

Corso di Laurea in SCIENZA E TECNOLOGIA DEI MATERIALI

Triennale – L30

General information			
Academic subject	CONDENSED MATTER PHYSICS		
Degree course	MATERIALS SCIENCE AND TECHNOLOGY		
Academic Year	3rd		
European Credit Transfer and Accumulation Syst		ystem	8
(ECTS)			
Language	ITALIAN		
Academic calendar (starting and ending		1 ST October 2021 – 8 TH January 2022	
date)			
Attendance	HIGHLY REC	OMMENDED	

Professor/ Lecturer	
Name and Surname	Antonio Ancona
	Annalisa Volpe
E-mail	antonio.ancona@uniba.it
	<u>annalisa.volpe@uniba.it</u>
Telephone	0805442371
Department and address	Dipartimento Interateneo di Fisica "M. Merlin" stanza 236
Virtual headquarters	Codice Teams: zx8dhz1
Tutoring (time and day)	Tue-Thu 9.30-11.30

Syllabus	
Learning Objectives	 fundamental knowledge of classical physics and quantum physics basic knowledge of the structure of matter, physics and chemistry of condensed states, with operational and laboratory skills;
Course prerequisites	Basic concepts of Classical Physics and Mathematics
Contents	Introduction to the course. Black body emission. Photoelectric effect. Compton effect. Production, absorption and diffusion of X-rays. Wave-particle dualism. Uncertainty principle. Wave function and probability density. Bohr's model of the atom. Electronic structure of atoms. The hydrogen atom. The many-electron atom. Zeeman effect. Spin of the electron. Spin-orbit interaction. Introduction to solids. Band theory in solids (outline). Free electron model. Fermi level. Motion of electrons in periodic structures. Brillouin areas. Effective mass. Fermi-Dirac statistics. Applications to electrons in metal. Bose-Einstein statistics. Banded model. P-n diode. Notes on the physics of elementary particles. Numerical exercises on the contents of the course
Books and bibliography	 Alonso-Finn Vol III – Quantum and Statistical Physics Eisberg-Resnick – Quantum Physics of Atoms, Molecules, solids, Nuclei and Partcles
Additional materials	

Work schedule			
Total	Lectures	Hands on (Laboratory, working groups, seminar field trips)	s, Out-of-class study hours/ Self-study hours
Hours			
200	48	30	122

Corso di Laurea in SCIENZA E TECNOLOGIA DEI MATERIALI

Triennale – L30

ECTS				
8	6		2	
Teaching strategyLectures,The teachThe teachalso be d		Lectures The teac also be d	s, group exercises on topics of the course. ching is preferably delivered in frontal teaching but if necessary it can delivered remotely	
Expected learnin	g outcomes			
Knowledge and understanding o Applying knowle	n: dge and	0 0 0	Knowledge of the ideas and experiments that led t a classical to a quantum approach in physics. Knowing how to describe the evolution of the elect the atom through its modelling to the concept of er Knowing how to combine the results of classical p quantum physics to describe some properties of so Knowing the energy band structure in solids	o the transition from ron's behaviour from nergy bands in solids. physics with those of lids.
understanding o	n:	0	To know the effects that some products of nucleor order to understand their possible benefits and eliminate the possible damage they can generate.	ar processes have in I how to reduce or
Soft skills		 Mai Con Con Cap O 	king informed judgments and choices Critically evaluate possible experiments and extracta municating knowledge and understanding communication skills in Italian language; ability to express oneself in the presentation and d knowledge with appropriate scientific language, macities to continue learning Through the ability to transfer knowledge of the to	ible models issemination of one's pics learned.

Assessment and feedback	
Methods of assessment	Oral examination
Evaluation criteria	Learn about the evolution of classical physics and the experiments that led to a quantum-type approach. Knowing how to understand how experiments and theoretical evaluations led to the definition of the model of the atom. Knowing and being able to describe the behavior of the electron within a solid both in equilibrium conditions and in the presence of electric fields. Starting from the band model of semiconductor materials, knowing how to reconstruct the bands of a p-n diode and understand their operating principle. Have some basic knowledge about elementary particles and nuclear processes that involve them with particular attention to the damage or benefits that can be derived from them
Criteria for assessment and	The final grade is awarded out of thirty. The exam is passed when the grade is
attribution of the final mark	greater than or equal to 18
Additional information	