

SYLLABUS - L-30

Principali informazioni sull'insegnamento		
Denominazione	Chimica Fisica dei Materiali con Laboratorio Modulo B (Soft Matter)	
dell'insegnamento		
Corso di studio	Scienza e tecnologia dei materiali L-30	
Anno di corso	Terzo	
Crediti formativi universitari (CFU) / European Credit Transfer and Accumulation System (ECTS): : 5		
SSD	CHIM02	
Lingua di erogazione	Italiano/Inglese	
Periodo di erogazione	II semestre	
Obbligo di frequenza	SI PER LA PARTE DI LABORATORIO	

Docente	
Nome e cognome	Luigi Gentile
Indirizzo mail	luigi.gentile@uniba.it
Telefono	+39 0805442033
Sede	Dipartimenti di Chimica, Università di Bari "Aldo Moro", via Edoardo Orabona, 4,
	Bari (Italy)
Sede virtuale	Microsoft Teams (Se necessario)
Ricevimento (giorni, orari e	Contattare tramite email per fissare un appuntamento (in generale martedì e
modalità)	mercoledì pomeriggio)

Syllabus	
Obiettivi formativi	Conoscenza e comprensione. Lo scopo del corso è di fornire i fondamenti sulla composizione chimica e le proprietà chimico-fisiche dei tensioattivi e dei materiali polimerici in soluzione (Soft Matter) e polimeri termoplastici, in particolare le relazioni tra struttura supramolecolare e le proprietà micro- e/o macroscopiche. Acquisire conoscenze sulla preparazione dei materiali, le loro proprietà e sulle principali tecniche di caratterizzazione. Al termine del corso lo studente sarà in grado di: (i) familiarizzazione con alcune tecniche di caratterizzazione: reologia per liquidi e per solidi (DMA), dynamic light scattering (DLS) e tensione superficiale; (ii) Interpretazione dei dati strumentali e loro utilizzo per caratterizzare struttura e proprietà dei materiali.
Prerequisiti	Chimica generale, Analisi Matematica, Acquisizione e Rappresentazione dei Dati Sperimentali, Chimica Fisica, Fisica I e II.
Contenuti di insegnamento	Materiali.
(Programma)	Soluzioni regolari. Lattice model. Bragg-Williams approximation. Decomposizione binodale (nucleazione e crescita); Decomposizione spinodale e diagrammi di fase. Molecole anfifiliche: i tensioattivi. Termodinamica dei processi di self-assembly. Effetto dei tensioattivi sulla tensione superficiale (con esercitazione). Forma degli aggregati e parametro di impaccamento del tensioattivo (con esercitazione). Cristalli liquidi liotropici: Richiami sui principi dell'equilibrio termodinamico e sulla regola delle fasi. Diagrammi di fase binari tensioattivo-acqua di complessità varia. L'energia di Helfrich come misura del bending (stiffness) dei doppi strati fosfolipidici. Le molecole anfifiliche nelle industrie moderne: farmaceutiche, cosmetiche e alimentari oltre alle industrie dei detergenti. Sistemi microemulsivi. Le interfasi fluide. Le microemulsioni di Winsor I (olio-in-acqua Q/M/) Winsor II (M/Q) e Winsor III (bicontinuo). Il fallimento del parametro
	acqua, O/W), Winsor II (W/O) e Winsor III (bicontinue). Il fallimento del parametro d'impaccamento nella descrizione dei sistemi microemulsivi.

Prof. Luigi Gentile Coordinatore Interclasse tel. 080 544 2033 luigi.gentile@uniba.it

SYLLABUS - L-30

Stabilità colloidale. Interazioni attrattive di Van der Waals; Determinazione della costante di Hamaker in sistemi colloidali; interazioni elettrostatiche; La teoria DLVO e la stabilità dei sistemi colloidali.

Soluzioni polimeriche. Tipologie di polimeri; Dimensioni del random coil; Conformazione di polimeri reali: persistence length e contour length. Soluzioni Polimeriche: teoria di Flory-Huggins; il lattice model con numero di coordinazione Z-2; entropia configurazionale. Diagrammi di stato: lacune di miscibilità asimmetriche per sistemi polimero/solvente; polimeri diversi sono immiscibili tra loro; Diagrammi di stato di copolimeri a blocchi. Potenziale chimico solvente: bontà del solvente. Effetto dei polimeri sulla stabilità colloidale. Il peso molecolare del polimero è legato alla viscosità intrinseca dall'equazione di Mark-Houwink. La concentrazione di overlap (C*) dei blob polimerici e il peso molecolare.

