

Corso di Laurea in SCIENZA E TECNOLOGIA DEI MATERIALI

Triennale – L30

General information			
Academic subject	GENERAL AND INORGANIC CHEMISTRY		
Degree course	MATERIAL S	CIENZE	
Academic Year	2021-2022		
European Credit Transfer and Accumulation Syste (ECTS)		ystem	6
Language	ITALIAN		
Academic calendar (starting and ending		1 st semester	
date)			
Attendance	Suggested		

Professor/ Lecturer	
Name and Surname	Francesco Fracassi
E-mail	francecso.fracassi@uniba.it
Telephone	+39 080 5442080
Department and address	Department of Chemistry, via Orabona, 4 70125 BARI (ITALY)
Virtual headquarters	
Tutoring (time and day)	Every day by appointment

Svllabus	
Learning Objectives	To acquire basic knowledge of chemistry that allows the student to perform the most common stoichiometric calculations and to be able to follow without difficulty other courses in chemistry and materials science
Course prerequisites	Basic knowledge of physics and mathematics at high school level
Contents	PRELIMINARY CONCEPTS Elements, compounds, molecules, allotropic states, chemical formulas, Lavoisier's law, Dalton's law, Einstein's law, atomic number, mass number, isotopes, isotopic abundance, homogeneous systems, heterogeneous systems, phase.
	MOLE Absolute and relative atomic mass, geonormal average atomic masses, Avogadro's number, concept of mole, calculation of the minimum formula. Exercises.
	ELECTRONIC STRUCTURE OF ATOMS Light, emission and absorption spectra, atomic theories of Rutherford and Bohr, particle-wave dualism, De Broglie's postulate, Heisenberg uncertainty principle, principles of quantum mechanical atomic theory, wave function and Schrödinger equation, quantum numbers and orbitals, point probability and radial probability, polyelectronic atoms, Pauli's principle and Hund's rule, AUFBAU, periodic table, ionization potential, electron affinity, periodic properties, metals, non-metals and semi-metals.
	CHEMICAL BOND Ionic bond, covalent bond, Lewis theory, VSER, quantum mechanical theory of chemical bond, VB, hybridization, resonance, Molecular Orbital (X2, HX), electronegativity, metallic bond (hints), secondary bonds. Exercises.

Corso di Laurea in SCIENZA E TECNOLOGIA **DEI MATERIALI**

Triennale – L30

	NOMENCLATURE AND REACTIONS Oxidation number, traditional nomenclature, IUPAC nomenclature, acid-base reactions - balancing, redox reactions - balancing, most common oxidants and reducing agents and their reactions, stoichiometric calculations, limiting reagent, reaction yield. Exercises.
	AERIFORM STATE Ideal and real gases, Boyle, Charles and Gay Lussac's laws, Avogadro's hypothesis, ideal gases equation of state, gas density, Dalton and Amagat's law, reactions between substances in the gaseous state, gas evolution in chemical reactions, combustion. Exercises. CONDENSED STATES Covalent, molecular, ionic, metallic solids, liquid state, vapor pressure of solids and liquids, Raoult's law, colligative properties
	NOTES OF CHEMICAL THERMODYNAMICS. State functions, heat, work, temperature, first law of thermodynamics, internal energy, enthalpy, reversible and irreversible transformations, second law of thermodynamics, entropy, free energy, criteria of spontaneity, variation of free energy with temperature, third principle of thermodynamics
	SOLUTIONS Concentrations, equivalent and normality. Exercises.
	NOTE of CHEMICAL EQUILIBRIUM Equilibrium constant, mass action law, heterogeneous equilibria, strong and weak electrolytes, Ostwald's law of dilution, solubility equilibrium.
	CHANGES OF STATE Clausius and Clapeyron's law, melting, evaporation, sublimation, condensation, solidification, frost, positive and negative deviations from Raoult's law, phase rule, distillation diagram (ideal and real cases), azeotrope, state diagram of water and carbon dioxide, eutectic diagrams.
	ACID BASIC THEORIES Acid base theory, strong and weak acids and bases, amphoteric, leveling effect of water, pH and pOH, degree of dissociation, calculation of the pH of strong acids and bases, weak acids and bases, calculation of the pH of mixtures of acids and bases strong, mixtures of weak acids or bases, strong-weak acid mixtures, Hydrolysis, buffer solutions. Exercises.
	NOTES OF ELECTROCHEMISTRY Galvanic cells, electrolytic cells, faraday's laws, standard hydrogen electrode, first kind, gas and insoluble salt electrodes, electromotive force and ddp, standard red-ox potentials, redox reaction predictions, Nernst equation, metal dissolution, pH measurement, metal corrosion and methods of protection, electrolysis and discharge order.
Books and bibliography	A.M Manotti Lanfranchi A. Tiripicchio, FONDAMENTI DI CHIMICA, Ambrosiana Ed.

Corso di Laurea in SCIENZA E TECNOLOGIA DEI MATERIALI

Triennale – L30

Additional materials	Only a few chapters and/or sections. Integration with lecture notes is suggested
	to make easier the text understanding

Work schedule				
Total	Lectures		Hands on (Laboratory, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
Hours				
150	40		15	95
ECTS				
6	5		1	
Teaching strateg	;y	Lectures	and numerical exercises in the classroom	
Expected learning	ng outcomes			
Knowledge and understanding o	n:	0	knowledge of the basic aspects of chemistry	
Applying knowledge and understanding on:		0	ability to perform elementary stoichiometric calcula	ations
Soft skills		 Mak 	ing informed judgments and choices	
		0	evaluate the reactivity of compounds and elements	\$
		Com	municating knowledge and understanding	
		0	skills in communication in the Italian language;	
		0	skills in exposing chemical problems	
		• Capa	acities to continue learning	
		0	It depends on the student's abilities and its applicat	tion to study.

Assessment and feedback		
Methods of assessment	written exam (51%), oral exam (49%)	
Evaluation criteria	 Ability to solve stoichiometry problems; 	
	 Knowledge of chemical nomenclature; 	
	 Knowledge of the atomic structure; 	
	Ability in the description of molecules;	
	 Prediction of the reactivity of elements and compounds 	
	• Knowledge of the main thermodynamic and electrochemical theories	
Criteria for assessment and	right answer the teacher's questions on the topics of the program with the degree	
attribution of the final mark	of detail used in class	
Additional information		