Principali informazioni sull'insegnamento		
Titolo insegnamento	Chimica dei materiali	
Corso di studio	SCIENZA E TECNOLOGIA DEI MATERIALI	
Crediti formativi	6	
Denominazione inglese	Materials chemistry	
Obbligo di frequenza	SI	
Lingua di erogazione	ITALIANO	

Docente responsabile	Andrea Listorti	Andrea.listorti@uniba.it	
Dettaglio crediti formativi	Ambito disciplinare	SSD	Crediti
	Caratterizzante	Chim/03	6
		•	
Modalità di erogazione	Periodo di erogazione	Anno di corso	Modalità di erogazione
		7 11110 41 40100	Prodanta di el ogazione
	I° semestre	3°	Lezioni frontali (48h)
Organizzazione della didattica			

Calendario	Inizio attività didattiche	Fine attività didattiche
	Secondo calendario didattico	Secondo calendario didattico

Syllabus		
Prerequisiti	Concetti base forniti dalla Chimica Generale e Inorganica. In particolare: il legame chimico, le proprietà periodiche, configurazioni elettroniche. Principi di base della termodinamica. Conoscenze di base di matematica.	
Risultati di apprendimento previsti	 Conoscenza e capacità di comprensione conoscenza delle principali classi di materiali, comprensione delle fondamentali differenze fra di essi. Conoscenza del ruolo svolto dai materiali, dipendente dalle loro proprietà di base, in diversi contesti tecnologici, e in particolare nello sviluppo di celle solari di terza generazione. Autonomia di giudizio Saper valutare il potenziale utilizzo di un materiale in base alle sue proprietà. Abilità comunicative - competenze nella comunicazione in lingua italiana; - capacità di espressione nella presentazione e divulgazione delle proprie conoscenze con linguaggio scientifico appropriato; - capacità di lavorare in gruppo. Capacità di apprendere e di trasferire le conoscenze di base sulle caratteristiche e sulle proprietà dei materiali. Capacità di apprendere e trasferire semplici procedure sperimentali. 	
Contenuti in breve	Il corso è volto a fornire una solida formazione di base di Chimica dello Stato Solido nell'ambito della Scienza e Tecnologia dei Materiali. L'obiettivo del corso è quello di completare la formazione scientifica degli studenti con le conoscenze di base sulla struttura e le proprietà dei sistemi in fase solida. Particolare attenzione è rivolta ai materiali avanzati per applicazioni energetiche.	

Programma in dettaglio	Introduzione ai materiali
	Definizione e prospettive storiche. Classificazione dei materiali.
	Materiali avanzati, l'esempio dei biomateriali. Materiali per l'energia.
	Cristallochimica descrittiva
	Classificazione dei solidi in base al tipo di legame chimico.
	Struttura dei solidi cristallini
	Sistemi cristallini e reticoli di Bravais. Principali strutture cristalline metalliche. Piani e direzioni nei cristalli. Polimorfismo e allotropia.
	Imperfezioni nei solidi Soluzioni solide metalliche. Difetti cristallini.
	Diagrammi di stato
	Regola delle fasi di Gibbs. Leghe binarie isomorfe. Leghe binarie eutettiche.
	Materiali metallici
	Introduzione. Diagramma di stato Ferro-carbonio.
	Materiali ceramici
	Introduzione. Strutture cristalline. Struttura della perovskite (CaTiO3). Carbonio e le sue forme allotropiche.
	Materiai nanostrutturati
	introduzione. Tecniche di produzione: approccio top-down e bottom-
	up. Applicazioni in ambito energetico. Biomateriali
	Introduzione ai biomateriali. Storia dei biomateriali.
	Proprietà dei materiali
	Cenni alle proprietà ottiche dei materiali. Cenni alle proprietà
	elettriche dei materiali.
	Materiali per l'energia
	La sfida energetica. Energie rinnovabili. Celle solari di terza
	generazione. Fotosintesi clorofilliana. Sistemi mimetici della natura:
	l'esempio delle celle solari a colorante (DSSC con esperienza di
	laboratorio). Un materiale innovativo in ambito energetico: l'esempio
	delle perovskiti ibride alogenuro. Utilizzo mirato dei concetti
	introdotti nel corso per l'approfondimento della relazione struttura
	proprietà nelle perovskiti ibride alogenuro.
	[Esperienza di laboratorio
	Assemblaggio e caratterizzazione di una cella a colorante organico
	naturale (DSSC)]
Testi di riferimento	Scienza e Tecnologia dei Materiali, Smith & Hashemi, Graw Hill.
	Dispense del Docente (biomateriali e materiali per l'energia)
Note ai testi di riferimento	Solo alcuni capitoli e in questi solo alcune sezioni
Metodi didattici	
	Lezioni frontali con slides, lavori di gruppo pre-, during e post- laboratorio.
Metodi di valutazione	Report di laboratorio, Esame orale
Criteri di valutazione	Conoscenza e capacità di comprensione
	Livello minimo per il superamento dell'esame: conoscenza delle varie
	classi di materiali e delle principali differenze fra di esse.
	Livello intermedio: conoscenza delle differenti proprietà dei materiali
	discussi nel corso, conoscenza delle funzionalità derivanti dalle diverse
	strutture/metodologie di preparazione.
	Livello superiore: Conoscenza approfondita delle proprietà dei
	materiali discussi nel corso con approccio critico alle problematiche
	poste. Capacità di tracciare collegamenti fra i diversi moduli didattici.
	Conoscenza e capacità di comprensione applicate
	Livello minimo per il superamento dell'esame: riconoscimento dei vari
	tipi di materiali introdotti nel corso in contesti tecnologici.
	Tapi di mateman indi odotti nei corso in contesti tecnologici.

Livello intermedio: conoscenza e discussione delle proprietà caratterizzanti i vari materiali con specifico riferimento ai contesti di applicazione degli stessi. Livello superiore: conoscenza approfondita e approccio critico ai requisiti dei materiali nelle varie applicazioni, compresa discussione di problematiche aperte. Capacità di relazionare le proprietà di base dei materiali al loro impiego in ambito tecnologico, con particolare riferimento alla conversione di energia luminosa Autonomia di giudizio Per i livelli intermedio e superiore: Valutare, con approccio indipendente, i vantaggi e le limitazioni dell'utilizzo dei diversi materiali in contesti applicativi. Abilità comunicative Per tutti i livelli: dimostrare la conoscenza della corretta terminologia scientifica, relativa alle conoscenze richieste per i tre livelli, ed esporre con proprietà di linguaggio gli argomenti delle domande di esame. • Capacità di apprendere Nello svolgimento dell'esame, gli argomenti proposti avranno un grado di approfondimento crescente al fine di stabilire a quale livello di conoscenze, fondamentale, intermedio e superiore, sia pervenuta la capacità di apprendimento dello studente. Altro