Caratteristiche generali dei polimeri termoplastici e le loro proprietà meccaniche analizzabili tramite Dynamic Mechanical Analysis (DMA).

Tecniche sperimentali e proprietà dei materiali.

Tensione superficiale e fenomeni di superficie: Origine molecolare della tensione superficiale e definizione operativa; Bagnabilità e Relazione di Young; Relazione tra la concentrazione critica micellare (cmc) e la tensione superficiale.

Diffusione: Equazioni della diffusione di Fick; Equazione di Stokes-Einstein; Coefficiente di permeabilità. Random walk; Light scattering statico e dinamico; Misura del coefficiente di diffusione mediante Dynamic Light Scattering (con esercitazione). Le fasi diffusive del processo di cementazione con l'ottenimento della martensite. Il drogaggio per diffusione termica nei semiconduttori.

Scattering: Small angle X-ray and Neutron scattering. Fattore di forma e fattore di struttura. Determinazione del raggio di girazione. Relazione tra il raggio di girazione e il raggio idrodinamico (quest'ultimo ottenuto dalle misure di diffusione).

Reologia: Risposta viscosa (legge di Newton) e risposta elastica (legge di Hook). Materiali plastici e pseudo plastici. Fluidi viscoelastici, Elemento di Maxwell. Spettroscopia reologica: principio di misura, significato di modulo elastico, G', e viscoso, G'', e del tempo caratteristico del materiale. Andamenti caratteristici per soluzioni di polimeri non ramificati e gel cross-linked. Fluidi Newtoniani, fluidi non-Newtoniani, equazione di Einstein, comportamenti reologici non ideali (Bingham, shear thickening, shear thinning; tixotropia), modificatori reologici. Teoria della reptazione per soluzioni polimeriche.

Dynamic Mechanical Analysis (DMA): caratterizzazione meccanica dei materiali allo stato solido, quali polimeri termoplastici, storage e loss extensional moduli in funzione della temperatura.

Esperienze di Laboratorio.

- 1) Utilizzo della teoria delle soluzioni regolari per la costruzione dei diagrammi di stato (computazionale).
- 2) Misure di cmc e area per testa polare di un tensioattivo da misure di tensione superficiale.
- 3) Determinazione del raggio idrodinamico di micelle da misure di dynamic light scattering (DLS) e l'effetto della dimensione e dell'aggregazione sulle proprietà reologiche.
- 4) Monitoraggio delle transizioni di forma delle micelle con uso combinato di DLS e reologia (con comparazione tra reometro e viscosimetro

SYLLABUS - L-30

	vibrazionale).
Testi di riferimento	Colloidal Foundations of Nanoscience, Eds. D. Berti, G. Palazzo, Elsevier,
	Amsterdam, 2014, pp.33-46;
	Evans, F.; Wennestrom, H. In The Colloidal Domain: Where Physics, Chemistry,
	Biology, and Technology Meet, 2nd ed.; Wiley-VCH, 1999
	Israelachvili, J.N. In Intermolecular and Surface Forces, 2011
Note ai testi di riferimento	Solo alcuni capitoli e/o sezioni dei testi indicati.

Organizzazione d	ella didattica		
Ore			
Totali	Didattica frontale	Pratica (laboratorio, campo, esercitazione, altro)	Studio individuale
125	32	15	78
CFU/ETCS			
5	4	1	

Metodi didattici	
	Lezioni frontali con slide multimediali, lavori di gruppo all'interno delle esperienze di laboratorio. L'insegnamento, relativamente alla parte teorica potrà essere erogato in modalità blended learning (didattica mista, frontale e a distanza) in
	base alle necessità contingenti. La parte di laboratorio non sarà erogata in modalità e-learning.

