

COURSE OF STUDY: Medicine and Surgery – Medicina e Chirurgia (corso in inglese) - Bari English Medical Curriculum LM-41

ACADEMIC YEAR: 2023/2024

ACADEMIC SUBJECT: Medical Physics (6 CFU), module of the integrated course Medical Physics Medical Statistics (11 CFU)

General information	
Year of the course	1st
Academic calendar (starting and ending date)	1st semester (13/11/2023 - 22/02/2024)
Credits (CFU/ETCS):	6
SSD	FIS/07 - Applied Physics
Language	English
Attendance	Mandatory

Professor/Lecturer	
Name and Surname	Loredana Bellantuono
E-mail	loredana.bellantuono@uniba.it
Department and address	Nuovo Complesso delle Scienze Biomediche – Policlinico – Piazza G. Cesare 11, 70124
	Bari
Virtual room (Microsoft Teams	qcr0nfi
code)	
Office Hours (and modalities: e.g.,	Mon—Fri, by appointment
by appointment, on line, etc.)	

Work schedule			
Hours			
Total	Lectures	Hands on (Laboratory, working groups, seminars, field trips)	Out-of-class study hours / Self-study hours
150	60		90
CFU/ETCS			
6	6		

Learning objectives	Medical Physics
	Provide the student with a basic knowledge of general physics and illustrate its applications to the fields of biology and medicine. At the end of the course, the student will be able to understand the physical concepts and quantities useful to describe human physiology and pathology. Moreover, the student will acquire the competence to apply the scientific method in the description and interpretation of
	simple natural phenomena.
Course prerequisites	High-school mathematics.
Teaching strategy	Lectures as the main teaching tool, also with the use of free and interactive simulations available online.

For a stand local to a solution of the	No disel Diverse
Expected learning outcomes	Medical Physics
specified for each Dublin	- DD1 : acquiring the theoretical and experimental basis of classical Physics,
Descriptor (DD)	understanding the scientific method and the procedures of research in Physics.
	- DD2: identifying the most relevant features in the description of a physical
DD1 Knowledge and	phenomenon, in terms of order of magnitude and level of approximation, applying
understanding	physical laws and theories to practical situations.
-	- DD3 : using autonomous reasoning to recognize the physical laws that determine
DD2 Applying knowledge and	the observed phenomena and to solve standard and non-standard problems.
understanding	- DD4: using scientifically accurate terminology and being able to communicate
understanding	scientific knowledge
DD2 Making informed judgments	- DDE: strengthening logical and scientific attitudes useful to further studies
and choices	
and choices	
DD4 Communications lun quale data	
DD4 Communicating knowledge	
and understanding	
DD5 Capacities to continue	
learning	
Syllabus	
Content knowledge	Medical Physics
	UNITS OF MEASURE: Physical quantities and laws. The scientific method.
	Fundamental and derived units of measure. Dimensional equations. Systems of units
	of measure: SI, CGS, British. Multiples and submultiples of units of measure.
	Measurement errors. Representation of physical laws.
	VECTORS : Scalar and vector quantities. Displacement vector. Addition and
	subtraction of vectors. Multiplication and division of a vector by a scalar.
	Composition and decomposition of a vector. Scalar and vector product of two
	vectors
	KINFMATICS : Vector radius and displacement vector. Mean and instantaneous
	vector velocity. Mean and instantaneous vector acceleration. Uniform rectilinear
	motion and uniformly accolorated motion. Motion in the gravity field. Uniform
	signal and aniforming accelerated motion. Motion in the gravity field. Oniformi
	Lerrespisementian mulation mariad fragmanay Valasity and assolutation.
	Harmonic motion: pulsation, period, frequency. velocity and acceleration in the
	DYNAMICS: The fundamental laws of dynamics. Mass, forces and momentum.
	Universal gravitation law and weight force. Measure of forces: scales and
	dynamometer. Contact forces. The inclined plane. Support reactions and thread
	tension. Sliding friction and medium resistance. Centripetal force. Inertial forces and
	centrifugal force.
	STATICS: Statics and equilibrium of levers.
	ENERGY AND WORK : Work of a force. Kinetic energy and kinetic energy theorem.
	Conservative forces and potential energy. Energy conservation and transformation.
	Power.
	ELASTICITY: Elasticity. Hooke's law and Young's module. Elastic force and harmonic
	motion. Elastic energy.
	WAVE PROPAGATION: Propagation of an elastic wave. Sinusoidal waves: frequency,
	wavelength and velocity. Longitudinal and transverse waves. Sound waves and
	features of sound. Hearing sensation and Fechner's law. Ultrasounds and their
	application in medicine.
	DOPPLER EFFECT: Doppler effect and its applications in medicine.
	FLUID STATICS: States of aggregation of matter Pressure Pascal's principle Hydraulic
	jack Stevin's law Communicating vessels Buovant forces Atmospheric pressure
	Units of measure for pressure Instruments for pressure measurement
	ELUD DVNAMICS: Elow rate. Bernoulli's theorem and its applications. Viscosity
	FLOID DEMANINGS: Flow rate, Bernoulli's theorem and its applications. VISCOSITY.

