

Bari English Medical Curriculum

FIRST YEAR

BIOCHEMISTRY

General information	
Year of the course	First year
Academic calendar	Second semester
Credits (CFU/ETCS):	8 CFU
SSD	BIO/10 Biochemistry
Language	English
Mode of attendance	Attendance is governed by the Course Teaching
	Regulations

Professor/ Lecturer	
Name and Surname	Luigi Leonardo Palese
E-mail	luigileonardo.palese@uniba.it
Telephone	
Department and	Dipartimento di Biomedicina Traslazionale e Neuroscienze
address	(DiBraiN)
	Nuovo Complesso delle Scienze Biomediche
	Policlinico, Piazza G. Cesare, 11 - Bari
Virtual room	Teams channel (the code will be communicated in class)
Office Hours	Every day between 12pm and 4pm at the teacher's office
	(by email appointment only)

Work sched	lule		
Hours			
Total	Lectures	Hands-on (laboratory, workshops, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
200	80		120
CFU/ETCS			
8	8		

Learning	The central objective of the course is to provide students
Objectives	with a method of critical reasoning about the biochemical-
-	metabolic aspects of Medicine. Specifically, this course
	provides an overview of the major metabolic pathways and
	their functional correlations in the human organism.
	Biochemical processes that characterize the specialized
	function of different tissues and organs will also be
	described. The theoretical knowledge gained from this
	Biochemistry course will provide an essential basis for

	subsequent applications at the professional level.
Course	The correct understanding of the principles of
prereguisites	biochemistry presupposes a good knowledge of the basics
p	of physics, of general, inorganic and organic chemistry and
	of cellular biology, in order to appreciate the relationships
	(even guantitative) between the different biochemical
	pathways and their integrated regulation in the same cell.
	To be admitted to take Biochemistry the student must
	have passed the Chemistry and Propaedeutic Biochemistry
	exam
	c.c.m
Teaching strategie	The training activity is carried out through frontal lessons
reaching strategie	in the classroom with the use of audio-visual systems with
	interactive methodology based on the interaction between
	teacher and student. It also includes the analysis of
	"scientific cases" on specific topics as a moment of in-
	denth study and application of biochemical knowledge and
	professional skills consistently with the training
	objectives
Expected learning	
outcomes in terms	
of	
Knowledge and	The student will have to acquire a good knowledge and
understanding on:	understanding of the main biological molecules, metabolic
g	pathways and their regulation, also at the level of tissues.
	organs and systems. Particular attention will be given to
	the ability to grasp the fundamental aspects of
	bioenergetics and the integration of metabolic flows, both
	catabolic and anabolic, and the role of coenzymes.
	vitamins and energy-rich compounds in cellular and tissue
	homeostasis.
Applying knowledge	The student will have to acquire skills and competences
and understanding	aimed at being able to translate the theoretical
on:	information and operational skills acquired in the field of
	biochemistry to the scientific and technological contexts of
	the medical profession. The student will therefore be able
	to appreciate the professional applications deriving from
	the knowledge of biochemistry.
Soft skills	Autonomy of judgement:
	The student should be able to independently deepen the
	notions learned, in order to progressively acquire full
	maturity and autonomy of judament. according to the
	relevant ethical principles. Independence of judament will
	be stimulated through the guided development of the
	analysis and individual interpretation of technical-scientific
	papers.

Communication skills The student should be able to transmit the knowledge learned in a clear and comprehensible way to everyone, having acquired adequate communication-relational skills and social skills useful for building communication between different subjects. The student will be stimulated to develop communication skills through the organization of group work in which some scientific articles will be analyzed and presentations structured as technical- scientific reports will be discussed, to be presented in the classroom to colleagues in the presence of the teacher. Therefore, the student will be able to use all the technical and IT methods and tools for managing communication and will have to know the processes and logic to guarantee its effectiveness.
Ability to learn The student must have acquired not only adequate skills and knowledge to pass the exam, but above all adequate learning skills and methods for the continuous updating and improvement of their skills in the field of biochemistry necessary for the medical profession. The learning ability will be stimulated with appropriate tools and argumentative techniques during the lectures.
INTRODUCTION TO METABOLISM Anabolism and catabolism. Oxidative metabolism. Main metabolic pathways: degradative and biosynthetic pathways. Regulation of metabolic pathways. CARBOHYDRATE METABOLISM Glycolysis. Metabolic fate of glucose-6-P. Pyruvate in aerobic and anaerobic conditions. Metabolism of fructose and galactose. Glycogen metabolism: glycogenosynthesis and glycogenolysis. Gluconeogenesis. Cori cycle. Pentose phosphate pathway.
TRICARBOXYLIC ACID CYCLE Pyruvate dehydrogenase complex. Krebs cycle. Amphibolic function and anaplerotic reactions. MITOCHONDRIAL BIOENERGETICS Oxidation-reduction reactions of biological interest. Transfer of reducing equivalents from the cytoplasm to the mitochondria: shuttle systems. Structure and function of