Dischart di sassa discosta		
Risultati di apprendimento		
previsti		
	ik	Conoscenza dei materiali polimerici, tensioattivi e colloidali
comprensione		o Capacità di comprensione del framework teorico per descrivere le proprietà
		dei soft materials (DLVO, Flory-Huggins, etc)
		 Conoscenza delle tecniche per la caratterizzazione dei materiali
Conoscenza e capacità d	ik	o Capacità di analizzare la correlation function per estrarre diffusione e raggio
comprensione applicate		idrodinamico (tramite esperienze di laboratorio)
		o Capacità di analizzare frequency sweep e curve di flusso in modo
		quantitativo e qualitativo (tramite esperienze di laboratorio)
		 Conoscenze delle tecniche per stabilizzare soluzioni colloidali.
Competenze trasversali		Autonomia di giudizio
		Al termine dell'insegnamento lo studente dovrà essere in grado di
		 Analizzare i dati raccolti durante le esperienze di laboratorio.
		o Confrontarsi costruttivamente con i colleghi e il docente durante le attività
		laboratoriali.
		Abilità comunicative
		Al termine dell'insegnamento lo studente dovrà essere in grado di
		o Capacità di comunicare in forma scritta i risultati delle esperienze di
		laboratorio.
		o Capacità di comunicare per via orale e con utilizzo di supporti multimediali,
		in italiano e in inglese l'oggetto del programma in essere.
		Capacità di apprendere in modo autonomo
		Analisi dei dati ottenuti in laboratorio e interpretazione dei dati

Valutazione	
Modalità di verifica dell'apprendimento	Esame orale (70%), Valutazione report di laboratorio (30%).
Criteri di valutazione	Conoscenza e capacità di comprensione:

Prof. Luigi Gentile Coordinatore Interclasse tel. 080 544 2033 luigi.gentile@uniba.it

SYLLABUS - L-30

	 Livello superiore: capacita di prevedere il tipo d'impaccamento della fase liotropica dalla struttura molecolare della molecola anfifilica (parametro d'impaccamento, curvatura spontanea) e del solvente (acqua). Capacità di correlare proprietà microscopiche e macroscopiche con la struttura supramolecolare. Complicare il sistema introducendo una fase oleosa (microemulsioni) Conoscenza e capacità di comprensione applicate: Livello minimo per il superamento dell'esame: conoscere le tecniche di base per una investigazione chimico-fisica dei materiali. Livello intermedio: correlazione dei dati sperimentali con le strutture investigate. Livello superiore: capacita di individuare fasi e strutture dai dati
	sperimentali raccolti comprendendo e giustificando le teorie scientifiche. Capacità di sviluppare semplici programmi per l'analisi dati preferibilmente in Matlab. • Autonomia di giudizio:
	Capacità di svolgere ricerche bibliografiche e di utilizzare basi di dati e capacità di gestirsi in laboratorio Abilità comunicative:
	 Per tutti i livelli: dimostrare la conoscenza della corretta terminologia scientifica, relativa alle conoscenze richieste per i tre livelli, ed esporre con proprietà di linguaggio gli argomenti delle domande di esame. Capacità di apprendere:
	 Nello svolgimento dell'esame, gli argomenti proposti avranno un grado di approfondimento crescente al fine di stabilire a quale livello di conoscenze, fondamentale, intermedio e superiore, sia pervenuta la capacità di apprendimento dello studente
Criteri di misurazione dell'apprendimento e di attribuzione del voto finale	Accertamento dell'acquisizione delle nozioni sperimentali (tramite le relazioni di laboratorio) e teoriche (tramite esame orale), verrà valutata la capacità di integrare le nozioni di chimica, fisica e matematica rispetto al programma svolto. Voti:
	Da 1 a 17 → Gli studenti non sono in grado di fornire una descrizione di base dei materiali e delle tecniche discusse durante il corso.
	Da 18 a 24
	Da 25 a 27 → Gli studenti sono in grado di fornire una buona descrizione di materiali e proprietà collegandoli ai concenti teorici.
	Da 28 a 30 cum laude → Gli studenti sono in grado di fornire una descrizione avanzata dei materiali e delle tecniche correlando la teoria con i dati sperimentali.
Altro	avanzata dei materiali e delle tecniche correlando la teoria con i dati sperimentali.