	Hagen-Poiseuille law. Laminar and turbulent motion. Stokes' formula and
	sedimentation velocity. Ultracentrifuges. Surface tension. Capillarity. Laplace law.
	Elastic tension of vessel walls. Alveoli of the lungs.
	CARDIOVASCULAR SYSTEM: Physical properties of blood. General features of the
	cardiovascular system. Vessel pressures and resistances. Resistances in series and in
	parallel. Embolism. Arterial pressure measurement. Hydrostatic and acceleration
	effects. Work of the cardiac cycle.
	TEMPERATURE: Temperature. Thermometers and thermometric scales. Thermal
	dilation. Anomalous behavior of water.
	GAS THEORY: Laws of perfect gases. Absolute temperature. Dalton's partial
	pressures law. Kinetic model of perfect gases and Joule-Clausius equation. Absolute
	temperature and mean molecular kinetic energy.
	HEAT: Heat and energy. Specific heat. Thermal equilibrium. Phase transitions and
	latent heat. Vaporization and sublimation. Saturated vapor pressure. Real gases.
	Heat propagation. Thermoregulation of the human body.
	THERMODYNAMICS: Thermodynamic heat. Thermodynamic transformation. First
	law of thermodynamics. Specific heat of a perfect gas. Adiabatic transformation.
	Carnot cycle and conversion of heat into work. Refrigerating machines. Second law of
	thermodynamics. Entropy. Calorific value of food and metabolism.
	ELECTROSTATICS: Electric phenomena and electric charge. Coulomb's law. Atomic
	structure. Electric charge quantization. Conductors and insulators. Electric field and
	electrostatic potential. Electric energy measured in eV. Electric capacity and
	capacitors. Capacitors connected in series and in parallel.
	ELECTRIC CURRENT: Electric current. Ohm's law. Resistances connected in series and
	in parallel. Joule effect. Electrolysis and Faraday's laws. Electrophoresis.
	MAGNETISM: Magnetic phenomena and magnetic field. Charges in a magnetic field.
	Mass spectrometer. Origin of the magnetic field and Biot-Savart's law.
	Magnetoencephalography.
	ELECTROMAGNETISM: Electromagnetic induction: Faraday's and Lenz's laws. Origin
	of electromagnetic waves. Features of electromagnetic waves. Electromagnetic
	spectrum and visible light.
	GEOMETRICAL OPTICS: Geometrical optics. Reflection and retraction. Retraction
	index. Total reflection and limit angle. Optical fibers. Plane mirrors. Spherical mirrors.
	THIN LENSES: Centered optical system and spherical diopter. Object and image. Thin
	lenses and optical power. Focal points and image construction. Aberrations.
	VISION OPTICS: Optical scheme of the eye. Eye adjustment. Visual acuity. Visual
	defects: Schematizzazione ottica dell'occhio. Accomodamento dell'occhio. Acuita
	visiva. Difetti visivi: myopia, hyperopia, presbyopia, astigmatism, daitonism. Simple
	and composed microcopes.
	X RAYS: Spectrophotometry and Lambert-Beer's law. Ionizing radiations. X rays and
	applications in medicine. Computenzed axial tomography (CAT).
	Redipactivity Alpha beta and gamma decay. Radipactive decay law Mean lifetime
	and half-life Activity Scintigraphy SPECT Elements of radioprotection rules
Texts and readings	A Bacchetta D Scannicchio Introduction to Medical Divisios CEA – Casa
i exto una readingo	Fditrice Ambrosiana Zanichelli
	 I Nitti R Tommasi Fisica – 2000 quiza scelta multinla ner la scienzo.
	\sim 2000 quiz a scena multipla per le scienze hiomediche CEA – Casa Editrice Ambrosiana. Zanishelli + a free software for
	translation (e.g. https://www.collinsdictionary.com/translator)
Notes additional materials	Medical Physics: lecture slides
Renository	Medical Physics: Nicrosoft Teams (code: acrOnfi)
περοδιίοι γ	אוכטונסו דוואסונס. אוונוטטונ ובמוווג ננטעב. ענוטוווו)

Assessment	
Assessment methods	The final exam of the integrated course is composed of the partial tests of Medical
	Physics and Medical Statistics.

