Course of Study: Statistics

Academic Year: 2023/2024
Academic Subject: Mathematical analysis and calculus of probability

Learning Objectives	The course aims to provide the basic tools of differential and integral calculus for functions of several variables and the main notions of the theory of probability, random variables and their indicators. These tools will enable the student to successfully attend the other classes and the subsequent professional statistician activity. The lessons are aimed at enhancing and refining the logical deductive skills and the critical sense of the student, to get him used to expressing himself with precision and language properties.
Course prerequisites	All the notions of the course of "Institutions of Mathematical Analysis" of the first year.

Teaching strategie
Expected learning outcomes in terms of
Knowledge and understanding on:
Applying knowledge and understanding on
Soft skills

Theoretical lectures and exercises.

The main notions and the most important results of differential and integral calculus for real functions of several variables as well as the basic theory of probability and random variables (discrete and continuous).

The student will have to develop the ability to solve problems by applying the theorems, tools and methods learned in class.

The student must be able to critically evaluate different operational solutions in order to identify the most suitable for the objectives to be pursued.

Syllabus	
Content knowledge	$\begin{array}{l}\text { Combinatorcs. Different ways to extract a sample of } k \text { elements from a set of } n \\ \text { objects: ordered and unordered samples, with or without repetition. } \\ \text { Arrangements, permutations, combinations. Factorial and binomial } \\ \text { coefficients. Newton's binomial formula. Generalized binomial coefficients and } \\ \text { multinomial coefficients. Combinatorial probability. } \\ \\ \\ \\ \\ \text { Notions on the cardinality of sets. Countable and uncountable sets; } \\ \text { countability of sets of natural, integer and rational numbers; uncountability of } \\ \text { the set of real numbers. } \\ \text { Series. Partial sums. Convergent, divergent and oscillating numerical series; } \\ \text { sum of a series. Necessary condition for the convergence of a series. The } \\ \text { geometric series theorem. Series with (definitively) positive terms. Harmonic } \\ \text { series and generalized harmonic series. Criterion of comparison, asymptotic } \\ \text { comparison, root and ratio. Absolutely convergent series. Series with terms of } \\ \text { alternating sign; Leibniz's theorem. Power series: radius of convergence, }\end{array}$
derivation and term-by-term integration of a power series, Taylor series of some	
elementary functions.	
Axiomatic theory of probability. Set algebras and event logic. Equivalence	

and in R^{n}. Operations between vectors: sum, product by a scalar and scalar product. Orthogonal vectors in R^{n}. Euclidean norm and distance in R^{n}. Open sphere, closed sphere and spherical surface. Internal, external, boundary and accumulation points for a subset of R^{n}. Open sets and closed sets of R^{n} : examples and properties. Bounded sets.

Scalar and vector values functions of several variables. Image, graph and components of a function. Coordinate lines and contour lines for a function of two variables. Level surfaces for functions of n variables. Convergence and continuity for scalar or vector functions of n variables. Constant functions and projection functions are continuous functions. Limit theorems. Continuity of elementary functions of n variables. If f is a continuous function, the set of solutions of an inequality of the type $f(x)<c$ or $f(x)>c$, (resp. $f(x) \leq c$ or $f(x) \geq c)$, is an open (resp. closed) set. A vector function is convergent (continuous) if, and only if, all of its components are convergent (continuous). Arc-connected sets in R^{n}. Bolzano' Theorem and Weierstrass's Theorem.

Differential calculus for functions of \boldsymbol{n} variables. Partial derivatives and directional derivatives, gradient and differential of a function of R^{n} in R . Differentiability. Necessary conditions for differentiability. Sufficient condition for differentiability. Tangent hyperplane and normal line to a level set of a differentiable function. Vector derivative of a function of a variable with vector values: its geometric meaning. Jacobian and differential matrix of a function of R^{n} in R^{k}. Differential of the composite function. Partial derivatives of higher order; Schwarz theorem on the invertibility of the order of derivation. Hessian matrix of a function of R^{n} in R. Taylor polynomial of the second order. Relative minimum and maximum points, saddle points: necessary conditions and sufficient conditions. (Strictly) convex or concave functions; examples and properties. Characterization of convex, concave, etc. functions. Convex functions and optimization. Constrained minimum and maximum points: Lagrange multipliers.

Integral calculus for functions of two variables. Area of a rectangle and of a domain normal to an axis. Measurable sets according to Peano-Jordan and their measure. Riemann integrability for bounded functions on a measurable set of R2 and their integral. The integral as limit of Cauchy sums. Properties of the integral. Integrability of continuous functions in a normal domain with respect to an axis: reduction formulas. Integrability of continuous functions in a closed and measurable set. Integrability of generally continuous and bounded functions into a measurable whole. Change of variables in a double integral. Polar coordinates. Calculation of integrals by transformation into polar coordinates. Improper integrals in 2 or more variables. Integral of the Gaussian function. Notes on measurement and integration according to Lebesgue.

Multidimensional random variables. Joint distribution and marginal distributions. Joint distribution function and marginal distribution functions. Conditional distributions. Transformations of discrete and continuous random variables. Characteristic values of multidimensional distributions: mixed moments, correlation coefficient, conditional expected values. Multivariate normal density.

Convergence of random variables. Characteristic function, moment generating

Dipartimento di Economia e Finanza

	function and probability generating function. Sequences of random variables. Convergence in law (in distribution). Convergence of the hypergeometric distribution to the binomial. Rare event theorem. Central Limit Theorem. Markov and Chebychev inequality. Convergence in probability and the weak law of large numbers. Almost certain convergence and strong law of large numbers. Outline of other types of convergence.
Texts and readings	M. Brabanti, C.D. Pagani, S. Salsa: Matematica, Calcolo infinitesimale e algebra lineare, Zanichelli. G. Dall'Aglio, Calcolo delle probabilità, Zanichelli. D.M. Cifarelli, Introduzione al calcolo delle probabilità, McGraw-Hill.
Notes, additional materials	
Repository	

Assessment	
Assessment methods	Written and successive oral exam. The written exam consists in various exercises on different topics of the course. The oral exam consists in the discussion of the written test and the verification of knowledge on additional topics that are not covered by the written test: the definitions of the concepts and the statements of the theorems covered in the course are required. The proofs of the main results are also required. In order to be admitted to the oral exam it is necessary to pass the written exam.
Assessment criteria	The following aspects are equally valued - the knowledge and understanding of the notions of the course, - the ability to apply the notions learned to the resolution of exercises, - the autonomy of judgment, - the ability to expose with precision and rigour, - the capacities to continue learning.
Final exam and grading criteria	The final mark is a global evaluation of the written and oral exams.
Further information	

