

SYLLABUS - LM-Sc.Mat.

Principali informazioni sull'insegnamento		
Denominazione	Laser Materials processing	
dell'insegnamento		
Corso di studio	Scienza e tecnologia dei materiali LM-Sc.Mat.	
Anno di corso	Secondo	
Crediti formativi universitari (CFU) / European Credit Transfer and Accumulation System (ECTS): : 6		
SSD	FISO3	
Lingua di erogazione	Inglese	
Periodo di erogazione	1 semestre	
Obbligo di frequenza	Per la parte di Laboratorio	

Docente	
Nome e cognome	Caterina Gaudiuso, Antonio Ancona
Indirizzo mail	caterina.gaudiuso@uniba.it; antonio.ancona@uniba.it
Telefono	+39 0805442371
Sede	Dipartimenti di Fisica, Università di Bari Aldo Moro, via Edoardo Orabona, 4, Bari (Italy)
Sede virtuale	Le lezioni si tengono in modalità tradizionale, in caso di necessità contingenti verrà utilizzata la piattaforma Microsoft Teams
Ricevimento (giorni, orari e modalità)	Contattare tramite email per fissare un appuntamento (in generale martedì e giovedì pomeriggio)

Syllabus	
Obiettivi formativi	Conoscenza e comprensione.
	Le applicazioni dei laser nella lavorazione dei materiali si sono evolute sin
	dall'invenzione del laser nel 1960. Le prime applicazioni si sono concentrate su
	processi come il taglio, la saldatura ed i trattamenti termici delle superfici. Nel
	corso degli anni sono stati sviluppati nuovi processi laser come la formatura laser,
	la pallinatura, la foratura, la marcatura, la stampa 3D, le microlavorazioni e le
	nanolavorazioni. Questo corso fornisce le conoscenze di base delle principali aree
	di applicazione dei laser nel campo del manufacturing ed ha lo scopo di fornire agli
	studenti laureati il background necessario per prepararli all'industria o al mondo
	della ricerca in uno qualsiasi di questi settori.
Prerequisiti	Fisica dei Laser con Laboratorio
Contenuti di insegnamento	Sistemi di lavorazione laser industriali; Processi di lavorazione laser industriali
(Programma)	macro: taglio, saldatura, foratura, marcatura, trattamenti superficiali (hardening,
	rivestimenti, alligazioni), manifattura additiva. Interazione laser-materia con
	impulsi laser ultrabrevi in materiali opachi e trasparenti. Regimi di ablazione laser.
	Microlavorazioni laser: microforatura, microfresatura, testurizzazione superficiale
	alla microscala ed alla nanoscala, scrittura di guide d'onda, scrittura di reti
	microfluidiche. Texturing laser per la funzionalizzazione di superfici e applicazioni
	nel campo della riduzione d'attrito, variazione della bagnabilità, biocompatibilità,
	antibatterico, variazione della emissività e assorbitività. Laser Induced Breakdown
	Spectroscopy.
	Esperienze di laboratorio: Misura della soglia di ablazione laser; LIBS;
	microforatura laser; nanostrutturazione di superfici e loro caratterizzazione.
Testi di riferimento	1) Elijah Kannatey-Asibu, Jr., Principles of lasers materials processing, Wiley
	2009
	2) Razvan Stoian, Jörn Bonse, Ultrafast Laser Nanostructuring, Springer Series
	in Optical Sciences 239, 2023
Note ai testi di riferimento	Solo alcuni capitoli e/o sezioni dei testi indicati.

SYLLABUS - LM-Sc.Mat.

Organizzazione d	ella didattica		
Ore			
Totali	Didattica frontale	Pratica (laboratorio, campo, esercitazione, altro)	Studio individuale
150	40	15	95
CFU/ETCS			
6	5	1	

Metodi didattici	
	Lezioni frontali con slide multimediali, lavori di gruppo all'interno delle esperienze di laboratorio. L'insegnamento, relativamente alla parte teorica potrà essere erogato in modalità blended learning (didattica mista, frontale e a distanza) in base alle necessità contingenti. La parte di laboratorio non sarà erogata in modalità e-learning.