phosphorylation. Respiratory control index. P/O ratio.
REACTIVE OXYGEN (ROS) AND NITROGEN (RNS) SPECIES Physiological role of ROS. Oxidative damage to biological macromolecules. Scavenger systems. Role of ROS in human aging. Nitric oxide (NO) metabolism: NO synthases and their tissue-specific functions.
METABOLISM OF LIPIDS Cytoplasmic activation of fatty acids and role of carnitine. Beta oxidation of saturated and unsaturated fatty acids. Metabolism of propionyl CoA. Metabolism of ketone bodies. Biosynthesis of saturated and unsaturated fatty acids.
METABOLISM OF AMINO ACIDS Glucogenic and ketogenic amino acids. Catabolic fate of the amino group. Transamination. Oxidative and non- oxidative deamination. Transport of ammonia from extra- hepatic tissues to the liver. Urea cycle.
<i>NUCLEOTIDE METABOLISM De novo synthesis of purine and pyrimidine nucleotides. Purine nucleotide recovery pathway. Synthesis of deoxyribonucleotides. Biosynthesis of thymidylate.</i>
BIOSIGNALING Biochemical classification of hormones and receptors. Kinetics of hormone-receptor binding. Biosynthesis of steroid and thyroid hormones. Second messengers.
INTEGRATION OF METABOLISM Metabolic interrelationships. Branch points of energy metabolism. Hormonal control of energy metabolism: insulin, glucagon. Glucose homeostasis: feeding-fasting cycle. Biochemical effects of hyperglycemia: glycation reactions, methylglyoxal, polyol pathway, PARP.
BIOCHEMISTRY OF THE GASTRO-INTESTINAL SYSTEM Digestion and absorption of carbohydrates, lipids and proteins. Bile acids and bile pigments.
LIVER BIOCHEMISTRY The metabolic peculiarities of the liver. Detoxification reactions. Cytochromes P-450. Ethanol metabolism.

University of Bari "Aldo Moro" - Medical School Policlinico – P.zza G. Cesare 11, 70124 – Bari (Italy) luigileonardo.palese@uniba.it

	BIOCHEMISTRY OF ADIPOSE TISSUE
	Adipose tissue metabolism. Adipokines and regulation of
	energy metabolism Thermogenesis and uncoupling
	nroteins
	proteins.
	DLOUD DIOCHEMISTRI Diagma protoing, Lingarotoing, structural and matchalia
	characteristics. Chalacteral matchalism and homoestasis
	Matabalism and function of vitamin D. Iron homoostasis.
	Metabolism and function of vitamin D. Iton noneostasis.
	BIOCHEMISTRY OF MUSCLE TISSUE
	Muscle carbohydrate, lipid and protein energy metabolism.
	Creatine and creatine kinase. AMP cycle. Branched-chain
	amino acids.
	BIOCHEMISTRY OF NERVOUS TISSUE
	Metabolism of the nervous system. Structure and function
	of ion channels. Metabolism of the main neurotransmitters
	and structure of the receptors. Biochemical mechanisms of
	the sensory and visual system.
Texts and readings	Baynes, Dominiczak: Medical Biochemistry 6th edition,
	Elsevier.
	Voet, Voet: Biochemistry, International Adaptation, 4th
	Edition, Wiley.
	Nelson, Cox: Lehninger Principles of Biochemistry
	International Edition, 7th Edition, W.H.Freeman & Co Ltd.
Notes, additional	Lecture notes and additional material will be made
materials	available on the dedicated Teams channel.
Repository	Course Team channel; the access code will be
	communicated to students at the beginning of the course.

Assessment		
Assessment methods	The exam includes an oral interview during which the acquisition of the expected knowledge will be verified. The student will also be asked to represent the schemes of the main metabolic reactions on the blackboard (or equivalent).	
Assessment criteria	The oral exam includes questions on the topics covered during the course; each answer is evaluated based on the correctness, exhaustiveness and ability to explain the topic covered by the question. The transversal skills foreseen in the learning outcomes will be verified and wil contribute to the evaluation of the final grade. Honors can be awarded when the student has demonstrated full	

University of Bari "Aldo Moro" - Medical School Policlinico – P.zza G. Cesare 11, 70124 – Bari (Italy) luigileonardo.palese@uniba.it

	mastery of the subject during the interview.
Final exam and grading criteria	The exam is considered passed when the grade is greater than or equal to 18/30. The awarding of maximum marks with honors (30 honors) is possible
Further information	

University of Bari "Aldo Moro" - Medical School Policlinico – P.zza G. Cesare 11, 70124 – Bari (Italy) luigileonardo.palese@uniba.it