break (see "Manifesto degli Studi"), the second between the end of classes and the beginning of the exam session. The results of the written test are published on the course homepage. The oral exam starts with the discussion of the student's work on the written test, followed by the discussion of theoretical results, examples, counterexamples and short problems.

Evaluation criteria	- Knowledge and understanding - The student must be able to explain definitions and theoretical results, including some proofs. - Applying knowledge and understanding - The student must be able to solve problems and to independently construct simple arguments of proof. - Autonomy of judgment - The student must be able to select the theoretical and practical tools most appropriate for the given problems. - Communicating knowledge and understanding - The student must be able to explain theoretical results clearly and completely, using precise mathematial language and syntax. - Capacities to continue learning - The student must know the specific terminology of the course material and must be able to identify the context of each concept.
Criteria for assessment and attribution of the final mark	The final grade is based on 30 points; the minimum passing grade is 18 . The final grade is determined by both the written test and the oral exam; for details see the course homepage.
Additional information	