	Medical Physics The test is aimed at assessing both the student's theoretical knowledge of the course contents and ability to apply theory to the solution of exercises. The test is written, made of 30 multiple-choice questions, and lasts 60 minutes. A scientific calculator is allowed. The number of questions can be proportionally reduced for students who have their CFU/ECTS obtained in other degree courses recognized.
Assessment criteria	<i>Knowledge and understanding</i> : the student should demonstrate knowledge of the main physical laws, related to the topics covered by the lectures.
	<i>Applying knowledge and understanding</i> : the student should be able to solve simple physical problems by using the acquired knowledge.
	<i>Making judgments</i> : the student should be able to follow autonomous reasoning in solving problems.
	<i>Communication skills</i> : the student should master scientific related to the course contents
	<i>Learning skills</i> : the student should learn to autonomously investigate problems in which the application of physical laws is required.
Final exam and grading criteria	Medical Physics The partial test consists of 30 multiple-choice questions. Each right answer is awarded 1.05 points, while a penalty of 0.25 points is given for each wrong answer; unanswered questions give no contribution to the score. The number of questions can be proportionally reduced for students who have their CFU/ECTS obtained in other degree courses recognized. In this case, the final score is computed as an average, weighted by CFU/ECTS, of the scores obtained in the recognized exam and in the Medical Physics partial test. The test is passed with a score of at least 18 points (rounded). The test is passed cum laude with a score greater than 30 points.
	CFU/ECTS, of the scores obtained in the two partial tests.
Further information	

COURSE OF STUDY: Medicine and Surgery – Medicina e Chirurgia (corso in inglese) - Bari English Medical Curriculum LM-41

ACADEMIC YEAR: 2023/2024

ACADEMIC SUBJECT: Medical Statistics (5 CFU/ECTS), module of the integrated course Medical Physics Medical Statistics (11 CFU/ECTS)

Principali informazioni sull'insegnamento		
Year of the course	l year	
Accademic calendar	I semester (oct - jan)	
Credits (CFU/ETCS):	5	
SSD	MED/01 – Medical Statistics	
Language	Italian	
Mode of attendance	Mandatory	

Professor	
Name and Surname	Paolo Trerotoli
E-mail	paolo.trerotoli@uniba.it
Telephone	0805478478
Department and address	Department of Interdisciplinary Medicine, Istituto of Hygiene, third floor Biology
	Istitutes
Virtual room	Teams "MED STAT BEMC (access code: 421qocc)"
	The meeting should be planned by e-mail
Office Hours	By appointment to plan by e-mail

Organizzazione de	ella didattica		
Ore			
Total	Lectures	Hands-on	Out-of-class/self-
			study hours
125	50		75
CFU/ETCS			
5	5		

Learning Objectives	Provide the basic elements of descriptive and inferential statistics, as well as
	research and for the interpretation and critical evaluation of biomedical literature.
Course prerequisites	Basics of mats at secondary degree.

Teaching strategies	Lessons with practical cases, solved using Excel and free applications available on the
	web and which use the R software for calculation (https://www.statskingdom.com/).

Risultati di apprendimento	- Dublin 1 descriptor (knowledge and understanding):
previsti	Knowledge of the methods of data synthesis from clinical studies, knowledge of
	principles of probability useful for understanding the results of data analyses,
Da indicare per ciascun	knowledge of the main data analysis methods.
Descrittore di Dublino (DD=	 Dublin 2 descriptor (ability to apply knowledge and understanding):
	Ability to choose the correct methods for different data analysis conditions and
	assumptions, ability to recognize the types of clinical studies and interpret their
DD1 Conoscenza e capacità di	limitations and strengths.
comprensione	- Dublin 3 descriptor (critical and judgment skills):

