Incontri di Orientamento Consapevole Bari, 23 Febbraio 2022

Meccanica quantistica, ma cosa vuoi farmi credere?

 $|\Psi\rangle$ = (|gatto vivo \rangle + |gatto morto \rangle) / $\sqrt{2}$

e c'è di più: l'inseparabilità, o entanglement

Due sistemi fisici entangled perdono la propria individualità: lo stato del singolo sistema non è definito!

Molti problemi fondamentali

Can quantum mechanics be considered complete?

If you think you understand quantum mechanics, you do not understand quantum mechanics

Entanglement: dalla fisica fondamentale alla 2° rivoluzione quantistica

doi:10.1038/nature11472

Quantum teleportation over 143 kilometres using

active feed-forward

Xiao-Song Ma^{1,2}†, Thomas Herbst^{1,2}, Thomas Scheidl¹ Bernhard Wittmann^{1,2}, Alexandra Mech^{1,2}, Johannes K Rupert Ursin¹ & Anton Zeilinger^{1,2}

Computer quantistico

Crittografia quantistica

Imaging quantistico

"ghost" imaging

Imaging quantistico La scienza che vede lontano ... anche quando non guarda

Una fotografia sfocata e una sorgente luminosa rumorosa non sono da buttar via ... anzi, sono ricche di informazione ... l'imaging quantistico consente di utilizzarla al meglio

Imaging standard

Lente = strumento per focalizzare → corrispondenza punto-punto tra l'oggetto e /L piano immagine

No info sulla direzione dei raggi luminosi!

Oggetti al di fuori della profondità di fuoco appaiono sfocati

Il 1° esperimento di imaging quantistico:

"ghost" imaging con fotoni entangled

10 anni dopo: Ghost imaging senza lenti

Sorgente di luce caotica = "strumento" per focalizzare (mediante la misura di correlazioni!) \rightarrow corrispondenza punto-punto tra l'oggetto e *IL piano della "ghost"* image: $z_b = z_a$

No chaos → no immagine!

Chaos = fluttuazioni di intensità -> fasci correlati

Fotografia plenottica (o lightfield)

Consente di rifocalizzare le immagini ... e di cambiare il punto di vista

Milena D'Angelo - Imaging quantistico

Fotografia plenottica: principio di funzionamento

Lippman (1908), Adelson and Wang (1992), Ng [2005]

SENSORE: info sulle
DIREZIONI dei
raggi luminosi

Tracciamento dei raggi
→ rifocalizzazione

$$L_{\alpha D}(\mathbf{x}, \mathbf{u}) =$$

$$= L_{D}\left(\frac{\mathbf{x}}{\alpha} + \left(1 - \frac{1}{\alpha}\right)\mathbf{u}, \mathbf{u}\right)$$

Rifocalizzazione:

$$I_{\underline{\alpha}\underline{D}}(\boldsymbol{x}) \propto \int \underline{L_{\underline{\alpha}\underline{D}}}(\boldsymbol{x}, \boldsymbol{u}) d^2 u$$

Fotografia plenottica: principio di funzionamento

Lippman (1908), Adelson and Wang (1992), Ng [2005]

Fotografia plenottica: Applicazioni

www.raytrix.de/

Standard 4MP Camera

Raytrix Lightfield Camera R5µ

55 µm 3D 125 µm 180 µm 180 µm rapterior (S)

Machine Vision

www.raytrix.de/

Surface inspection

Contaminations in Glass

R. Prevedel: Nature Meth. 2014 & 2019

- Imaging 3D dell'attività neuronale
- Imaging 3D di processi biologici veloci

Plant breeding

3D

Picking

Weeding

Milena D'Angelo - Imaging quantistico

Limiti della fotografia plenottica

→ una camera da 16 Megapixel si comporta come se avesse solo 4 Megapixel ... e il cambio di prospettiva è molto sacrificato

L'imaging quantistico può aiutare? ©

Imaging plenottico in correlazione

Sfrutta le correlazioni quantistiche della luce per disaccoppiare l'immagine dalla misura della direzione dei raggi luminosi!

Misura della direzione

Quantum technology: more security and improved imaging

*Imaging plenottico in correlazione

Sorgente di luce entangled/caotica

SENSORE 1 → direzione dei raggi di luce

SENSORE 2 → immagine "fantasma" della scena

microlenti → 1 lente!

Consente di rifocalizzare immagini sfocate, con la massima risoluzione possibile & un cambio di prospettiva molto ampio

CPI ha profondità di fuoco 40 volte superiore ad un'immagine plenottica standard, con uguale risoluzione !!!

CPI raggiunge profondità di fuoco maggiori, senza sacrificare la risoluzione!!

Microscopia plenottica in correlazione

Brevetto 2018 + 2 articoli

6 times higher resolution, at fixed DOF (@ $z = 1250 \mu m$) 6 times larger DOF, at fixed resolution (@ $d = 50 \mu m$)

Microscopia plenottica in correlazione

Brevetto 2018 + 2 articoli

Amido in gel (campione 3D: 1 mm³):

Immagine acquisita

Immagine rifocalizzata a -280 um

Immagine rifocalizzata a +350 um

Grani: 20 um

Imaging plenottico in correlazione tra piani

F. Di Lena, Tesi dottorato (2019) + brevetto 2019 + Opt. Exp. 2020

2 diversi piani arbitrari scelti all'interno della scena 3D di interesse sono focalizzati dalla lente su 2 sensori disgiunti

Prototipo di una camera plenottica in correlazione

Vantaggi dell'imaging plenottico in correlazione

Rifocalizzazione, senza scansioni, di oggetti 3D

Acquisizione in parallelo di prospettive multiple \rightarrow 3D imaging

con

Risoluzione al limite di diffrazione

Profondità di fuoco senza precedenti, a una data risoluzione

Capacità di attenuare turbulenze/scattering ...

*

Progetto Qu3D – Quantum 3D imaging ad alta velocità e alta risoluzione

Coordinatore:, UINFN sez. Bari

Partners: Politecnico di Losanna, Università di Olomouc, Planetek Hellas

SWISS NATIONAL SCIENCE FOUNDATION

Quantum technology: more security and improved imaging

21/Nov/2019

*

Progetto Qu3D – Quantum 3D imaging ad alta velocità e alta risoluzione

Conclusioni & prospettive

*Correlation Plenoptic Imaging

- *Sfrutta le correlazioni insite nella luce per portare l'imaging plenottico verso il suo limite ultimo di risoluzione e profondità di fuoco!!
- *Rifocalizzaizone e imaging 3D
- *CPI = correlazioni al lavoro → pronti per la 2° rivoluzione quantistica;)

*Prospettive future:

*CPI al lavoro: microscopia, space imaginng, imaging 3D,... → super-risoluzione, real-time, 3D imaging, turbulence free,...

*Grazie per l'attenzione

Per info, curiosità, ecc:

milena.dangelo@uniba.it