Incontri di Orientamento Consapevole Bari, 23 Febbraio 2022

Milena D'Angelo Dipartimento Interat. di Fisica - Università degli Studi di Bari INFN sez. Bari

Imaging quantistico: la scienza che vede

Posso fare una foto puntando al sole?

lontano ... anche quando non ŝ

Meccanica quantistica, ma cosa vuoi farmi credere?

 $|\Psi > = (|gatto vivo> + |gatto morto>) / J2$

e c'è di più: l'inseparabilità, o entanglement

INFN

Due sistemi fisici entangled perdono la propria individualità: lo stato del singolo sistema non è definito!

Molti problemi fondamentali

Can quantum mechanics be considered complete?

If you think you understand quantum mechanics, you do not understand quantum mechanics

INFN

Entanglement: dalla fisica fondamentale alla 2° rivoluzione quantistica

Quantum Technology Flagship

doi:10.1038/nature11472

Quantum teleportation over 143 kilometres using active feed-forward

Xiao-Song Ma^{1,2}†, Thomas Herbst^{1,2}, Thomas Scheidl¹ Bernhard Wittmann^{1,2}, Alexandra Mech^{1,2}, Johannes K Rupert Ursin¹ & Anton Zeilinger^{1,2}

Bob Diagonal Alice beamsplitter Photon **Diagonal** polarizers D detector Horizontal-vertical polarizers Horizontal-vertical beamsplitter Photon source Alice's bit sequence 2 2 2 2 2 2 3 2 2 Bob's detection basis 00000 1 0 0 1 0 0 1 1 0 0 0 1 0 0 Bob's measurement. Sifted key 1 - - 1 0 0 - 1 0 0 - 1 - 0 Sifted key

INFN

Imaging quantistico

Crittografia quantistica

Computer quantistico

Directional coupler Phase

Directional coupler Phase

Una fotografia sfocata e una sorgente luminosa rumorosa non sono da buttar via ... anzi, sono ricche di informazione ... l'imaging quantistico consente di utilizzarla al meglio

Lente = strumento per focalizzare \rightarrow corrispondenza punto-punto tra l'oggetto e *IL* piano immagine

No info sulla direzione dei raggi luminosi !

Oggetti al di fuori della profondità di fuoco appaiono sfocati

Il 1° esperimento di imaging quantistico: "ghost" imaging con fotoni entangled

Milena D'Angelo - Imaging quantistico

Pittman et al., PRL, 74, 3600 (1995); PRA, 52, R3429 (1995)

<u>וא ד</u> או

10 anni dopo: Ghost imaging senza lenti

Sorgente di luce caotica = "strumento" per focalizzare (mediante la misura di correlazioni!) \rightarrow corrispondenza punto-punto tra l'oggetto e *IL piano della "ghost"* image: $z_b = z_a$

No chaos → no immagine! Chaos = fluttuazioni di intensità → fasci correlati

DIREZIONI dei raggi luminosi

, INFN

Consente di rifocalizzare le immagini ... e di cambiare il punto di vista

Fotografia plenottica: principio di funzionamento

Lippman (1908), Adelson and Wang (1992), Ng [2005]

Fotografia plenottica: principio di funzionamento

Lippman (1908), Adelson and Wang (1992), Ng [2005]

Fotografia plenottica: Applicazioni

Limiti della fotografia plenottica

INFN

→ una camera da 16 Megapixel si comporta come se avesse solo 4 Megapixel ... e il cambio di prospettiva è molto sacrificato ☺

L'imaging quantistico può aiutare ? 🙂

Sfrutta le correlazioni quantistiche della luce per disaccoppiare l'immagine dalla misura della direzione dei raggi luminosi!

* Imaging plenottico in correlazione

microlenti \rightarrow 1 lente !

Consente di rifocalizzare immagini sfocate, con la massima risoluzione possibile & un cambio di prospettiva molto ampio

CPI - alcuni risultati

CPI ha profondità di fuoco 40 volte superiore ad un'immagine plenottica standard, con uguale risoluzione !!!

CPI raggiunge profondità di fuoco maggiori, senza sacrificare la risoluzione !!

Microscopia plenottica in correlazione

6 times higher resolution, at fixed DOF (@ $z = 1250 \mu$ m) **6 times larger DOF**, at fixed resolution (@ $d = 50 \mu$ m)

INFN

Brevetto 2018 + 2 articoli

Amido in gel (campione 3D: 1 mm³):

Milena D'Angelo - Imaging quantistico

Immagine acquisita

) | N F N

Immagine rifocalizzata a -280 um

Immagine rifocalizzata a +350 um

Imaging plenottico in correlazione tra piani

F. Di Lena, Tesi dottorato (2019) + brevetto 2019 + Opt. Exp. 2020

2 diversi piani arbitrari scelti all'interno della scena 3D di interesse sono focalizzati dalla lente su 2 sensori disgiunti

Prototipo di una camera plenottica in correlazione

Milena D'Angelo - Imaging quantistico

Immagine acquisita

CPI: immagine rifocalizzata

CPI: tutto a fuoco

Vantaggi dell'imaging plenottico in correlazione

Rifocalizzazione, senza scansioni, di oggetti 3D Acquisizione in parallelo di prospettive multiple \rightarrow 3D imaging

con

Risoluzione al limite di diffrazione Profondità di fuoco senza precedenti, a una data risoluzione Capacità di attenuare turbulenze/scattering ...

Milena D'Angelo - University of Bari - Lightfield microscopy with correlated beams

* Progetto Qu3D – Quantum 3D imaging ad alta velocità e alta risoluzione

Coordinatore:, UINFN sez. Bari *Partners:* Politecnico di Losanna, Università di Olomouc, Planetek Hellas

FNSNF Swiss National Science Foundation

Quantum technology: more security and improved imaging

21/Nov/2019

INFN

* Progetto Qu3D – Quantum 3D imaging ad alta velocità e alta risoluzione

Conclusioni & prospettive

- *Correlation Plenoptic Imaging
 - *Sfrutta le correlazioni insite nella luce per portare l'imaging plenottico verso il suo limite ultimo di risoluzione e profondità di fuoco !!
 - *Rifocalizzaizone e imaging 3D

*CPI = correlazioni al lavoro → pronti per la 2° rivoluzione quantistica ;)

*Prospettive future:

*CPI al lavoro : microscopia, space imaginng, imaging 3D,... → super-risoluzione, real-time, 3D imaging, turbulence free,...

*Grazie per l'attenzione

Per info, curiosità, ecc:

<u>milena.dangelo@uniba.it</u>