	Development of critical thinking to read the results of clinical studies, and to identify
	main information that guide professional choices based on scientific evidence
DD2 Conoscenza e capacità di	 Dublin 4 descriptor (ability to communicate what has been learned):
comprensione applicate	Development of the ability to get the essential elements in data analysis procedures
	to produce effective reporting and illustrate the results of clinical studies.
	- Dublin 5 descriptor (ability to continue studying independently throughout life):
DD3-5 Competenze trasversali	Ability to go into details of the main topics for the purpose of planning clinical
	studies, systematic reviews, reading and promoting guidelines.
Content knowledge (Programma)	 How to conduct a clinical study, Sources of data
	• Basic concepts. Measurement, variable, scale of measurement.
	• Population and Sample. Simple random sample. Randomization.
	• The frequency distribution. The Sturges rule. Histograms.
	• Descriptive statistics: measure of central tendency; measure of dispersion.
	Count and percentages. Graphical methods: the box-plot, the pie chart, the bar
	plot, the scatter plot, the choropleth map.
	• Basic Concepts of probability: classical and frequentist probability, elementary
	properties of probabilities. Bayes theorem, application on screening tests,
	sensitivity, specificity, predictive values.
	Probability distributions: Binomial distribution, Poisson distribution, Normal
	distribution. The standard Normal distribution. Sampling distributions.
	• Inference: Estimation. Confidence intervals. Confidence interval for a
	population mean with known and unknown population variance. Confidence
	interval for the difference of two population mean. Confidence interval for a
	proportion. Confidence interval for the difference of two proportions.
	Confidence interval for Odds ratio. Determination of the sample size.
	Hypothesis testing. Type Ferror and Type II error, power of the test.
	• Statistical tests to compare means. A single population mean. The difference
	between two population means.
	Analysis of Variance. Completely randomized design. Notes on other design of the study. Interaction. Multiple comparison methods (Penferroni, LSD, Duncan)
	Distribution free methods to compare groups: Wilcoven test for paired and
	Unpaired data Kruckal Wallis test
	Analysis of frequency data. A single proportion. The difference between two
	proportions. The ratio of two population variance (E-statistic). The r*c table. The
	chi-square test. The Mantel Haenszel statistic, McNemar test: the Cohen's K. The
	Fisher exact test. Chi-square for trend.
	• Correlation . Pearson correlation coefficient. T-test for independence.
	• Distribution free methods for correlation : Spearman Correlation Coefficient.
	• Simple linear regression. Ordinary Least Square, slope, ANOVA to evaluate
	significance of slope, Coefficient of determination. Confidence interval for slope
	and intercept; notes on residual analysis. Notes on multiple regression.
	Logistic regression.
	• Survival analysis. The Kaplan Meier curve. The log-rank test. Notes on Cox
	regression and hazard ratio.
	• Diagnostic accuracy and screening. Sensitivity, specificity and predictive values
	of a diagnostic test. ROC curves. Measure of efficacy and effectiveness of a
	screening.
	Introduction to Wachine Learning Statistical Methods for Endemialogy, Insidence, providence, rates, Disk
	 Statistical Methods for Epidemiology. Incluence, prevalence, rates, KISK, relative rick, absolute rick, attributable rick, Odd and Odds ratio.
	Standardization of rates (direct and indirect). Confounding and interaction
	Fxperimental and Observational studies
	Clinical Trials
	Critical evaluation of a research paper

Texts and readings	 Daniel W., Cross C., Biostatistics, Wiley, 2009
	 Motulsky H., Intuitive biostatistic – a non mathematical guide, Piccin, 2021
Notes, additional materials	
Repository	Web page of the professor, to access by "Search people (index book)"
	(www.manageweb.ict.uniba.it/it/docenti/trerotoli-paolo)

Assessment	
Assessment methods	The exam for the assessment of medical statistic is a written test made by multiple choice questions and open text to evaluate knowledge of basics of statistics, the acquired skill to choose the correct application for the main clinical study conditions, the skill to interpret results of a published paper. The exam has a duration of 1 hour. If the student has the right to hold a partial exam because of previous curriculum studiorum, the test will be composed by questions on selected arguments on which the student will be informed. The professor should evaluate the contents of previous exams.
Assessment criteria	<u>Knowledge and understanding</u> : the student should demonstrate knowledge of the different descriptive and inferential methods, as well as their theoretical foundations. <u>Applied knowledge and understanding</u> : the student should be able to set up and solve common data analysis problems and know how to interpret the results.
	<u>Autonomy of judgment</u> : the student should be able to understand the transferability of the results to clinical practice, as well as to lay the methodological premises for any further developments of the research.
	<u>Communication skills</u> : the student should demonstrate the ability to correctly use the specific terminology of the discipline and must communicate the results of their analyses.
	<u>Ability to learn</u> : the student should demonstrate the ability to use the basic principles of description and statistical inference to be able to critically evaluate the biomedical scientific literature and propose analytical alternatives suited to the clinical objectives.
Final exam and grading criteria	The final score of the Medical Statistics test is attributed based on the number of correct answers to the multiple-choice questions (1 point for each correct answer) and the evaluation of the open-ended questions. The latter are formulated in such a way as to require answers that use the technical language learned during the lessons and exercises, to allow the teacher to identify in the answers the key words whose presence leads to the attribution of the score; In addition to the presence of keywords, presentation and synthesis are also evaluated. The total for the test is 31, honors are awarded to those who achieve this score. Passing is achieved with 18 points. Points will not be deducted for answers incorrectly or not given.
	The final grade is the weighted mean of both tests (Physics and Statistics). The weights are the CFU of each discipline of the C.I.
Further Information	