Risultati di apprendimento previsti		
Conoscenza e capacità di comprensione	Dei concetti fondamentali dei processi di lavorazione laser, relativi sia alla macroscala che alla microscala, e dei fenomeni fisici peculiari innescati in seguito all'interazione della radiazione laser con la materia che ne sono alla base.	
Conoscenza e capacità di comprensione applicate	capacità di analizzare l'influenza dei principali parametri laser sui diversi processi di lavorazione e degli ambiti applicativi in cui essi si inseriscono, sia a livello industriale che a livello di ricerca; capacità di correlare le caratteristiche morfologiche delle lavorazioni laser a specifiche proprietà (es. meccaniche, ottiche,)	
Competenze trasversali	 Autonomia di giudizio valutare l'attendibilità dei dati sperimentali ottenuti e delle strategie di lavorazione laser più appropriate a seconda della/o specifica/o applicazione/processo e del materiale da trattare Abilità comunicative utilizzo del linguaggio scientifico appropriato al contesto (tecnico o divulgativo), utilizzo di analogie con situazioni e fenomeni di comune percezione in ambiti affini Capacità di apprendere in modo autonomo Capacità di ricerca di fonti bibliografiche di supporto per l'analisi critica dei dati sperimentali e dei risultati ottenuti in laboratorio 	

Valutazione	
Modalità di verifica	Report scritti sulle esperienze di laboratorio dove verrà valutata l'accuratezza dei
dell'apprendimento	dati sperimentali, valutazione degli errori di misura, approfondimento dell'analisi
	(40%). Esame orale per la parte teorica dove verrà valutata la conoscenza dei
	contenuti del corso, capacità di elaborazione dei concetti appresi e la capacità di
	scegliere il tipo di laser con le caratteristiche più opportune in base alla sua
	specifica applicazione (60%).
Criteri di valutazione	Conoscenza e capacità di comprensione
	è sufficiente una conoscenza qualitativa ma puntuale dei processi laser e dei
	fenomeni alla loro base; è valutata positivamente la conoscenza formale dei
	modelli fisici e matematici che descrivono il processo di interazione laser-materia
	Conoscenza e capacità di comprensione applicate
	È sufficiente individuare la tipologia di processo laser utile per ciascuna
	applicazione ed essere in grado di stabilire correlazioni tra i parametri laser, i
	diversi processi di lavorazione, la struttura dei materiali modificati tramite laser e

Prof. Luigi Gentile Coordinatore Interclasse tel. 080 544 2033 luigi.gentile@uniba.it

SYLLABUS – LM-Sc.Mat.

Altro	
attribuzione dei voto finale	Da 1 a 17 → Gli studenti non sono in grado di fornire una descrizione di base de processi e delle tecniche discusse durante il corso. Da 18 a 24 → Gli studenti sono in grado di fornire una descrizione sufficiente de processi e delle tecniche discusse durante il corso. Da 25 a 27 → Gli studenti sono in grado di fornire una buona descrizione de processi e delle tecniche discusse durante il corso. Da 28 a 30 cum laude → Gli studenti sono in grado di fornire una descrizione avanzata dei fenomeni alla base dei processi e delle tecniche discusse durante i corso, sono in grado di analizzare in maniera autonoma i dati acquisiti ir laboratorio e di rielaborarli correttamente, arrivando a conclusioni fisicamente rilevanti
Criteri di misurazione dell'apprendimento e di attribuzione del voto finale	assorbitività, durezza,) • Autonomia di giudizio è necessario giustificare l'uso della terminologia e dei modelli di analis appropriati; è valutata positivamente la capacità argomentativa delle scelte d progetto; • Abilità comunicative è necessario utilizzare correttamente la terminologia scientifica; è valutato positivamente l'utilizzo di modalità comunicative multimediali o dimostrative • Capacità di apprendere è necessario essere in grado di attingere autonomamente a fonti diverse e d applicare conoscenze acquisite autonomamente alla soluzione dei problemi Accertamento dell'acquisizione delle nozioni sperimentali (tramite le relazioni d laboratorio) e teoriche (tramite esame orale). Voti: