General information	
Academic subject	MATHS
Degree course	Nautical Science and Maritime Management
Academic Year	I
European Credit Transfer and Accumulation System (ECTS)	12
Language	Italian
Academic calendar (starting and ending date)	I year - / semester
Attendance	No, but attendance is strongly recommended

Professor/ Lecturer	
Name and Surname	Fernando Carta
E-mail	Fernando.carta@uniba.it
Telephone	+393393303035
Department and address	Mariscuola Taranto
Virtual headquarters	
Tutoring (time and day)	

Syllabus	
Learning Objectives	To provide students with a good foundation of theoretical, methodological and applicative skills in the fundamental areas of the discipline. Skills of analysis and synthesis, individual learning, problem solving, understanding and use of mathematical models of both scientific and applied interest will be developed.
Course prerequisites	Basic content of mathematical analysis.
Contents	1) Scalar functions of several variables, natural domain, graph. Vector space Surrounding of a point of, isolated point and accumulation point. Notion of definitively verified properties. Local extreme points.

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { 2) Limits and continuity for functions of several variables. Open, closed, finite } \\ \text { sets. Concepts of interior point, open set, exterior point, closed set. Frontier } \\ \text { points, limited sets. } \\ \text { 3) Directional and partial derivatives, gradient. Notion of critical point, } \\ \text { Fermat's theorem. Differentiability, best linear approximation. Regularity of } \\ \text { differentiable functions, total differential theorem. } \\ \text { 4) Subsequent derivatives, Schwarz theorem, Hessian matrix. Taylor } \\ \text { polynomial for functions of several variables. Free extremes of functions with } \\ \text { scalar values. } \\ \text { 5) Sign of real symmetric matrices, study of the nature of critical points. } \\ \text { 6) Introduction to Optimisation Problems. Examples: resource planning } \\ \text { problems, scheduling problems. Examples of non-linear problems. The } \\ \text { modelling approach to optimisation problems. Deterministic and stochastic } \\ \text { models. Continuous, discrete and mixed optimisation problems. } \\ \text { 7) Definition examples of mathematical scheduling models. Linear } \\ \text { programming. Classical examples of linear programming problems: the diet } \\ \text { problem. Standard form problems. Admissible region. Convex sets. Admissible } \\ \text { solutions and optimal solution. The case of an unlimited admissible region. } \\ \text { Multiple solutions. The graphical method for linear programming problems in } \\ \text { two dimensions. Linear programming problems in standard form. Slack } \\ \text { variables. } \\ \text { 8) The augmented problem. The simpllex method. Table structure of the } \\ \text { simpllex method. The case of unlimited functions. The case of multiple } \\ \text { solions. } \\ \text { solutions. Degenerate solutions. Anti-cycle rules: Bland's rule. Problems in non- } \\ \text { standard form. Minimisation of linear functions. The case of decision variables } \\ \text { with negative values. Constrained decision variables. Equality constraints. } \\ \text { Major-equal constraints. Artificial variables and surplus variables. Definition } \\ \text { of the artificial problem. The two-stage simplex method. Post-optimal } \\ \text { analysis. Shadow prices. } \\ \text { 9) The transport problem: the mathematical model. Eligibility condition for the }\end{array} \\ \text { Fathoming criteria. Optimality testing. The Branch-and-Bound method for }\end{array}\right\}$

	integer and mixed problems. Fathoming criteria for integer programming problems.
Books and bibliography	1) Bertsch, Dell'Aglio, Giacomelli - Epsilon 1 Primo corso di Analisi Matematica - Mc Graw Hill
	2) F. Hillier, G. Lieberman, Ricerca Operativa, McGraw-Hill 3) Any operational research exercise text
Additional materials	

Work schedule			
Total	Lectures	Hands on (Laboratory, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
Hours			
300	96		204
CTS			
12	8		4
Teaching strategy		Lectures in which the subject content is explained, with theorem demonstrations and examples. An important part is the presentation of the resolution of selected exercises in order to exemplify the theory and provide the basis for practical applications.	
Expected learning outcomes			
Knowledge and understanding on:		o Knowledge of the definitions and theorems in the programme o Knowledge of methods for solving exercises. o Understanding of content and ability to carry out demonstrations independently. o Ability to solve problems using the course content	
Applying knowledge and understanding on:		o Understanding of mathematical modelling methods in various fields o Ability to solve application problems related to the course content. o Ability to analyse the results obtained	
Soft skills		- Autonomy of judgement At the end of the course the student should be able to - Explain the content covered in the course, demonstrating an understanding of its logical approach and aims. - Demonstrate knowledge of solution methods for solving applied problems - Be able to model a problem using the most appropriate methods, be able to execute the relevant solution algorithms and interpret the results. - Communication skills o Be able to explain the approach to solving a problem in a clear and rigorous manner. o Be able to justify the choice of procedure adopted in solving a problem. - Ability to learn autonomously o Be able to research, understand and apply new content and methods.	

Assessment and feedback

Methods of assessment	Written test with possible oral test	
Evaluation criteria	- Knowledge and understanding - Conscious knowledge of the definitions, theorems and proofs provided by the program. - Applying knowledge and understanding - Understanding of mathematical modelling methods, ability to use them independently in problem solving. - Autonomy of judgment o Ability to expound, both written and oral, the course content by demonstrating that they have acquired it consciously. - Communication skills - Knowing how to clearly and rigorously explain the theoretical contents and approaches adopted in solving a problem. - Capacities to continue learning - Evidence of active understanding the disciplinary contents, ability to accurately identify appropriate solution approaches.	
Criteria for assessment and attribution of the final mark	Grade	Descriptor
	<18 insufficient	Fragmented and superficial knowledge of the contents, errors in applying the theoretical results in solving exercises, lack of exposure.
	18-20	Knowledge of the contents just sufficient but general, simple exposition, uncertainties in the application of the theory in solving the exercises.
	21-23	Appropriate but not in-depth knowledge of contents, ability to apply theoretical concepts, ability to present contents in a simple way.
	24-25	Knowledge of content appropriate and extensive, discreet ability to apply knowledge in exercise resolution, ability to present contents in an articulated way.
	26-27	Precise and complete knowledge of contents, good ability toa pply knowledge, analytical skills, clear and correct presentation.
	28-29	Wide, complete and in-depth knowledge of contents, good application of contents, good ability to analyze and synthesize, safe and correct exposure
	30 30 with lode	Very broad, complete and in-depth knowledge of the contents, well-established ability to solve problems using the results of The theory, excellent analysis and synthesis skills, mastery of exposure
Additional information		

