

General information			
Academic subject	ORGANI	C CHEMIS	STRY
Degree course	MATERIALS SCIENCE AND TECHNOLOGY L-30		
Academic Year	Second year I semester		
European Credit Transfer and Accumulation			6
System (ECTS)			
Language	Italian		
Academic calendar (starting and a		according to the course rules	
ending date)			
Attendance	Attendance is g		ce is governed by the Course rules

Professor/ Lecturer	
Name and Surname	Lucia D'Accolti
E-mail	lucia.daccolti@uniba.it
Telephone	0805442068
Department and address	Chemistry and Physics Department via Orabona, 4
Virtual headquarters	Teams code
Tutoring (time and day)	Tuesday and Friday 9:00-10:00 a.m.

Syllabus		
Learning Objectives	Basic knowledge about organic compounds, the chemical processes	
	for obtaining them, the relationships between structure and	
	chemical-physical properties.	
Course prerequisites	General and Inorganic Chemistry. Chemical bonding. Acids and	
	bases. Basic principles of thermodynamics. Basic knowledge of	
	mathematics	
Contents	Introduction: references on the concepts of covalent and ionic	
	bonding. Molecular orbitals. Hybridization. Alkanes: structure and	
	nomenclature. Conformational isomers. Cycloalkanes.	
	Stereoisomerism: configuration stereoisomers. Enantiomers and	
	diastereoisomers. Absolute configurations. Optical activity. Alkenes	
	and alkynes: structure and nomenclature. Geometric isomeric in	
	alkenes and dienes. Electrophilic addition to alkenes: addition of	
	halogen hydric acids, hydration. Regioselectivity, Markovnikov's	
	rule. Stereoselective and stereospecific additions: addition of	
	halogens, hydroxylation. Hydrogenation of alkenes. Alkyl halides:	
	nomenclature. Aliphatic nucleophilic substitution reactions SN1 and	
	SN2. Elimination reactions E1 and E2. Alcohols, ethers, and thiols:	
	nomenclature. Acidity of alcohols and thiols. Alcohol reactions:	
	conversion to alkyl halides, dehydration, oxidation. Reactions of	
	formations of ethers and epoxides; opening reactions of epoxides.	
	Oxidation of thiols. Aromatic hydrocarbons: Benzene and	
	derivatives. Aromaticity and resonance. Electrophilic aromatic	

	T
	substitution reactions: mechanism and effect of substituents.
	Halogenation reactions, sulfonation, nitration, Friedel-Crafts
	reactions. Notes on polynuclear and heterocyclic aromatic
	hydrocarbons. Phenols: acidity. Amines: structure, nomenclature,
	and basicity. Aldehydes and ketones: structure, nomenclature, and
	methods of synthesis. Reactivity of the carbonyl group and
	nucleophilic addition reactions: reactions with amines and alcohols.
	Oxidation and reduction reactions. Keto-enolic tautomerism
	Carboxylic acids and derivatives: nomenclature and acidity of
	carboxylic acids. Derivatives of carboxylic acids: chlorides,
	anhydrides, esters, amides. Acylic nucleophilic substitution
	reactions. Condensation reactions of enolate anions: acidity of alpha
	hydrogens of carbonyl compounds and esters. Aldol and Claisen
	condensation.
Books and bibliography	Solomons Introduction to organic chemistry,
Additional materials	Any organic chemistry book can be useful integrated with
	classroom lessons

Work schedu	le				
Total	Lectures		Hands on (Laboratory, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours	
Hours					
150	40		15	95	
ECTS					
6	5		1		
Teaching strategy		Lesson with the use of PowerPoints and the blackboard, classroom exercises and laboratory experiences			
Expected lear outcomes	rning				
Knowledge and understanding on:			Students must have knowledge on the characteristics, and properties of organic molecules as well as of some organic materials		
Applying knowledge and understanding on:			application of knowledge to the preparation of simple organic compounds		
Soft skills		0	Making judgements		

Assessment and	
feedback	
	Oral exam. In progress of the course of 2 or 3 partial tests in written form may also be adopted. Passing these tests with sufficiency may lead to a reduction in the topics to be taken to the final exam or even

	constitute the final evaluation, leaving the oral exam to those who have not achieved sufficiency or who aspire to a higher mark 2. Oral Partial hexam on ESSE3 monthly by the teacher and in accordance with the exam calendar. For those who have not participated in the ongoing tests or have not passed them, or have not accepted the result, the partial test is the means for the overall verification of learning.
Evaluation criteria	 Knowledge and understanding: Minimum level for passing the exam: knowledge of the various functional groups, nomenclature and stereochemistry of organic compounds and the fundamental characteristics of the various classes. Intermediate level: basic knowledge of the classes of reactions of organic chemistry described in the program Higher level: detailed knowledge of the mechanisms of organic reactions with stereochemical implications. Applied knowledge and understanding: Minimum level for passing the exam: derive the structure of an organic compound from the name and identify the class to which it belongs, and the functional groups present, as well as any stereochemical implications. Intermediate level: to identify a path of synthesis of an organic compound starting from simpler molecular structures. Higher level: to be able to describe in detail compatible with the knowledge transmitted during the program the synthetic steps identified in the development of a synthesis path for an organic compound. Making judgements: For the intermediate and higher levels: evaluate on different paths identified for the synthesis for an organic compound the most convenient for the number of steps and reduced presence of criticality. Communication skills: For all levels: demonstrate the knowledge of the correct scientific terminology, related to the knowledge required for the three levels, and expose with language properties the topics of the exam questions.

	 Ability to learn: In carrying out the exam, the proposed topics will have an increasing degree of depth to establish at what level of knowledge, fundamental, intermediate, and superior, the student's learning ability has been received.
Criteria for assessment	The exam is considered passed if all the topics of the course have
and attribution of the	been examined, while the final grade is essentially determined by the
final mark	autonomy of judgment and the ability to reason autonomously
Additional information	